Lodging establishments, such as hotels, provide keys to their guests to access their rooms. The keys typically are either plastic key cards with magnetic strips or plastic key cards with Radio Frequency Identification (RFID) tags. With a plastic key card having a magnetic strip, a hotel clerk encodes information regarding the guest onto the magnetic strip of the card at the time of check in before handing the plastic key card to the guest. For instance, an identifier of the guest, a valid date/time, an expiration date/time and a room number may be encoded onto the magnetic strip. When the guest wishes to use the plastic key card, the guest runs an edge of the plastic key card having the magnetic strip through a magnetic card reader integrated into the door of the guest's room. The magnetic card reader reads information off of the magnetic strip and the information is analyzed by the lock. If the information is the correct information for unlocking the door, the lock to the door is unlocked so that the guest may access the room. If the information is not proper for unlocking the door, access is denied, and the door remains locked.
The plastic key card with an RFID chip operates somewhat differently. The hotel clerk encodes guest information in the RFID chip of the plastic key card at the time of check in before giving the guest the plastic key card. When the guest wishes to use the plastic key card, the guest places the plastic key card up against an RFID reader that is integrated into the door of a guest room. The RFID reader reads information wirelessly from the RFID chip in the plastic key card. If the information is the correct information for unlocking the door, the lock to the door is unlocked so that the guest may access the room. If the information is not proper to unlock the door, access is denied, and the door remains locked.
Such plastic key cards may also be used for other purposes. For example, employers may give employees such plastic key cards to gain access to the employer premises or to gain access to secure areas. For example, a secure laboratory in a corporation may require key card access. The plastic key cards may be used to access other locations where a lock is deemed necessary. Such plastic key card may even be used with locked items, such as trunks, safes, etc.
There are drawbacks to use of these varieties of plastic key cards. For example, these varieties of plastic key cards are not especially secure. Information on the magnetic strips or RFID tags is readily accessible to a party with a magnetic card reader or RFID reader. In addition, such plastic key cards are easily misplaced. As a result, the plastic key cards may end up in the hands of the wrong parties or the user may lose access to the locked location or item until a new card is obtained. Further, it is inconvenient for the user to have to keep track of an additional card. Lastly, it is expensive for lodging owners to have to purchase plastic key cards, especially given that many are lost or destroyed.
In accordance with an inventive aspect, a method includes receiving identity information and credentials originating from a contactless card via a wireless communication protocol. Based on the identity information and the credentials, an identity of a party is confirmed. After the identity confirmed, a code is forwarded for a payment card. The code serves as a digital key to unlock a lock.
The payment card may be a smart card or a credit card with capabilities for the wireless communication protocol. The wireless communication protocol may be a Near Field Communication (NFC) protocol. The lock may be for a hotel room. The method may further include storing a room number for the code and storing the identity of the party onto the payment card. The method may also include receiving the code from a computing device. The identity information and credentials may be received in an encrypted package.
In accordance with another inventive aspect, a method includes receiving credentials and identity information for a party at a portable computing device from a contactless card via a wireless communication protocol. The credentials and the identity information are forwarded to an authentication authority. Confirmation of the identity of the party is received. After the confirmation of the identity of the party, a code is forwarded to a payment card via the wireless communication protocol. The code serves as a digital key to unlock a lock.
The portable computing device may be a smartphone, tablet computing device, a smartwatch or a wearable device. The wireless communication protocol may be a Near Field Communication (NFC) protocol. The lock may be for a hotel room. The identity information and credentials may be received in an encrypted package. The forwarding and the receiving confirmation may be via a networked connection. The networked connection may be a wireless network connection, a cellular network connection or a wired network connection.
In accordance with an additional inventive aspect, a smart card includes a memory for storing identity information regarding a user, a key code for unlocking a lock with the smart card, computer program instructions for unlocking the lock with the key code, and computer program instructions for performing wireless payments. The smart card also includes a processor for executing the computer program instructions for unlocking the lock and the computer program instructions for performing wireless payments that are stored in the memory. The smart card further includes hardware enabling the smart card to communicate wirelessly.
The hardware may enable Near Field Communication (NFC) wireless communications. The lock may be a lock for a door. The lock may be for a hotel room lock. The memory may further store computer program instructions for downloading the key code from a device. The device may be a smartphone.
Exemplary embodiments may provide keys for unlocking access to a location or item on a user's payment card. Examples of a payment card include but are not limited to a credit card, a debit card, a smart card, an employee identification card with payment capabilities. A secure token that acts as digital key may be uploaded to the payment card of the user. For example, where the key is for a lodging room, a guest may login to a website or access an application for the lodging and check in by providing personal information and payment information. The guest may, in some instances, then access a self-service terminal that encodes the payment card with a secure token that acts as a digital key. In other instances, the user may exploit the capabilities of a mobile computing device, such as a smartphone, tablet, smartwatch or a wearable device, to download the secure token using the application or website and then transfer the secure token to the payment card. The payment card may then be put in close proximity of a wireless reader at the lock. The wireless reader obtains the secure token and extracts the contents. If the contents are correct for unlocking the lock, the lock is unlocked. Otherwise, the lock remains locked.
Suitable wireless communications protocol for use in the exemplary embodiments are the Near Field Communication (NFC) protocols or other wireless communication protocols. Thus, the mobile computing device or terminal and the payment card may be NFC capable. Where the self-service terminal is used, the terminal may transfer the secure token to the payment card via NFC. Similarly, the mobile computing device may transfer the secure token to the payment card via NFC. The payment card also may transfer the secure token via NFC to the wireless reader at lock.
The exemplary embodiments have the benefit of not requiring an additional plastic card to access a locked location or item. This eliminates the need for the user to keep track of an additional plastic card. Likewise, this has the benefit of reducing the expense for issuers of the plastic key cards in that they no longer need to purchase as many plastic key cards since many users will opt to have the keys encoded to their payment cards. The digital key on the payment card used in the exemplary embodiments is less likely to be lost by users as people tend to keep close tabs on their payment cards, whereas users often do not pay close attention to their conventional plastic key cards since they can readily get a new plastic key card. The keys used in the exemplary embodiments are secure in that each secure token that acts as a digital key is encrypted and is not accessible without having the decryption key(s) that are needed to decrypt the secure package.
The mobile computing device/terminal 104 may communicate with a payment card 108 of the user. For example, as mentioned above, the mobile computing device/terminal 104 may provide the secure package that acts as a digital key to the payment card 108. The payment card 108 may interact with the lock 110 as will be described below to unlock the door.
One use of the digital key on a payment card is to unlock a door of a lodging establishment, like a motel, hotel, inn or rental. There are at least two approaches that may be used in exemplary embodiments to get a digital key onto the payment card 108 for such a case where the user is to use the digital key on a payment card to unlock their lodging room or rental. In a first approach, the mobile computing device 104 transfers the digital key to the payment card 108.
Another alternative for the use in lodging is for the key to be downloaded from a self-service terminal at a lodging front desk or kiosk.
The mobile computing device/terminal 402 may include an integrated circuit (IC) for providing NFC capabilities 416. The NFC IC 416 may include an NFC transceiver and a loop antenna for participating in NFC communications. A contactless card 420 may communicate with the mobile computing device/terminal 402 via NFC, such as when the contactless card is tapped against the mobile computing device/terminal 402. The contactless card 420 may include a counter 415 that is used in secure communications. A payment card 403 may wirelessly communicate with the mobile computing device/terminal via NFC or another wireless protocol.
The mobile computing device/terminal 402 may communicate with server 404 and/or server 430. In some exemplary embodiments, the mobile computing device/terminal 403 communicates directly with only server 430. These servers 404 and 430 may be connected via network(s) 406 with the mobile computing device/terminal 402. The networks(s) 406 may include wide area networks, like the Internet and/or a cellular phone network, as well as local area networks, such as corporate networks, Ethernet networks, WiFi networks, etc or intranets. Server 404 may include one or more processors 422. The processor(s) 422 may assume the many forms like those described for the processor(s) 408. The server 404 may include a storage 424, that may include the forms of storage or memory described above for storage 410 of the mobile computing device/terminal 402. The storage 424 may store computer programming instructions 440. In some exemplary embodiments, these computer programming instructions 440 are for a website that may be accessed by the user 418 to check into lodging and obtain a digital key as described above. The computer programming instructions may also be server code the interacts with the application 414 to facilitate check in and obtaining of the digital key. The server 430 may be used when authentication of the identity of the user is required and may be invoked by server 404 to provide identity authentication. The server may include processor(s) 433 that execute an authentication service 432 for authenticating a user's identity. Servers 404 and 430 may have access to data 434, such as databases and the like.
As was mentioned above, one option with using the payment card as a digital for a lodging room is for a user is to use a contactless card to prove identity and to transfer the digital key to the payment card via the mobile computing device.
The application 414 on the mobile computing device 402 then may prompt the user to use the payment card as a key (see 514). The user may respond positively that the user wishes to use the payment card as a key (see 516). If user does not choose this option, the process halts. Otherwise, the application 414 may then request the key from server 404 (see 518). The computer program instructions 440 on the server generate the secure package that is the digital key. The key code and other information of the secure package may then be sent from the server 404 to the application 414 on the mobile computing device 402 (see 520). The application 414 prompts the user 418 to tap the payment card to the mobile computing device 402. The payment card is tapped to mobile computing device 403 (see 524). The secure package holding the digital key code may be transferred by the application 414 on the mobile computing device to the payment card via NFC as a result of the tap. In particular, the mobile computing device 402 sends the key code (see 526) and the key code is stored on the payment card (see 528).
The discussion will now focus on details of the use of the contactless card.
The contactless card 600 may also include identification information 604 displayed on the front and/or back of the card, and a contact pad 602. The contact pad 602 may be configured to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. The contactless card 600 may also include processing circuitry, antenna and other components not shown in
As illustrated in
The memory 616 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the contactless card 600 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programed many times after leaving the factory. It may also be read many times.
The memory 616 may be configured to store one or more applets 618, one or more counters 620, and a unique customer identifier 622. The one or more applets 618 may comprise one or more software applications configured to execute on one or more contactless cards, such as Java Card applet. However, it is understood that applets 618 are not limited to Java Card applets, and instead may be any software application operable on contactless cards or other devices having limited memory. The one or more counters 620 may comprise a numeric counter sufficient to store an integer. The customer identifier 622 may comprise a unique alphanumeric identifier assigned to a user of the contactless card 600, and the identifier may distinguish the user of the contactless card from other contactless card users. In some examples, the customer identifier 622 may identify both a customer and an account assigned to that customer and may further identify the contactless card associated with the customer's account.
In some examples, the contactless card 600 may comprise one or more antennas 612. The one or more antennas 612 may be placed within the contactless card 600 and around the processing circuitry 610 of the contact pad 602. For example, the one or more antennas 612 may be integral with the processing circuitry 610 and the one or more antennas 612 may be used with an external booster coil. As another example, the one or more antennas 612 may be external to the contact pad 602 and the processing circuitry 610.
In an embodiment, the coil of contactless card 600 may act as the secondary of an air core transformer. The terminal may communicate with the contactless card 600 by cutting power or amplitude modulation. The contactless card 600 may infer the data transmitted from the terminal using the gaps in the contactless card's power connection, which may be functionally maintained through one or more capacitors. The contactless card 600 may communicate back by switching a load on the contactless card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference.
As explained above, the contactless card 600 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader, and produce an NDEF message that comprises a cryptographically secure OTP encoded as an NDEF text tag.
The generation of the secure package holding the identity information 704 may be generated cryptographic hash functions, such as MD5 or SHA-1.
In the exemplary embodiments, the inputs 802, 804 and 806 may vary depending on the information the parties wish to exchange and the protocol for authenticating the initiating party.
As an added layer of security, the hash value 902 may be encrypted.
The discussion will not focus on the authentication service that receives the secure package that originated from the contactless card in more detail.
Generally, the server 430 (or another computing device) and the contactless card 420 may be provisioned with the same master key (also referred to as a master symmetric key). More specifically, each contactless card 420 may be programmed with a distinct master key that has a corresponding pair in the authentication service 432. For example, when a contactless card 420 is manufactured, a unique master key may be programmed into the memory of the contactless card 420. Similarly, the unique master key may be stored in a record of a customer associated with the contactless card 420 in the account information accessible by the authentication service 432 (and/or stored in a different secure location). The master key may be kept secret from all parties other than the contactless card 432 and authentication service 432, thereby enhancing security of the system.
The master keys may be used in conjunction with the counters to enhance security using key diversification. The counters 415 and 1102 comprise values that are synchronized between the contactless card 420 and the authentication service 432. The counter value may comprise a number that changes each time data is exchanged between the contactless card 420 and the authentication service 432.
After communication has been established between mobile computing device 402 and the contactless card 420, the contactless card 420 may generate a message authentication code (MAC) cryptogram. In some examples, this may occur when the contactless card 420 is read. In particular, this may occur upon a read, such as an NFC read, of a near field data exchange (NDEF) tag, which may be created in accordance with the NFC Data Exchange Format. For example, a reader, such as the NFC reader, may transmit a message, such as an applet select message, with the applet ID of an NDEF producing applet. Upon confirmation of the selection, a sequence of select file messages followed by read file messages may be transmitted. For example, the sequence may include “Select Capabilities file”, “Read Capabilities file”, and “Select NDEF file”. At this point, the counter value 415 maintained by the contactless card 420 may be updated or incremented, which may be followed by “Read NDEF file.” At this point, the message may be generated which may include a header and a shared secret. Session keys may then be generated. The MAC cryptogram may be created from the message, which may include the header and the shared secret. The MAC cryptogram may then be concatenated with one or more blocks of random data, and the MAC cryptogram and a random number (RND) may be encrypted with the session key. Thereafter, the cryptogram and the header may be concatenated, and encoded as ASCII hex and returned in NDEF message format (responsive to the “Read NDEF file” message). In some examples, the MAC cryptogram may be transmitted as an NDEF tag, and in other examples the MAC cryptogram may be included with a uniform resource indicator (e.g., as a formatted string). The contactless card 420 may then transmit the MAC cryptogram to the mobile computing device 402, which may then forward the MAC cryptogram to the authentication service 432 for verification as explained below. However, in some embodiments, the mobile computing device 402 may verify the MAC cryptogram.
More generally, when preparing to send data (e.g., to the server 430), the contactless card 420 may increment the counter 415. The contactless card 420 may then provide the master key and counter value as input to a cryptographic algorithm, which produces a diversified key as output. The cryptographic algorithm may include encryption algorithms, hash-based message authentication code (HMAC) algorithms, cipher-based message authentication code (CMAC) algorithms, and the like. Non-limiting examples of the cryptographic algorithm may include a symmetric encryption algorithm such as 3DES or AES128; a symmetric HMAC algorithm, such as HMAC-SHA-256; and a symmetric CMAC algorithm such as AES-CMAC.
The contactless card 420 may then encrypt the data (e.g., the customer identifier and any other data) using the diversified key. The contactless card 420 may then transmit the encrypted data to the mobile computing device 402 (e.g., via an NFC connection, Bluetooth connection, etc.). The mobile computing device 402 may then transmit the encrypted data to the authentication service 432 on the server computing device 430 via the network 406. In at least one embodiment, the contactless card 420 transmits the counter value with the encrypted data. In such embodiments, the contactless card 420 may transmit an encrypted counter value, or an unencrypted counter value.
Although the counter is used as an example, other data may be used to secure communications between the contactless card 420, the mobile computing device 402, and/or the authentication service 432. For example, the counter may be replaced with a random nonce, generated each time a new diversified key is needed, the full value of a counter value sent from the contactless card 420 and the authentication service 432, a portion of a counter value sent from the contactless card 420 and the authentication service 432, a counter independently maintained by the contactless card 420 and the authentication service 432 but not sent between the two, a one-time-passcode exchanged between the contactless card 420 and the authentication service 432, and a cryptographic hash of data. In some examples, one or more portions of the diversified key may be used by the parties to create multiple diversified keys.
The other information may be other authentication factors 1002 such as the phone number of the mobile computing device 402, which may be compared to the phone number on record for the user 418. The other authentication factors may include a geolocation for the user. The geolocation may be information such as GPS information or area code and exchange prefix information that may be compared with information regarding the residence of the user. The other authentication factors also may include a shared secret that is shared between the user and the authentication service 432.
With reference to
The discussion will now focus on the payment card.
While the application has focused on exemplary embodiments, it should be appreciated that various changes in form and detail may be made without departing from the scope of the claims as appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4683553 | Mollier | Jul 1987 | A |
4827113 | Rikuna | May 1989 | A |
4910773 | Hazard et al. | Mar 1990 | A |
5036461 | Elliott et al. | Jul 1991 | A |
5363448 | Koopman, Jr. et al. | Nov 1994 | A |
5377270 | Koopman, Jr. et al. | Dec 1994 | A |
5533126 | Hazard | Jul 1996 | A |
5537314 | Kanter | Jul 1996 | A |
5592553 | Guski et al. | Jan 1997 | A |
5616901 | Crandall | Apr 1997 | A |
5666415 | Kaufman | Sep 1997 | A |
5763373 | Robinson et al. | Jun 1998 | A |
5764789 | Pare, Jr. et al. | Jun 1998 | A |
5768373 | Lohstroh et al. | Jun 1998 | A |
5778072 | Samar | Jul 1998 | A |
5796827 | Coppersmith et al. | Aug 1998 | A |
5832090 | Raspotnik | Nov 1998 | A |
5883810 | Franklin et al. | Mar 1999 | A |
5901874 | Deters | May 1999 | A |
5929413 | Gardner | Jul 1999 | A |
5960411 | Hartman et al. | Sep 1999 | A |
6021203 | Douceur et al. | Feb 2000 | A |
6049328 | Vanderheiden | Apr 2000 | A |
6058373 | Blinn et al. | May 2000 | A |
6061666 | Do et al. | May 2000 | A |
6105013 | Curry et al. | Aug 2000 | A |
6199114 | White et al. | Mar 2001 | B1 |
6199762 | Hohle | Mar 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6227447 | Campisano | May 2001 | B1 |
6282522 | Davis et al. | Aug 2001 | B1 |
6324271 | Sawyer et al. | Nov 2001 | B1 |
6342844 | Rozin | Jan 2002 | B1 |
6367011 | Lee et al. | Apr 2002 | B1 |
6402028 | Graham, Jr. et al. | Jun 2002 | B1 |
6438550 | Doyle et al. | Aug 2002 | B1 |
6501847 | Helot et al. | Dec 2002 | B2 |
6631197 | Taenzer | Oct 2003 | B1 |
6641050 | Kelley et al. | Nov 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6662020 | Aaro et al. | Dec 2003 | B1 |
6721706 | Strubbe et al. | Apr 2004 | B1 |
6731778 | Oda et al. | May 2004 | B1 |
6779115 | Naim | Aug 2004 | B1 |
6792533 | Jablon | Sep 2004 | B2 |
6829711 | Kwok et al. | Dec 2004 | B1 |
6834271 | Hodgson et al. | Dec 2004 | B1 |
6834795 | Rasmussen et al. | Dec 2004 | B1 |
6852031 | Rowe | Feb 2005 | B1 |
6865547 | Brake, Jr. et al. | Mar 2005 | B1 |
6873260 | Lancos et al. | Mar 2005 | B2 |
6877656 | Jaros et al. | Apr 2005 | B1 |
6889198 | Kawan | May 2005 | B2 |
6905411 | Nguyen et al. | Jun 2005 | B2 |
6910627 | Simpson-Young et al. | Jun 2005 | B1 |
6971031 | Haala | Nov 2005 | B2 |
6990588 | Yasukura | Jan 2006 | B1 |
7006986 | Sines et al. | Feb 2006 | B1 |
7085931 | Smith et al. | Aug 2006 | B1 |
7127605 | Montgomery et al. | Oct 2006 | B1 |
7128274 | Kelley et al. | Oct 2006 | B2 |
7140550 | Ramachandran | Nov 2006 | B2 |
7152045 | Hoffman | Dec 2006 | B2 |
7165727 | de Jong | Jan 2007 | B2 |
7175076 | Block et al. | Feb 2007 | B1 |
7202773 | Oba et al. | Apr 2007 | B1 |
7206806 | Pineau | Apr 2007 | B2 |
7232073 | de Jong | Jun 2007 | B1 |
7246752 | Brown | Jul 2007 | B2 |
7254569 | Goodman et al. | Aug 2007 | B2 |
7263507 | Brake, Jr. et al. | Aug 2007 | B1 |
7270276 | Vayssiere | Sep 2007 | B2 |
7278025 | Saito et al. | Oct 2007 | B2 |
7287692 | Patel et al. | Oct 2007 | B1 |
7290709 | Tsai et al. | Nov 2007 | B2 |
7306143 | Bonneau, Jr. et al. | Dec 2007 | B2 |
7319986 | Praisner et al. | Jan 2008 | B2 |
7325132 | Takayama et al. | Jan 2008 | B2 |
7373515 | Owen et al. | May 2008 | B2 |
7374099 | de Jong | May 2008 | B2 |
7375616 | Rowse et al. | May 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7424977 | Smets et al. | Sep 2008 | B2 |
7453439 | Kushler et al. | Nov 2008 | B1 |
7472829 | Brown | Jan 2009 | B2 |
7487357 | Smith et al. | Feb 2009 | B2 |
7568631 | Gibbs et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7597250 | Finn | Oct 2009 | B2 |
7628322 | Holtmanns et al. | Dec 2009 | B2 |
7652578 | Braun et al. | Jan 2010 | B2 |
7689832 | Talmor et al. | Mar 2010 | B2 |
7703142 | Wilson et al. | Apr 2010 | B1 |
7748609 | Sachdeva et al. | Jul 2010 | B2 |
7748617 | Gray | Jul 2010 | B2 |
7748636 | Finn | Jul 2010 | B2 |
7762457 | Bonalle et al. | Jul 2010 | B2 |
7789302 | Tame | Sep 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7796013 | Murakami et al. | Sep 2010 | B2 |
7801799 | Brake, Jr. et al. | Sep 2010 | B1 |
7801829 | Gray et al. | Sep 2010 | B2 |
7805755 | Brown et al. | Sep 2010 | B2 |
7809643 | Phillips et al. | Oct 2010 | B2 |
7827115 | Weller et al. | Nov 2010 | B2 |
7828214 | Narendra et al. | Nov 2010 | B2 |
7848746 | Juels | Dec 2010 | B2 |
7882553 | Tuliani | Feb 2011 | B2 |
7900048 | Andersson | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7933589 | Mamdani et al. | Apr 2011 | B1 |
7949559 | Freiberg | May 2011 | B2 |
7954716 | Narendra et al. | Jun 2011 | B2 |
7954723 | Charrat | Jun 2011 | B2 |
7962369 | Rosenberg | Jun 2011 | B2 |
7993197 | Kaminkow | Aug 2011 | B2 |
8005426 | Huomo et al. | Aug 2011 | B2 |
8010405 | Bortolin et al. | Aug 2011 | B1 |
RE42762 | Shin et al. | Sep 2011 | E |
8041954 | Plesman | Oct 2011 | B2 |
8060012 | Sklovsky et al. | Nov 2011 | B2 |
8074877 | Mullen et al. | Dec 2011 | B2 |
8082450 | Frey et al. | Dec 2011 | B2 |
8095113 | Kean et al. | Jan 2012 | B2 |
8099332 | Lemay et al. | Jan 2012 | B2 |
8103249 | Markison | Jan 2012 | B2 |
8108687 | Ellis et al. | Jan 2012 | B2 |
8127143 | Abdallah et al. | Feb 2012 | B2 |
8135648 | Oram et al. | Mar 2012 | B2 |
8140010 | Symons et al. | Mar 2012 | B2 |
8141136 | Lee et al. | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150767 | Wankmueller | Apr 2012 | B2 |
8186602 | Itay et al. | May 2012 | B2 |
8196131 | von Behren et al. | Jun 2012 | B1 |
8215563 | Levy et al. | Jul 2012 | B2 |
8224753 | Atef et al. | Jul 2012 | B2 |
8232879 | Davis | Jul 2012 | B2 |
8233841 | Griffin et al. | Jul 2012 | B2 |
8245292 | Buer | Aug 2012 | B2 |
8249654 | Zhu | Aug 2012 | B1 |
8266451 | Leydier et al. | Sep 2012 | B2 |
8285329 | Zhu | Oct 2012 | B1 |
8302872 | Mullen | Nov 2012 | B2 |
8312519 | Bailey et al. | Nov 2012 | B1 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332272 | Fisher | Dec 2012 | B2 |
8365988 | Medina, III et al. | Feb 2013 | B1 |
8369960 | Tran et al. | Feb 2013 | B2 |
8371501 | Hopkins | Feb 2013 | B1 |
8381307 | Cimino | Feb 2013 | B2 |
8391719 | Alameh et al. | Mar 2013 | B2 |
8417231 | Sanding et al. | Apr 2013 | B2 |
8439271 | Smets et al. | May 2013 | B2 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8489112 | Roeding et al. | Jul 2013 | B2 |
8511542 | Pan | Aug 2013 | B2 |
8559872 | Butler | Oct 2013 | B2 |
8566916 | Bailey et al. | Oct 2013 | B1 |
8567670 | Stanfield et al. | Oct 2013 | B2 |
8572386 | Takekawa et al. | Oct 2013 | B2 |
8577810 | Dalit et al. | Nov 2013 | B1 |
8583454 | Beraja et al. | Nov 2013 | B2 |
8589335 | Smith et al. | Nov 2013 | B2 |
8594730 | Bona et al. | Nov 2013 | B2 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620218 | Awad | Dec 2013 | B2 |
8667285 | Coulier et al. | Mar 2014 | B2 |
8723941 | Shirbabadi et al. | May 2014 | B1 |
8726405 | Bailey et al. | May 2014 | B1 |
8740073 | Vijayshankar et al. | Jun 2014 | B2 |
8750514 | Gallo et al. | Jun 2014 | B2 |
8752189 | de Jong | Jun 2014 | B2 |
8794509 | Bishop et al. | Aug 2014 | B2 |
8799668 | Cheng | Aug 2014 | B2 |
8806592 | Ganesan | Aug 2014 | B2 |
8807440 | von Behren et al. | Aug 2014 | B1 |
8811892 | Khan et al. | Aug 2014 | B2 |
8814039 | Bishop et al. | Aug 2014 | B2 |
8814052 | Bona et al. | Aug 2014 | B2 |
8818867 | Baldwin et al. | Aug 2014 | B2 |
8850538 | Vernon et al. | Sep 2014 | B1 |
8861733 | Benteo et al. | Oct 2014 | B2 |
8880027 | Darringer | Nov 2014 | B1 |
8888002 | Marshall Chesney et al. | Nov 2014 | B2 |
8898088 | Springer et al. | Nov 2014 | B2 |
8934837 | Zhu et al. | Jan 2015 | B2 |
8977569 | Rao | Mar 2015 | B2 |
8994498 | Agrafioti et al. | Mar 2015 | B2 |
9004365 | Bona et al. | Apr 2015 | B2 |
9038894 | Khalid | May 2015 | B2 |
9042814 | Royston et al. | May 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9069976 | Toole et al. | Jun 2015 | B2 |
9081948 | Magne | Jul 2015 | B2 |
9104853 | Venkataramani et al. | Aug 2015 | B2 |
9118663 | Bailey et al. | Aug 2015 | B1 |
9122964 | Krawczewicz | Sep 2015 | B2 |
9129280 | Bona et al. | Sep 2015 | B2 |
9152832 | Royston et al. | Oct 2015 | B2 |
9203800 | Izu et al. | Dec 2015 | B2 |
9209867 | Royston | Dec 2015 | B2 |
9251330 | Boivie et al. | Feb 2016 | B2 |
9251518 | Levin et al. | Feb 2016 | B2 |
9258715 | Borghei | Feb 2016 | B2 |
9270337 | Zhu et al. | Feb 2016 | B2 |
9306626 | Hall et al. | Apr 2016 | B2 |
9306942 | Bailey et al. | Apr 2016 | B1 |
9324066 | Archer et al. | Apr 2016 | B2 |
9324067 | Van Os et al. | Apr 2016 | B2 |
9332587 | Salahshoor | May 2016 | B2 |
9338622 | Bjontegard | May 2016 | B2 |
9373141 | Shakkarwar | Jun 2016 | B1 |
9379841 | Fine et al. | Jun 2016 | B2 |
9413430 | Royston et al. | Aug 2016 | B2 |
9413768 | Gregg et al. | Aug 2016 | B1 |
9420496 | Indurkar | Aug 2016 | B1 |
9426132 | Alikhani | Aug 2016 | B1 |
9432339 | Bowness | Aug 2016 | B1 |
9455968 | Machani et al. | Sep 2016 | B1 |
9473509 | Arsanjani et al. | Oct 2016 | B2 |
9491626 | Sharma et al. | Nov 2016 | B2 |
9553637 | Yang et al. | Jan 2017 | B2 |
9619952 | Zhao et al. | Apr 2017 | B1 |
9635000 | Muftic | Apr 2017 | B1 |
9665858 | Kumar | May 2017 | B1 |
9674705 | Rose et al. | Jun 2017 | B2 |
9679286 | Colnot et al. | Jun 2017 | B2 |
9680942 | Dimmick | Jun 2017 | B2 |
9710804 | Zhou et al. | Jul 2017 | B2 |
9740342 | Paulsen et al. | Aug 2017 | B2 |
9740988 | Levin et al. | Aug 2017 | B1 |
9763097 | Robinson et al. | Sep 2017 | B2 |
9767329 | Forster | Sep 2017 | B2 |
9769662 | Queru | Sep 2017 | B1 |
9773151 | Mil'shtein et al. | Sep 2017 | B2 |
9780953 | Gaddam et al. | Oct 2017 | B2 |
9891823 | Feng et al. | Feb 2018 | B2 |
9940571 | Herrington | Apr 2018 | B1 |
9953323 | Candelore et al. | Apr 2018 | B2 |
9961194 | Wiechman et al. | May 2018 | B1 |
9965756 | Davis et al. | May 2018 | B2 |
9965911 | Wishne | May 2018 | B2 |
9978058 | Wurmfeld et al. | May 2018 | B2 |
10043164 | Dogin et al. | Aug 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10129648 | Hernandez et al. | Nov 2018 | B1 |
10133979 | Eidam et al. | Nov 2018 | B1 |
10217105 | Sangi et al. | Feb 2019 | B1 |
10757574 | Rule | Aug 2020 | B1 |
20010010723 | Pinkas | Aug 2001 | A1 |
20010029485 | Brody et al. | Oct 2001 | A1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010054003 | Chien et al. | Dec 2001 | A1 |
20020078345 | Sandhu et al. | Jun 2002 | A1 |
20020093530 | Krothapalli et al. | Jul 2002 | A1 |
20020100808 | Norwood et al. | Aug 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20020152116 | Yan et al. | Oct 2002 | A1 |
20020153424 | Li | Oct 2002 | A1 |
20020165827 | Gien et al. | Nov 2002 | A1 |
20030023554 | Yap et al. | Jan 2003 | A1 |
20030034873 | Chase et al. | Feb 2003 | A1 |
20030055727 | Walker et al. | Mar 2003 | A1 |
20030078882 | Sukeda et al. | Apr 2003 | A1 |
20030167350 | Davis et al. | Sep 2003 | A1 |
20030208449 | Diao | Nov 2003 | A1 |
20040015958 | Veil et al. | Jan 2004 | A1 |
20040039919 | Takayama et al. | Feb 2004 | A1 |
20040127256 | Goldthwaite et al. | Jul 2004 | A1 |
20040215674 | Odinak et al. | Oct 2004 | A1 |
20040230799 | Davis | Nov 2004 | A1 |
20050044367 | Gasparini et al. | Feb 2005 | A1 |
20050075985 | Cartmell | Apr 2005 | A1 |
20050081038 | Arditti Modiano et al. | Apr 2005 | A1 |
20050138387 | Lam et al. | Jun 2005 | A1 |
20050156026 | Ghosh et al. | Jul 2005 | A1 |
20050160049 | Lundholm | Jul 2005 | A1 |
20050195975 | Kawakita | Sep 2005 | A1 |
20050247797 | Ramachandran | Nov 2005 | A1 |
20060006230 | Bear et al. | Jan 2006 | A1 |
20060040726 | Szrek et al. | Feb 2006 | A1 |
20060041402 | Baker | Feb 2006 | A1 |
20060044153 | Dawidowsky | Mar 2006 | A1 |
20060047954 | Sachdeva et al. | Mar 2006 | A1 |
20060085848 | Aissi et al. | Apr 2006 | A1 |
20060136334 | Atkinson et al. | Jun 2006 | A1 |
20060173985 | Moore | Aug 2006 | A1 |
20060174331 | Schuetz | Aug 2006 | A1 |
20060242698 | Inskeep et al. | Oct 2006 | A1 |
20060280338 | Rabb | Dec 2006 | A1 |
20070033642 | Ganesan et al. | Feb 2007 | A1 |
20070055630 | Gauthier et al. | Mar 2007 | A1 |
20070061266 | Moore et al. | Mar 2007 | A1 |
20070061487 | Moore et al. | Mar 2007 | A1 |
20070116292 | Kurita et al. | May 2007 | A1 |
20070118745 | Buer | May 2007 | A1 |
20070197261 | Humbel | Aug 2007 | A1 |
20070224969 | Rao | Sep 2007 | A1 |
20070241182 | Buer | Oct 2007 | A1 |
20070256134 | Lehtonen et al. | Nov 2007 | A1 |
20070258594 | Sandhu et al. | Nov 2007 | A1 |
20070278291 | Rans et al. | Dec 2007 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080011831 | Bonalle et al. | Jan 2008 | A1 |
20080014867 | Finn | Jan 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080071681 | Khalid | Mar 2008 | A1 |
20080072303 | Syed | Mar 2008 | A1 |
20080086767 | Kulkarni et al. | Apr 2008 | A1 |
20080103968 | Bies et al. | May 2008 | A1 |
20080109309 | Landau et al. | May 2008 | A1 |
20080110983 | Ashfield | May 2008 | A1 |
20080120711 | Dispensa | May 2008 | A1 |
20080156873 | Wilhelm et al. | Jul 2008 | A1 |
20080162312 | Sklovsky et al. | Jul 2008 | A1 |
20080164308 | Aaron et al. | Jul 2008 | A1 |
20080207307 | Cunningham, II et al. | Aug 2008 | A1 |
20080209543 | Aaron | Aug 2008 | A1 |
20080223918 | Williams et al. | Sep 2008 | A1 |
20080285746 | Landrock et al. | Nov 2008 | A1 |
20080308641 | Finn | Dec 2008 | A1 |
20090037275 | Pollio | Feb 2009 | A1 |
20090048026 | French | Feb 2009 | A1 |
20090132417 | Scipioni et al. | May 2009 | A1 |
20090143104 | Loh et al. | Jun 2009 | A1 |
20090171682 | Dixon et al. | Jul 2009 | A1 |
20090210308 | Toomer et al. | Aug 2009 | A1 |
20090235339 | Mennes et al. | Sep 2009 | A1 |
20090249077 | Gargaro et al. | Oct 2009 | A1 |
20090282264 | Ameil et al. | Nov 2009 | A1 |
20100023449 | Skowronek et al. | Jan 2010 | A1 |
20100023455 | Dispensa et al. | Jan 2010 | A1 |
20100029202 | Jolivet et al. | Feb 2010 | A1 |
20100033310 | Narendra et al. | Feb 2010 | A1 |
20100036769 | Winters et al. | Feb 2010 | A1 |
20100078471 | Lin et al. | Apr 2010 | A1 |
20100082491 | Rosenblatt et al. | Apr 2010 | A1 |
20100094754 | Bertran et al. | Apr 2010 | A1 |
20100095130 | Bertran et al. | Apr 2010 | A1 |
20100100480 | Altman et al. | Apr 2010 | A1 |
20100114731 | Kingston et al. | May 2010 | A1 |
20100192230 | Steeves et al. | Jul 2010 | A1 |
20100207742 | Buhot et al. | Aug 2010 | A1 |
20100211797 | Westerveld et al. | Aug 2010 | A1 |
20100240413 | He et al. | Sep 2010 | A1 |
20100257357 | McClain | Oct 2010 | A1 |
20100312634 | Cervenka | Dec 2010 | A1 |
20100312635 | Cervenka | Dec 2010 | A1 |
20110028160 | Roeding et al. | Feb 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20110060631 | Grossman et al. | Mar 2011 | A1 |
20110068170 | Lehman | Mar 2011 | A1 |
20110084132 | Tofighbakhsh | Apr 2011 | A1 |
20110101093 | Ehrensvard | May 2011 | A1 |
20110113245 | Varadarajan | May 2011 | A1 |
20110125638 | Davis et al. | May 2011 | A1 |
20110131415 | Schneider | Jun 2011 | A1 |
20110153437 | Archer et al. | Jun 2011 | A1 |
20110153496 | Royyuru | Jun 2011 | A1 |
20110208658 | Makhotin | Aug 2011 | A1 |
20110208965 | Machani | Aug 2011 | A1 |
20110211219 | Bradley et al. | Sep 2011 | A1 |
20110218911 | Spodak | Sep 2011 | A1 |
20110238564 | Lim et al. | Sep 2011 | A1 |
20110246780 | Yeap et al. | Oct 2011 | A1 |
20110258452 | Coulier et al. | Oct 2011 | A1 |
20110280406 | Ma et al. | Nov 2011 | A1 |
20110282785 | Chin | Nov 2011 | A1 |
20110294418 | Chen | Dec 2011 | A1 |
20110312271 | Ma et al. | Dec 2011 | A1 |
20120024947 | Naelon | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120030121 | Grellier | Feb 2012 | A1 |
20120047071 | Mullen et al. | Feb 2012 | A1 |
20120079281 | Lowenstein et al. | Mar 2012 | A1 |
20120109735 | Krawczewicz et al. | May 2012 | A1 |
20120109764 | Martin et al. | May 2012 | A1 |
20120143754 | Patel | Jun 2012 | A1 |
20120150737 | Rottink et al. | Jun 2012 | A1 |
20120169462 | Park | Jul 2012 | A1 |
20120178366 | Levy et al. | Jul 2012 | A1 |
20120196583 | Kindo | Aug 2012 | A1 |
20120207305 | Gallo et al. | Aug 2012 | A1 |
20120209773 | Ranganathan | Aug 2012 | A1 |
20120238206 | Singh et al. | Sep 2012 | A1 |
20120239560 | Pourfallah et al. | Sep 2012 | A1 |
20120252350 | Steinmetz et al. | Oct 2012 | A1 |
20120254394 | Barras | Oct 2012 | A1 |
20120284194 | Liu et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120296818 | Nuzzi et al. | Nov 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru et al. | Dec 2012 | A1 |
20120317628 | Yeager | Dec 2012 | A1 |
20130005245 | Royston | Jan 2013 | A1 |
20130008956 | Ashfield | Jan 2013 | A1 |
20130026229 | Jarman et al. | Jan 2013 | A1 |
20130048713 | Pan | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130065564 | Conner et al. | Mar 2013 | A1 |
20130080228 | Fisher | Mar 2013 | A1 |
20130080229 | Fisher | Mar 2013 | A1 |
20130099587 | Lou et al. | Apr 2013 | A1 |
20130104251 | Moore et al. | Apr 2013 | A1 |
20130106576 | Hinman et al. | May 2013 | A1 |
20130119130 | Braams | May 2013 | A1 |
20130130614 | Busch-Sorensen | May 2013 | A1 |
20130144793 | Royston | Jun 2013 | A1 |
20130171929 | Adams et al. | Jul 2013 | A1 |
20130179351 | Wallner | Jul 2013 | A1 |
20130185772 | Jaudon et al. | Jul 2013 | A1 |
20130191279 | Calman et al. | Jul 2013 | A1 |
20130200999 | Spodak et al. | Aug 2013 | A1 |
20130216108 | Hwang et al. | Aug 2013 | A1 |
20130226791 | Springer et al. | Aug 2013 | A1 |
20130226796 | Jiang et al. | Aug 2013 | A1 |
20130232082 | Krawczewicz et al. | Sep 2013 | A1 |
20130238894 | Ferg et al. | Sep 2013 | A1 |
20130282360 | Shimota et al. | Oct 2013 | A1 |
20130303085 | Boucher et al. | Nov 2013 | A1 |
20130304651 | Smith | Nov 2013 | A1 |
20130312082 | Izu et al. | Nov 2013 | A1 |
20130314593 | Reznik et al. | Nov 2013 | A1 |
20130344857 | Berionne et al. | Dec 2013 | A1 |
20140002238 | Taveau et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140027506 | Heo et al. | Jan 2014 | A1 |
20140032409 | Rosano | Jan 2014 | A1 |
20140032410 | Georgiev et al. | Jan 2014 | A1 |
20140040120 | Cho et al. | Feb 2014 | A1 |
20140040139 | Brudnicki et al. | Feb 2014 | A1 |
20140040147 | Varadarakan et al. | Feb 2014 | A1 |
20140047235 | Lessiak et al. | Feb 2014 | A1 |
20140067690 | Pitroda et al. | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140074655 | Lim et al. | Mar 2014 | A1 |
20140081720 | Wu | Mar 2014 | A1 |
20140138435 | Khalid | May 2014 | A1 |
20140171034 | Aleksin et al. | Jun 2014 | A1 |
20140171039 | Bjontegard | Jun 2014 | A1 |
20140172700 | Teuwen et al. | Jun 2014 | A1 |
20140180851 | Fisher | Jun 2014 | A1 |
20140208112 | McDonald et al. | Jul 2014 | A1 |
20140214674 | Narula | Jul 2014 | A1 |
20140229375 | Zaytzsev et al. | Aug 2014 | A1 |
20140245391 | Adenuga | Aug 2014 | A1 |
20140256251 | Caceres et al. | Sep 2014 | A1 |
20140258099 | Rosano | Sep 2014 | A1 |
20140258113 | Gauthier et al. | Sep 2014 | A1 |
20140258125 | Gerber et al. | Sep 2014 | A1 |
20140274179 | Zhu et al. | Sep 2014 | A1 |
20140279479 | Maniar et al. | Sep 2014 | A1 |
20140337235 | Van Heerden et al. | Nov 2014 | A1 |
20140339315 | Ko | Nov 2014 | A1 |
20140346860 | Aubry et al. | Nov 2014 | A1 |
20140365780 | Movassaghi | Dec 2014 | A1 |
20140379361 | Mahadkar et al. | Dec 2014 | A1 |
20150012444 | Brown et al. | Jan 2015 | A1 |
20150032635 | Guise | Jan 2015 | A1 |
20150071486 | Rhoads et al. | Mar 2015 | A1 |
20150088757 | Zhou et al. | Mar 2015 | A1 |
20150089586 | Ballesteros | Mar 2015 | A1 |
20150134452 | Williams | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150154595 | Collinge et al. | Jun 2015 | A1 |
20150170138 | Rao | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150186871 | Laracey | Jul 2015 | A1 |
20150205379 | Mag et al. | Jul 2015 | A1 |
20150302409 | Malek et al. | Oct 2015 | A1 |
20150317626 | Ran et al. | Nov 2015 | A1 |
20150332266 | Friedlander et al. | Nov 2015 | A1 |
20150339474 | Paz et al. | Nov 2015 | A1 |
20150371234 | Huang et al. | Dec 2015 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026997 | Tsui et al. | Jan 2016 | A1 |
20160048913 | Rausaria et al. | Feb 2016 | A1 |
20160055480 | Shah | Feb 2016 | A1 |
20160057619 | Lopez | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160148193 | Kelley et al. | May 2016 | A1 |
20160232523 | Venot et al. | Aug 2016 | A1 |
20160239672 | Khan et al. | Aug 2016 | A1 |
20160253651 | Park et al. | Sep 2016 | A1 |
20160255072 | Liu | Sep 2016 | A1 |
20160267486 | Mitra et al. | Sep 2016 | A1 |
20160277383 | Guyomarc'h et al. | Sep 2016 | A1 |
20160277388 | Lowe et al. | Sep 2016 | A1 |
20160307187 | Guo et al. | Oct 2016 | A1 |
20160307189 | Zarakas et al. | Oct 2016 | A1 |
20160314472 | Ashfield | Oct 2016 | A1 |
20160330027 | Ebrahimi | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160379217 | Hammad | Dec 2016 | A1 |
20170004502 | Quentin et al. | Jan 2017 | A1 |
20170011395 | Pillai et al. | Jan 2017 | A1 |
20170011406 | Tunnell et al. | Jan 2017 | A1 |
20170017957 | Radu | Jan 2017 | A1 |
20170017964 | Janefalkar et al. | Jan 2017 | A1 |
20170024716 | Jiam et al. | Jan 2017 | A1 |
20170039566 | Schipperheijn | Feb 2017 | A1 |
20170041759 | Gantert et al. | Feb 2017 | A1 |
20170068950 | Kwon | Mar 2017 | A1 |
20170103388 | Pillai et al. | Apr 2017 | A1 |
20170104739 | Lansler et al. | Apr 2017 | A1 |
20170109509 | Baghdasaryan | Apr 2017 | A1 |
20170109730 | Locke et al. | Apr 2017 | A1 |
20170116447 | Cimino et al. | Apr 2017 | A1 |
20170124568 | Moghadam | May 2017 | A1 |
20170140379 | Deck | May 2017 | A1 |
20170154328 | Zarakas et al. | Jun 2017 | A1 |
20170154333 | Gleeson et al. | Jun 2017 | A1 |
20170161978 | Wishne | Jun 2017 | A1 |
20170180134 | King | Jun 2017 | A1 |
20170230189 | Toll et al. | Aug 2017 | A1 |
20170237301 | Elad et al. | Aug 2017 | A1 |
20170289127 | Hendrick | Oct 2017 | A1 |
20170295013 | Claes | Oct 2017 | A1 |
20170316696 | Bartel | Nov 2017 | A1 |
20170317834 | Smith et al. | Nov 2017 | A1 |
20170330173 | Woo et al. | Nov 2017 | A1 |
20170374070 | Shah et al. | Dec 2017 | A1 |
20180034507 | Wobak et al. | Feb 2018 | A1 |
20180039986 | Essebag et al. | Feb 2018 | A1 |
20180068316 | Essebag et al. | Mar 2018 | A1 |
20180129945 | Saxena et al. | May 2018 | A1 |
20180160255 | Park | Jun 2018 | A1 |
20180191501 | Lindemann | Jul 2018 | A1 |
20180205712 | Versteeg et al. | Jul 2018 | A1 |
20180240106 | Garrett et al. | Aug 2018 | A1 |
20180254909 | Hancock | Sep 2018 | A1 |
20180268132 | Buer et al. | Sep 2018 | A1 |
20180270214 | Caterino et al. | Sep 2018 | A1 |
20180294959 | Traynor et al. | Oct 2018 | A1 |
20180300716 | Carlson | Oct 2018 | A1 |
20180302396 | Camenisch et al. | Oct 2018 | A1 |
20180315050 | Hammad | Nov 2018 | A1 |
20180316666 | Koved et al. | Nov 2018 | A1 |
20180322486 | Deliwala et al. | Nov 2018 | A1 |
20180359100 | Gaddam et al. | Dec 2018 | A1 |
20190014107 | George | Jan 2019 | A1 |
20190019375 | Foley | Jan 2019 | A1 |
20190036678 | Ahmed | Jan 2019 | A1 |
20190238517 | D'Agostino et al. | Aug 2019 | A1 |
20220129894 | Phillips | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
3010336 | Jul 2017 | CA |
101192295 | Jun 2008 | CN |
103023643 | Apr 2013 | CN |
103417202 | Dec 2013 | CN |
109034758 | Dec 2018 | CN |
1085424 | Mar 2001 | EP |
1223565 | Jul 2002 | EP |
1265186 | Dec 2002 | EP |
1783919 | May 2007 | EP |
2139196 | Dec 2009 | EP |
1469419 | Aug 2012 | EP |
2852070 | Mar 2015 | EP |
2457221 | Aug 2009 | GB |
2516861 | Feb 2015 | GB |
2551907 | Jan 2018 | GB |
101508320 | Apr 2015 | KR |
0049586 | Aug 2000 | WO |
2006070189 | Jul 2006 | WO |
2008055170 | May 2008 | WO |
2009025605 | Feb 2009 | WO |
2010049252 | May 2010 | WO |
2011112158 | Sep 2011 | WO |
2012001624 | Jan 2012 | WO |
2013039395 | Mar 2013 | WO |
2013155562 | Oct 2013 | WO |
2013192358 | Dec 2013 | WO |
2014043278 | Mar 2014 | WO |
2014170741 | Oct 2014 | WO |
2015179649 | Nov 2015 | WO |
2015183818 | Dec 2015 | WO |
2016097718 | Jun 2016 | WO |
2016160816 | Oct 2016 | WO |
2016168394 | Oct 2016 | WO |
2017042375 | Mar 2017 | WO |
2017042400 | Mar 2017 | WO |
2017157859 | Sep 2017 | WO |
2017208063 | Dec 2017 | WO |
2018063809 | Apr 2018 | WO |
2018137888 | Aug 2018 | WO |
2020157823 | Aug 2020 | WO |
Entry |
---|
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages. |
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988). |
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012). |
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages. |
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages. |
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://USA.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages. |
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages. |
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages. |
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages. |
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages. |
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages. |
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages. |
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text- string-from-nfc-tag, 11 pages. |
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page. |
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages. |
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages. |
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages. |
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages. |
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared—or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages. |
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages. |
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages. |
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages. |
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages. |
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages. |
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages. |
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages. |
van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages. |
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages. |
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages. |
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages. |
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages. |
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE Africon At Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages. |
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007). |
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages. |
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages. |
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 10.1145/2348543.2348569. |
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013). |
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages. |
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages. |
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008). |
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online] May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages. |
International Search Report and Written Opinion mailed Dec. 12, 2022, for PCT/US2022/043780 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20230083785 A1 | Mar 2023 | US |