Use of a payment card to unlock a lock

Information

  • Patent Grant
  • 12062258
  • Patent Number
    12,062,258
  • Date Filed
    Thursday, September 16, 2021
    3 years ago
  • Date Issued
    Tuesday, August 13, 2024
    6 months ago
Abstract
Exemplary embodiments may provide keys for unlocking access to a location, like a user room, a secure location, a door at an employee location, a trunk, a closet or other locked location or item, on a payment card. Examples of a payment card include but are not limited to a credit card, a debit card, a smart card, an employee identification card, etc. A secure token that acts as digital key may be uploaded to the payment card. The payment card may then be put in close proximity of a wireless reader at the lock. The wireless reader obtains the secure token and extracts the contents. If the contents are proper, the lock is unlocked. Otherwise, the lock remains locked.
Description
BACKGROUND

Lodging establishments, such as hotels, provide keys to their guests to access their rooms. The keys typically are either plastic key cards with magnetic strips or plastic key cards with Radio Frequency Identification (RFID) tags. With a plastic key card having a magnetic strip, a hotel clerk encodes information regarding the guest onto the magnetic strip of the card at the time of check in before handing the plastic key card to the guest. For instance, an identifier of the guest, a valid date/time, an expiration date/time and a room number may be encoded onto the magnetic strip. When the guest wishes to use the plastic key card, the guest runs an edge of the plastic key card having the magnetic strip through a magnetic card reader integrated into the door of the guest's room. The magnetic card reader reads information off of the magnetic strip and the information is analyzed by the lock. If the information is the correct information for unlocking the door, the lock to the door is unlocked so that the guest may access the room. If the information is not proper for unlocking the door, access is denied, and the door remains locked.


The plastic key card with an RFID chip operates somewhat differently. The hotel clerk encodes guest information in the RFID chip of the plastic key card at the time of check in before giving the guest the plastic key card. When the guest wishes to use the plastic key card, the guest places the plastic key card up against an RFID reader that is integrated into the door of a guest room. The RFID reader reads information wirelessly from the RFID chip in the plastic key card. If the information is the correct information for unlocking the door, the lock to the door is unlocked so that the guest may access the room. If the information is not proper to unlock the door, access is denied, and the door remains locked.


Such plastic key cards may also be used for other purposes. For example, employers may give employees such plastic key cards to gain access to the employer premises or to gain access to secure areas. For example, a secure laboratory in a corporation may require key card access. The plastic key cards may be used to access other locations where a lock is deemed necessary. Such plastic key card may even be used with locked items, such as trunks, safes, etc.


There are drawbacks to use of these varieties of plastic key cards. For example, these varieties of plastic key cards are not especially secure. Information on the magnetic strips or RFID tags is readily accessible to a party with a magnetic card reader or RFID reader. In addition, such plastic key cards are easily misplaced. As a result, the plastic key cards may end up in the hands of the wrong parties or the user may lose access to the locked location or item until a new card is obtained. Further, it is inconvenient for the user to have to keep track of an additional card. Lastly, it is expensive for lodging owners to have to purchase plastic key cards, especially given that many are lost or destroyed.


SUMMARY

In accordance with an inventive aspect, a method includes receiving identity information and credentials originating from a contactless card via a wireless communication protocol. Based on the identity information and the credentials, an identity of a party is confirmed. After the identity confirmed, a code is forwarded for a payment card. The code serves as a digital key to unlock a lock.


The payment card may be a smart card or a credit card with capabilities for the wireless communication protocol. The wireless communication protocol may be a Near Field Communication (NFC) protocol. The lock may be for a hotel room. The method may further include storing a room number for the code and storing the identity of the party onto the payment card. The method may also include receiving the code from a computing device. The identity information and credentials may be received in an encrypted package.


In accordance with another inventive aspect, a method includes receiving credentials and identity information for a party at a portable computing device from a contactless card via a wireless communication protocol. The credentials and the identity information are forwarded to an authentication authority. Confirmation of the identity of the party is received. After the confirmation of the identity of the party, a code is forwarded to a payment card via the wireless communication protocol. The code serves as a digital key to unlock a lock.


The portable computing device may be a smartphone, tablet computing device, a smartwatch or a wearable device. The wireless communication protocol may be a Near Field Communication (NFC) protocol. The lock may be for a hotel room. The identity information and credentials may be received in an encrypted package. The forwarding and the receiving confirmation may be via a networked connection. The networked connection may be a wireless network connection, a cellular network connection or a wired network connection.


In accordance with an additional inventive aspect, a smart card includes a memory for storing identity information regarding a user, a key code for unlocking a lock with the smart card, computer program instructions for unlocking the lock with the key code, and computer program instructions for performing wireless payments. The smart card also includes a processor for executing the computer program instructions for unlocking the lock and the computer program instructions for performing wireless payments that are stored in the memory. The smart card further includes hardware enabling the smart card to communicate wirelessly.


The hardware may enable Near Field Communication (NFC) wireless communications. The lock may be a lock for a door. The lock may be for a hotel room lock. The memory may further store computer program instructions for downloading the key code from a device. The device may be a smartphone.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an example of an illustrative environment for exemplary embodiments.



FIG. 2 depicts a flowchart of illustrative steps that may be performed to transfer a digital key to a payment card.



FIG. 3 depicts a flowchart of illustrative steps that may be performed in such exemplary embodiments.



FIG. 4 depicts an illustrative computing environment that may be suitable for the exemplary embodiments.



FIG. 5 depicts an illustration of the activities of the various components in performing such an interaction.



FIG. 6A depicts a front face of an illustrative contactless card suitable for exemplary embodiments.



FIG. 6B illustrates components of the contactless card of FIG. 6A.



FIG. 7 shows a diagram of components illustrating interaction between the contactless card and the computing device.



FIG. 8A shows a block diagram depicting how the cryptographic hash functions may be used in exemplary embodiments.



FIG. 8B, shows a diagram of possible types of inputs that may be hashed in exemplary embodiments.



FIG. 9 shows a block diagram depicting an encryption of a secure package in accordance with exemplary embodiments.



FIG. 10 provides a flowchart of illustrative steps that may be performed in authenticating the identity of a guest in exemplary embodiments.



FIG. 11 depicts certain items stored as part of the authentication service in exemplary embodiments.



FIG. 12 depicts a flowchart of steps performed to authenticate the initiating party in exemplary embodiments.



FIG. 13 depicts a block diagram of payment card suitable for us in exemplary embodiments.



FIG. 14 depicts a flowchart of illustrative steps that may be performed to use the payment card for payments in exemplary embodiments.





DETAILED DESCRIPTION

Exemplary embodiments may provide keys for unlocking access to a location or item on a user's payment card. Examples of a payment card include but are not limited to a credit card, a debit card, a smart card, an employee identification card with payment capabilities. A secure token that acts as digital key may be uploaded to the payment card of the user. For example, where the key is for a lodging room, a guest may login to a website or access an application for the lodging and check in by providing personal information and payment information. The guest may, in some instances, then access a self-service terminal that encodes the payment card with a secure token that acts as a digital key. In other instances, the user may exploit the capabilities of a mobile computing device, such as a smartphone, tablet, smartwatch or a wearable device, to download the secure token using the application or website and then transfer the secure token to the payment card. The payment card may then be put in close proximity of a wireless reader at the lock. The wireless reader obtains the secure token and extracts the contents. If the contents are correct for unlocking the lock, the lock is unlocked. Otherwise, the lock remains locked.


Suitable wireless communications protocol for use in the exemplary embodiments are the Near Field Communication (NFC) protocols or other wireless communication protocols. Thus, the mobile computing device or terminal and the payment card may be NFC capable. Where the self-service terminal is used, the terminal may transfer the secure token to the payment card via NFC. Similarly, the mobile computing device may transfer the secure token to the payment card via NFC. The payment card also may transfer the secure token via NFC to the wireless reader at lock.


The exemplary embodiments have the benefit of not requiring an additional plastic card to access a locked location or item. This eliminates the need for the user to keep track of an additional plastic card. Likewise, this has the benefit of reducing the expense for issuers of the plastic key cards in that they no longer need to purchase as many plastic key cards since many users will opt to have the keys encoded to their payment cards. The digital key on the payment card used in the exemplary embodiments is less likely to be lost by users as people tend to keep close tabs on their payment cards, whereas users often do not pay close attention to their conventional plastic key cards since they can readily get a new plastic key card. The keys used in the exemplary embodiments are secure in that each secure token that acts as a digital key is encrypted and is not accessible without having the decryption key(s) that are needed to decrypt the secure package.



FIG. 1 depicts an example of an illustrative environment 100 for exemplary embodiments. The illustrative environment 100 includes a contactless card 102. The contactless card 102 may support the NFC protocols and communicate with other devices via the NFC protocols. For instance, the contactless card 102 may wirelessly communicate with mobile computing device or terminal 104 when in close enough proximity (e.g., within 1.5 inches) with the mobile computing device or terminal 104. Details of an illustrative contactless card 102 are provided below. The mobile computing device 104 may be, for example, a smartphone, a tablet computing device, a smartwatch, a wearable computing device or other computing device that is mobile and that possesses the requisite functionality described herein. The terminal 104 may be an NFC capable terminal or computer system interfaced with the servers(s) 106. The mobile computing device/terminal 104 may be communicate with server(s) 106 via a network connection that may be wireless, wired or a combination therein. The server(s) 106 may be web servers, may be located on the cloud or may be accessible over a local area network (LAN), a wide area network (WAN), such as the Internet or via a combination thereof.


The mobile computing device/terminal 104 may communicate with a payment card 108 of the user. For example, as mentioned above, the mobile computing device/terminal 104 may provide the secure package that acts as a digital key to the payment card 108. The payment card 108 may interact with the lock 110 as will be described below to unlock the door.


One use of the digital key on a payment card is to unlock a door of a lodging establishment, like a motel, hotel, inn or rental. There are at least two approaches that may be used in exemplary embodiments to get a digital key onto the payment card 108 for such a case where the user is to use the digital key on a payment card to unlock their lodging room or rental. In a first approach, the mobile computing device 104 transfers the digital key to the payment card 108. FIG. 2 depicts a flowchart of illustrative steps that may be performed to transfer the digital key to the payment card 108 from. Initially, the user may use the mobile computing device 104 to access an application for the lodging (such as an application for a hotel chain or rental agency) or access a website for the lodging to check in 202. The website may be running on the server(s) 106 or the application may be in communication with the server(s) 106. The user may be required to provide identity information, such as name, address and telephone number, and to provide payment information, such as credit card number, debit card number or the like, in order to check in. In some instances, the user may be prompted to tap the contactless card 102 to the mobile computing device 104 to authenticate identity, as described below. Once the guest has successfully checked in, the user may be prompted with the option to generate a digital key for storage on the payment card 108 (see 204). Where the user chooses the option to generate the digital key for storage on the payment card 108, the mobile computing device 104 transfers the secure token that acts as the digital key to the payment card 108 (see 206). As described below, the secure token may be downloaded from server(s) 106 to the mobile computing device 108 and then transferred to the payment card 108.


Another alternative for the use in lodging is for the key to be downloaded from a self-service terminal at a lodging front desk or kiosk. FIG. 3 depicts a flowchart 300 of illustrative steps that may be performed in such exemplary embodiments. Initially, the user checks in, such as described above, using a website or application or by providing the needed personal and payment information to a clerk or kiosk (see 302). As part of the check in, the user may be required to confirm her/his identity (see 304). This may entail showing proper identification, providing personal information via the kiosk or using the contactless card 102 to confirm identity. Once the identity of the user is confirmed, the secure token that acts as a digital key may be uploaded to the payment card 108 via a terminal 104 (see 306). The terminal 104 may be, for instance, located at the front desk of the lodging establishment. In some exemplary embodiments, the terminal 104 is NFC capable and uses NFC to transfer the secure token to the payment card 108 of the user, which is also NFC capable.



FIG. 4 depicts an illustrative computing environment 400 in greater detail than FIG. 1 that may be suitable for the exemplary embodiments. The guest 418 has access to a mobile computing device/terminal 402. The mobile computing device/terminal 402 includes a processor 408, such as a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other processing unit. The processor 408 may execute instructions, such as found in computer programs, like application 414, to perform functionality described herein. The mobile computing device/terminal 402 may include storage 410 that may include Random Access Memory (RAM), Read Only Memory (ROM), solid state memory, optical disk storage, magnetic disk storage or other varieties of memory or storage for storing data and/instructions. The storage 410 may include non-transitory computer-readable storage media hold processor executable instructions. The storage 410 may store an application 414. The application 414 may provide functionality as described herein for checking in and transferring the secure token to the payment card 108. The application 414 may also enable use of the contactless card 102 to authenticate identity of the user 418. The application 414 may be a web browser in some exemplary embodiments.


The mobile computing device/terminal 402 may include an integrated circuit (IC) for providing NFC capabilities 416. The NFC IC 416 may include an NFC transceiver and a loop antenna for participating in NFC communications. A contactless card 420 may communicate with the mobile computing device/terminal 402 via NFC, such as when the contactless card is tapped against the mobile computing device/terminal 402. The contactless card 420 may include a counter 415 that is used in secure communications. A payment card 403 may wirelessly communicate with the mobile computing device/terminal via NFC or another wireless protocol.


The mobile computing device/terminal 402 may communicate with server 404 and/or server 430. In some exemplary embodiments, the mobile computing device/terminal 403 communicates directly with only server 430. These servers 404 and 430 may be connected via network(s) 406 with the mobile computing device/terminal 402. The networks(s) 406 may include wide area networks, like the Internet and/or a cellular phone network, as well as local area networks, such as corporate networks, Ethernet networks, WiFi networks, etc or intranets. Server 404 may include one or more processors 422. The processor(s) 422 may assume the many forms like those described for the processor(s) 408. The server 404 may include a storage 424, that may include the forms of storage or memory described above for storage 410 of the mobile computing device/terminal 402. The storage 424 may store computer programming instructions 440. In some exemplary embodiments, these computer programming instructions 440 are for a website that may be accessed by the user 418 to check into lodging and obtain a digital key as described above. The computer programming instructions may also be server code the interacts with the application 414 to facilitate check in and obtaining of the digital key. The server 430 may be used when authentication of the identity of the user is required and may be invoked by server 404 to provide identity authentication. The server may include processor(s) 433 that execute an authentication service 432 for authenticating a user's identity. Servers 404 and 430 may have access to data 434, such as databases and the like.


As was mentioned above, one option with using the payment card as a digital for a lodging room is for a user is to use a contactless card to prove identity and to transfer the digital key to the payment card via the mobile computing device. FIG. 5 depicts an illustration of the activities of the various components in performing such an interaction. FIG. 5 will be described with reference to the depiction of components in FIG. 4. Initially, the user 418 opens the application 414 on the mobile computing device 402 (see 502). The application may be an application for the lodging establishment or a web browser that enables access to a website for the lodging establishment. Using the application 414, the user 418 communicates with the program containing the computer program instructions 440 on the server 440 and requests check in (see 503). As part of the check in process, the application 414 prompts the user 418 to tap the contactless card 420 to the mobile computing device 402 (see 504). The contactless card 420 is tapped and sends identity information to the mobile computing device 402 in a secure package via NFC (see 506). The formation and content of the secure package from the contactless card 420 will be described in more detail below. The mobile computing device 402 sends the secure package containing the identity information to the server 404 (see 508). Server 430 may forward the secure package to the authentication service 432 on server 430. The authentication service 432 on the server 430 then authenticates the identity of the user (see 510). Once the user is authenticated, the user may be checked in, such as by server 404. In exemplary embodiments, the server 404 may ask the server 430 to perform the authentication of the identity of the user and inform the server 404 of the results. Where there is not a successful authentication, the denial may be sent to server 404 and forwarded back to the application 414 on the mobile computing device 402. Where the authentication is successful, the user is checked in and the successful check in is reported by server 404 to the application 414 on the mobile computing device 402 (see 512).


The application 414 on the mobile computing device 402 then may prompt the user to use the payment card as a key (see 514). The user may respond positively that the user wishes to use the payment card as a key (see 516). If user does not choose this option, the process halts. Otherwise, the application 414 may then request the key from server 404 (see 518). The computer program instructions 440 on the server generate the secure package that is the digital key. The key code and other information of the secure package may then be sent from the server 404 to the application 414 on the mobile computing device 402 (see 520). The application 414 prompts the user 418 to tap the payment card to the mobile computing device 402. The payment card is tapped to mobile computing device 403 (see 524). The secure package holding the digital key code may be transferred by the application 414 on the mobile computing device to the payment card via NFC as a result of the tap. In particular, the mobile computing device 402 sends the key code (see 526) and the key code is stored on the payment card (see 528).


The discussion will now focus on details of the use of the contactless card. FIG. 6A illustrates an example of the front of the contactless card 600, which may be issued by a service provider 606, such as a merchant, financial institution, etc. In some exemplary embodiments, the contactless card 600 may comprise an identification card. In some instances, the card 600 may comprise a dual interface contactless payment card. The contactless card 600 may comprise a substrate 608, which may include a single layer or laminated layers composed of plastics, metals, and other materials. Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the contactless card 600 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card 600 may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the contactless card 600 according to the present disclosure may have different characteristics.


The contactless card 600 may also include identification information 604 displayed on the front and/or back of the card, and a contact pad 602. The contact pad 602 may be configured to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. The contactless card 600 may also include processing circuitry, antenna and other components not shown in FIG. 6A. These components may be located behind the contact pad 602 or elsewhere on the substrate 608. The contactless card 600 may also include a magnetic strip or tape, which may be located on the back of the card (not shown in FIG. 6A).


As illustrated in FIG. 6B, the contact pad 602 of FIG. 5A may include processing circuitry 610 for storing and processing information, including a microprocessor 614 and a memory 616. It is understood that the processing circuitry 610 may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anti-collision algorithms, controllers, command decoders, security primitives and tamper proofing hardware, as necessary to perform the functions described herein.


The memory 616 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the contactless card 600 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programed many times after leaving the factory. It may also be read many times.


The memory 616 may be configured to store one or more applets 618, one or more counters 620, and a unique customer identifier 622. The one or more applets 618 may comprise one or more software applications configured to execute on one or more contactless cards, such as Java Card applet. However, it is understood that applets 618 are not limited to Java Card applets, and instead may be any software application operable on contactless cards or other devices having limited memory. The one or more counters 620 may comprise a numeric counter sufficient to store an integer. The customer identifier 622 may comprise a unique alphanumeric identifier assigned to a user of the contactless card 600, and the identifier may distinguish the user of the contactless card from other contactless card users. In some examples, the customer identifier 622 may identify both a customer and an account assigned to that customer and may further identify the contactless card associated with the customer's account.


In some examples, the contactless card 600 may comprise one or more antennas 612. The one or more antennas 612 may be placed within the contactless card 600 and around the processing circuitry 610 of the contact pad 602. For example, the one or more antennas 612 may be integral with the processing circuitry 610 and the one or more antennas 612 may be used with an external booster coil. As another example, the one or more antennas 612 may be external to the contact pad 602 and the processing circuitry 610.


In an embodiment, the coil of contactless card 600 may act as the secondary of an air core transformer. The terminal may communicate with the contactless card 600 by cutting power or amplitude modulation. The contactless card 600 may infer the data transmitted from the terminal using the gaps in the contactless card's power connection, which may be functionally maintained through one or more capacitors. The contactless card 600 may communicate back by switching a load on the contactless card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference.


As explained above, the contactless card 600 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader, and produce an NDEF message that comprises a cryptographically secure OTP encoded as an NDEF text tag.



FIG. 7 shows a diagram of components illustrating interaction between the contactless card 702 and the computing device 706. The contactless card may have NFC capabilities. When the contactless card gets in proximity to an NFC reader 708 on the mobile computing device 708, identity information in a secure package 704 is transferred to the computing device.


The generation of the secure package holding the identity information 704 may be generated cryptographic hash functions, such as MD5 or SHA-1. FIG. 8A shows a block diagram 800 depicting how the cryptographic hash functions may be used in exemplary embodiments. In the example shown in FIG. 8A, three inputs 802, 804 and 806 are passed through a hash function 808 together. The choice of depicting three inputs is intended to be illustrative and not limiting. Other number of inputs may be used in some instances. The hash function 808 produces an output hash value 812. Due to the nature of the hash function 808, it is computationally difficult to derive the inputs 802, 804 and 806 from the hash value 812 without knowing the key 810 used by the hash function 808. The key 810 is kept secret. The key 810 may be dynamically generated for each session and may be particular to the contactless card. Thus, the hash function 808 provides a layer of security for the content (e.g., inputs 802, 804 and 806) that is included in the secure package.


In the exemplary embodiments, the inputs 802, 804 and 806 may vary depending on the information the parties wish to exchange and the protocol for authenticating the initiating party. FIG. 8B, shows a diagram 830 of possible types of inputs 832 that may be hashed in exemplary embodiments. In these exemplary embodiments, a onetime password 834 generated by the contactless card may be included as an input. An account identifier 836 for the initiating party may be provided. This may be an account number or other identifier that uniquely identifies the account of the initiating party. The account identifier 836 may be a phone number for the initiating party. In some cases, the phone number of the initiating party may not be included in the hash value 812 but may be derived from the message sent from the mobile computing device. The inputs 832 may include a counter value 838 and/or a name 840 of the initiating party.


As an added layer of security, the hash value 902 may be encrypted. FIG. 9 shows a block diagram 900 depicting such encryption. The hash value 902 generated as discussed above is passed to an encryption engine 904 that encrypts the hash value using an encryption key 906. The resulting output is the secure package 908. The encryption engine 704 may use any of a number of cryptographic algorithms, such as DES, AES, RSA, DSA or the like. These may be symmetric cryptographic algorithms like DES and AES or asymmetric cryptographic algorithms like RSA and DSA. It is presumed that the authentication service 432 possesses the appropriate key to decrypt the secure package. Although not shown in FIG. 9, other content may be encrypted in conjunction with the hash value 902.



FIG. 10 provides a flowchart 1000 of illustrative steps that may be performed in authenticating the identity of the user. The user taps the contactless card 702 to the mobile computing device 706, which has an NFC reader 708 as has been discussed above (see 1002). The mobile computing device 706 sends a message containing the secure package obtained from the contactless card 702 to the authentication service 432 on server 430 (see 1004). The onetime password (OTP) and other information in the secure package are extracted (see 1006). The authentication service 432 uses the extracted information to authenticate the identity of the user (see 1008).


The discussion will not focus on the authentication service that receives the secure package that originated from the contactless card in more detail. FIG. 11 depicts certain items stored as part of the authentication service 1100. These items include a synchronized counter 1102 that may be used in decryption/encryption operations. The authentication service 1100 includes decryption code 1104 for performing decryption operations on the secure package. The authentication service 1100 may also store a number of decryption keys and encryption keys 1106.


Generally, the server 430 (or another computing device) and the contactless card 420 may be provisioned with the same master key (also referred to as a master symmetric key). More specifically, each contactless card 420 may be programmed with a distinct master key that has a corresponding pair in the authentication service 432. For example, when a contactless card 420 is manufactured, a unique master key may be programmed into the memory of the contactless card 420. Similarly, the unique master key may be stored in a record of a customer associated with the contactless card 420 in the account information accessible by the authentication service 432 (and/or stored in a different secure location). The master key may be kept secret from all parties other than the contactless card 432 and authentication service 432, thereby enhancing security of the system.


The master keys may be used in conjunction with the counters to enhance security using key diversification. The counters 415 and 1102 comprise values that are synchronized between the contactless card 420 and the authentication service 432. The counter value may comprise a number that changes each time data is exchanged between the contactless card 420 and the authentication service 432.


After communication has been established between mobile computing device 402 and the contactless card 420, the contactless card 420 may generate a message authentication code (MAC) cryptogram. In some examples, this may occur when the contactless card 420 is read. In particular, this may occur upon a read, such as an NFC read, of a near field data exchange (NDEF) tag, which may be created in accordance with the NFC Data Exchange Format. For example, a reader, such as the NFC reader, may transmit a message, such as an applet select message, with the applet ID of an NDEF producing applet. Upon confirmation of the selection, a sequence of select file messages followed by read file messages may be transmitted. For example, the sequence may include “Select Capabilities file”, “Read Capabilities file”, and “Select NDEF file”. At this point, the counter value 415 maintained by the contactless card 420 may be updated or incremented, which may be followed by “Read NDEF file.” At this point, the message may be generated which may include a header and a shared secret. Session keys may then be generated. The MAC cryptogram may be created from the message, which may include the header and the shared secret. The MAC cryptogram may then be concatenated with one or more blocks of random data, and the MAC cryptogram and a random number (RND) may be encrypted with the session key. Thereafter, the cryptogram and the header may be concatenated, and encoded as ASCII hex and returned in NDEF message format (responsive to the “Read NDEF file” message). In some examples, the MAC cryptogram may be transmitted as an NDEF tag, and in other examples the MAC cryptogram may be included with a uniform resource indicator (e.g., as a formatted string). The contactless card 420 may then transmit the MAC cryptogram to the mobile computing device 402, which may then forward the MAC cryptogram to the authentication service 432 for verification as explained below. However, in some embodiments, the mobile computing device 402 may verify the MAC cryptogram.


More generally, when preparing to send data (e.g., to the server 430), the contactless card 420 may increment the counter 415. The contactless card 420 may then provide the master key and counter value as input to a cryptographic algorithm, which produces a diversified key as output. The cryptographic algorithm may include encryption algorithms, hash-based message authentication code (HMAC) algorithms, cipher-based message authentication code (CMAC) algorithms, and the like. Non-limiting examples of the cryptographic algorithm may include a symmetric encryption algorithm such as 3DES or AES128; a symmetric HMAC algorithm, such as HMAC-SHA-256; and a symmetric CMAC algorithm such as AES-CMAC.


The contactless card 420 may then encrypt the data (e.g., the customer identifier and any other data) using the diversified key. The contactless card 420 may then transmit the encrypted data to the mobile computing device 402 (e.g., via an NFC connection, Bluetooth connection, etc.). The mobile computing device 402 may then transmit the encrypted data to the authentication service 432 on the server computing device 430 via the network 406. In at least one embodiment, the contactless card 420 transmits the counter value with the encrypted data. In such embodiments, the contactless card 420 may transmit an encrypted counter value, or an unencrypted counter value.


Although the counter is used as an example, other data may be used to secure communications between the contactless card 420, the mobile computing device 402, and/or the authentication service 432. For example, the counter may be replaced with a random nonce, generated each time a new diversified key is needed, the full value of a counter value sent from the contactless card 420 and the authentication service 432, a portion of a counter value sent from the contactless card 420 and the authentication service 432, a counter independently maintained by the contactless card 420 and the authentication service 432 but not sent between the two, a one-time-passcode exchanged between the contactless card 420 and the authentication service 432, and a cryptographic hash of data. In some examples, one or more portions of the diversified key may be used by the parties to create multiple diversified keys.



FIG. 12 depicts a flowchart 1200 of steps performed to authenticate the initiating party once the authentication message with the secure package has been received by the authentication service 432 as the recipient party. Initially, the authentication service 432 uses the decryption keys 1106 to decrypt the secure package. In addition, the decryption keys 1106 are used to decrypt the hash to extract the inputs that were hashed together by the hash function 808 (see 1202). The extracted password and counter value may be compared with the valid password and valid counter value (see 1204). A determination is made whether the passwords match and the counter values match or if the extracted counter value otherwise indicates that the password has not expired (see 1206). If the passwords match and the extracted password has not expired based on the extracted counter value, other extracted information may be compared (see 1208).


The other information may be other authentication factors 1002 such as the phone number of the mobile computing device 402, which may be compared to the phone number on record for the user 418. The other authentication factors may include a geolocation for the user. The geolocation may be information such as GPS information or area code and exchange prefix information that may be compared with information regarding the residence of the user. The other authentication factors also may include a shared secret that is shared between the user and the authentication service 432.


With reference to FIG. 12 again, if the other information is valid (see 1210), then the user 418 is authenticated (see 1214). If not, the user 418 is not authenticated (see 1212). Similarly, if the passwords do not match or the password has expired as indicated by the extracted counter value, the user is not authenticated (see 1212).


The discussion will now focus on the payment card. FIG. 13 depicts a block diagram of payment card 1300 suitable for use in exemplary embodiments. The payment card 1300 may be a credit card, a debit card or other variety of card capable of being used for payments. The payment card 1300 may be a smart card, such as a multifunction card or contact card, in some embodiments. The payment card 1300 may include a processor 1302 for executing computer programming instructions and NFC hardware 1314 for providing NFC capabilities as described above. The payment card 1300 may also include memory 1304. The memory 1304 may store instructions 1306 for performing electronic payments with the payment card. The memory 1304 may also store instructions 1308 for unlocking a lock as described above. These instructions 1306 and 1308 may be executed by the processor 1302 to perform the functionality of the payment card 1300 described above. The memory 1304 may hold the key code 1310 that is used to unlock a lock, such as a lock on a door, a lock to an area, or a lock on an item. Lastly, the memory may store data 1312.



FIG. 14 depicts a flowchart 1400 of illustrative steps that may be performed to use the payment card 1300 for payments, such as at a lodging, at an employment site, at a store, etc. First, a user identifies what the user wishes to purchase (see 1402). The user then taps the payment card to a reader to realize payment (see 1404). For example, a user in a user room may pay for items from a mini bar or pay for a movie by tapping payment card to a reader positioned within the user room. The reader may be an NFC reader that may wirelessly communicate via NFC with the payment card to realize the payment. As another example, an employee may have an identification card that is NFC capable and that may be used to unlock locks to secured areas at work. The employee may tap the identification card to an NFC reader at the lunchroom checkout to pay for lunch. The user account, such as a room account, employee account or bank account, is charged for the purchase (see 1406).


While the application has focused on exemplary embodiments, it should be appreciated that various changes in form and detail may be made without departing from the scope of the claims as appended hereto.

Claims
  • 1. A method, comprising: receiving, by a first server system, a request to perform an authentication operation to authenticate a user from a second server system, the second server system configured to perform check-in operations to access a space secured by a lock;receiving, by the first server system, from a computing device, encrypted data comprising a unique identifier and a counter value originating from a contactless card via a wireless communication protocol, wherein the encrypted data is generated by the contactless card based on the counter value maintained by the contactless card and encrypted with at least one diversified key and an encryption algorithm;determining, by the first server system, corresponding information for the contactless card stored by the first server system, the information comprising an authentic unique identifier for the user, a stored counter value for the contactless card, and one more additional diversified keys;decrypting, by the first server system, the encrypted data with the one or more additional diversified keys to extract the unique identifier and the counter value;verifying, by the first server system, the unique identifier and the counter value from the contactless card are valid based on the authentic unique identifier and the stored counter value; andsending, by the first server system, a response to the second server system, the response comprising an indication that the user is authenticated, the second server system is configured to generate a code to provide to the lock to access the space and send the code to the contactless card via the computing device, the contactless card configured to store the code and communicate the code to the lock to access the space.
  • 2. The method of claim 1, wherein the contactless card is one of a smart card or a credit card with capabilities for the wireless communication protocol.
  • 3. The method of claim 1, wherein the computing device and the contactless care configured to communicate via Near Field Communication (NFC).
  • 4. The method of claim 1, wherein the first server system and the second server system are different systems maintained by different entities.
  • 5. The method of claim 4, further comprising storing a room number for the code and storing an identity of a party onto the contactless card.
  • 6. The method of claim 1, wherein the one or more diversified keys and the one or more additional diversified keys are generated from a master key.
  • 7. A method, comprising: providing a first application associated with a first server system, the first application and the first server system to provide check-in services to gain access to a space via a lock;performing, by the first application, a check-in process comprising authenticating a user comprising: communicating, by the first application, an exchange with a contactless card;receiving, by the first application, encrypted data comprising a unique identifier and a counter value from the contactless card via wireless communications, wherein the encrypted data is encrypted by the contactless card with one or more diversified keys and an encryption algorithm; andsending, by the first application, the encrypted data to a second server system, wherein the second server system is associated with the contactless card and configured to authenticate the encrypted data;receiving, by the first application, a code from the first server system based on the encrypted data being authenticated by the second server system, the code serving as a digital key to unlock the lock to access the space; andcommunicating, by the first application, a second exchange with the contactless card to send or write the code to the contactless card.
  • 8. The method of claim 7, wherein the first application is executing on a portable computing device comprising one of a smartphone, tablet computing device, a smartwatch, a kiosk computing system, or a wearable device.
  • 9. The method of claim 7, wherein the wireless communication is a Near Field Communication (NFC) communication.
  • 10. The method of claim 7, wherein the first server system and the second server system are different systems maintained by different entities.
  • 11. The method of claim 7, wherein the first application and the first server system are part of a hotel system, and the second server system is part of a banking system.
  • 12. The method of claim 11, wherein the first server system is configured to with the second server system to perform at least a portion of the authenticating the user.
  • 13. A contactless card, comprising: communication hardware;a memory configured to store: a counter value configured to count based on each read operation performed by the contactless card;identity information regarding a user;computer program instructions configured to perform wireless payments and authentication operations;computer program instructions configured to perform locking and unlocking functions;a processor configured to execute the computer program instructions configured to perform the wireless payments and the authentication operations that cause the processor to: detect a communication exchange with a computing device, the communication exchange comprising a request to perform an authentication operation;generate encrypted data comprising the identity information to perform the authentication operation;send the encrypted data to the computing device to perform the authentication operation;the processor further configured to execute the computing program instructions configured to perform locking and unlocking functions that cause the processor to: receive a key code for unlocking a lock in response to the authentication operation being successful;store the key code in the memory; andcommunicate, via the communication hardware, with a lock the key code to perform the locking and unlocking functions.
  • 14. The contactless card of claim 13, wherein the communication hardware enables Near Field Communication (NFC) wireless communications, Bluetooth communications, or both.
  • 15. The contactless card of claim 13, communicating the key code to the lock comprises sending the key code via a Near Field Communication (NFC) protocol or Bluetooth protocol.
  • 16. The contactless card of claim 15, wherein the computer program instructions configured to perform wireless payments and authentication operations is comprised in a first JavaCard applet, and the computer program instructions configured to perform locking and unlocking functions is comprised in a second JavaCard applet.
  • 17. The contactless card of claim 13, wherein the key code is receive from a mobile phone or a kiosk device.
US Referenced Citations (549)
Number Name Date Kind
4683553 Mollier Jul 1987 A
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5763373 Robinson et al. Jun 1998 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5778072 Samar Jul 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5929413 Gardner Jul 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6731778 Oda et al. May 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haala Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7127605 Montgomery et al. Oct 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Holtmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7703142 Wilson et al. Apr 2010 B1
7748609 Sachdeva et al. Jul 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801829 Gray et al. Sep 2010 B2
7805755 Brown et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7900048 Andersson Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Kaminkow Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
RE42762 Shin et al. Sep 2011 E
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markison Jan 2012 B2
8108687 Ellis et al. Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8215563 Levy et al. Jul 2012 B2
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8381307 Cimino Feb 2013 B2
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8511542 Pan Aug 2013 B2
8559872 Butler Oct 2013 B2
8566916 Bailey et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8572386 Takekawa et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Vijayshankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8752189 de Jong Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Marshall Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti et al. Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 Machani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9665858 Kumar May 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Queru Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9891823 Feng et al. Feb 2018 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10043164 Dogin et al. Aug 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
10757574 Rule Aug 2020 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20020165827 Gien et al. Nov 2002 A1
20030023554 Yap et al. Jan 2003 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030167350 Davis et al. Sep 2003 A1
20030208449 Diao Nov 2003 A1
20040015958 Veil et al. Jan 2004 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040230799 Davis Nov 2004 A1
20050044367 Gasparini et al. Feb 2005 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050160049 Lundholm Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060047954 Sachdeva et al. Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070241182 Buer Oct 2007 A1
20070256134 Lehtonen et al. Nov 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Ameil et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100082491 Rosenblatt et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadarajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley et al. Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink et al. Jun 2012 A1
20120169462 Park Jul 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120254394 Barras Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130048713 Pan Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Calman et al. Jul 2013 A1
20130200999 Spodak et al. Aug 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130282360 Shimota et al. Oct 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosano Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140047235 Lessiak et al. Feb 2014 A1
20140067690 Pitroda et al. Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140138435 Khalid May 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150071486 Rhoads et al. Mar 2015 A1
20150088757 Zhou et al. Mar 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150134452 Williams May 2015 A1
20150140960 Powell et al. May 2015 A1
20150154595 Collinge et al. Jun 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150186871 Laracey Jul 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150302409 Malek et al. Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160277383 Guyomarc'h et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hammad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170041759 Gantert et al. Feb 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170161978 Wishne Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170289127 Hendrick Oct 2017 A1
20170295013 Claes Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190238517 D'Agostino et al. Aug 2019 A1
20220129894 Phillips Apr 2022 A1
Foreign Referenced Citations (40)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
109034758 Dec 2018 CN
1085424 Mar 2001 EP
1223565 Jul 2002 EP
1265186 Dec 2002 EP
1783919 May 2007 EP
2139196 Dec 2009 EP
1469419 Aug 2012 EP
2852070 Mar 2015 EP
2457221 Aug 2009 GB
2516861 Feb 2015 GB
2551907 Jan 2018 GB
101508320 Apr 2015 KR
0049586 Aug 2000 WO
2006070189 Jul 2006 WO
2008055170 May 2008 WO
2009025605 Feb 2009 WO
2010049252 May 2010 WO
2011112158 Sep 2011 WO
2012001624 Jan 2012 WO
2013039395 Mar 2013 WO
2013155562 Oct 2013 WO
2013192358 Dec 2013 WO
2014043278 Mar 2014 WO
2014170741 Oct 2014 WO
2015179649 Nov 2015 WO
2015183818 Dec 2015 WO
2016097718 Jun 2016 WO
2016160816 Oct 2016 WO
2016168394 Oct 2016 WO
2017042375 Mar 2017 WO
2017042400 Mar 2017 WO
2017157859 Sep 2017 WO
2017208063 Dec 2017 WO
2018063809 Apr 2018 WO
2018137888 Aug 2018 WO
2020157823 Aug 2020 WO
Non-Patent Literature Citations (42)
Entry
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages.
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012).
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://USA.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text- string-from-nfc-tag, 11 pages.
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared—or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages.
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE Africon At Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 10.1145/2348543.2348569.
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013).
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages.
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages.
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008).
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online] May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.
International Search Report and Written Opinion mailed Dec. 12, 2022, for PCT/US2022/043780 (14 pages).
Related Publications (1)
Number Date Country
20230083785 A1 Mar 2023 US