Use of A2A adenosine receptor agonists

Information

  • Patent Grant
  • 8106029
  • Patent Number
    8,106,029
  • Date Filed
    Monday, December 14, 2009
    15 years ago
  • Date Issued
    Tuesday, January 31, 2012
    12 years ago
Abstract
Myocardial imaging methods are provided that are accomplished by administering doses of a pharmaceutical composition comprising one or more adenosine A2A receptor agonists, in particular regadenoson, useful for, among other indications, myocardial imaging and coronary vasodilation, in an amount sufficient to achieve at least a minimal increase in average coronary peak flow velocity.
Description
FIELD OF THE INVENTION

This invention relates to myocardial imaging methods that are accomplished by administering doses of regadenoson—an adenosine A2A receptor agonist—to a mammal undergoing myocardial imaging.


DESCRIPTION OF THE ART

Myocardial perfusion imaging (MPI) is a diagnostic technique useful for the detection and characterization of coronary artery disease. Perfusion imaging uses materials such as radionuclides to identify areas of insufficient blood flow. In MPI, blood flow is measured at rest, and the result compared with the blood flow measured during exercise on a treadmill (cardiac stress testing), such exertion being necessary to stimulate blood flow. Unfortunately, many patients are unable to exercise at levels necessary to provide sufficient blood flow, due to medical conditions such as peripheral vascular disease, arthritis, and the like.


Therefore, a pharmacological agent that increases cardiac blood flow (CBF) for a short period of time would be of great benefit, particularly one that did not cause peripheral vasodilation. Vasodilators, for example dipyridamole, have been used for this purpose in patients prior to imaging with radionuclide. Dipyridamole is a long-acting compound and frequently requires antidotes to reverse the prolonged side effects. It is an infusion rather than a bolus (like regadenoson). It is also non-selective for adenosine receptors and requires weight-based dosing.


Adenosine, a naturally occurring nucleoside, also is useful as a vasodilator. Adenosine exerts its biological effects by interacting with a family of adenosine receptors characterized as subtypes A1, A2A, A2B, and A3. Adenoscan® is a formulation of a naturally occurring adenosine. Adenoscan® has been marketed as an adjuvant in perfusion studies using radioactive thallium-201. However, its use is limited due to side effects such as flushing, chest discomfort, the urge to breathe deeply, headache, throat, neck, and jaw pain. These adverse effects of adenosine are due to the activation of other adenosine receptor subtypes other than A2A, which mediates peripheral vasodilatory effects to bronchoconstriction of adenosine. Additionally, the short half-life of adenosine necessitates continuous infusion during the procedure, further complicating its use. Adenoscan® is contraindicated in many patients including those with second- or third-degree block, sinus node disease, bronchoconstrictive or bronchospastic lung disease, and in patients with known hypersensitivity to the drug.


Other potent and selective agonists for the A2A adenosine receptor are known. For example, MRE-0470 (Medco) is an adenosine A2A receptor agonist that is a potent and selective derivative of adenosine. WRC-0470 (Medco) is an adenosine A2A agonist used as an adjuvant in imaging. In general, compounds such as these have a high affinity for the A2A receptor, and consequently, a long duration of action, which is undesirable in imaging, and could possibly prolong the duration of side effects.


One especially potent and useful adenosine A2A receptor agonist is regadenoson. Regadenoson is selective for the adenosine A2A receptor, has a short duration of action and does not appear to require administration as a continuous infusion. Regadenoson and related compounds as well as methods for their manufacture and use in cardiac perfusion imagining are disclosed in U.S. Pat. Nos. 6,403,567, 6,642,210, 6,214,807, and 6,770,634, as well as in published U.S. patent application nos. 2002-0012946 and 2004-0022177 the entirety of each specification of which are incorporated herein by reference. Although regadenoson is a known compound, much remains unknown about its pharmacokinetic profile and range of potential therapeutic uses.


SUMMARY OF THE INVENTION

One aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec.


Another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical to excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered by iv bolus.


Yet another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the pharmaceutical composition is administered in about 10 to about 20 seconds.


Still another aspect of this invention is a method of producing coronary vasodilation with little peripheral vasodilation comprising administering to a human a single dose of a pharmaceutical composition comprising regadenoson and at least one pharmaceutical excipient in an amount that is sufficient to increase the average coronary peak flow velocity by at least about 16.5 cm/sec wherein the amount of the pharmaceutical composition administered is sufficient to raise the average coronary peak flow velocity by an amount ranging from about 16.5 to about 77.0 cm/sec.


In still another aspect of this invention the single dose of pharmaceutical composition includes from about 10 to about 500 micrograms of regadenoson or alternatively includes an amount of regadenoson ranging from about 0.05 to about 60 μg/kg weight of the human.


In yet another aspect, this invention includes the step of performing myocardial perfusion imaging of the human following the administration of the single dose of the pharmaceutical composition to the human. In this aspect of the invention, at least one radionuclide may be administered to the human at a time selected from the group consisting of before the human receives the dose of pharmaceutical composition, simultaneously with the administration of the dose of pharmaceutical composition or is after administering the dose of pharmaceutical composition to the human. This means the radionuclide and the single dose of the pharmaceutical composition may be administered separately to the human or simultaneously to the human. In a preferred aspect of this method, myocardium examination begins no sooner than about 1 minute after the single dose of the pharmaceutical composition is administered to the human.







DESCRIPTION OF A PREFERRED EMBODIMENT

Potent A2A agonists are useful as adjuncts in cardiac imaging when added either prior to dosing with an imaging agent or simultaneously with an imaging agent. Suitable imaging agents include, but are not limited to 201Thallium or 99mTechnetium-Sestamibi, 99mTc-teboroxime, and Technetium-99m(III).


New and potent A2A agonists that increase CBF but do not significantly increase peripheral blood flow have been identified. One particularly useful A2A agonists is regadenoson. Regadenoson is also referred to in the literature as CVT-3146 or (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide and has the formula:




embedded image



Methods for synthesizing regadenoson and related compounds are set forth in U.S. Pat. No. 6,403,567, the specification of which is incorporated herein by reference in its entirety.


Regadenoson may be administered by pharmaceutical administration methods that are known in the art. It is preferred that regadenoson is dosed i.v. It is more preferred that regadenoson is administered in a single dose i.v. The term “single dose” refers generally to a single quickly administered dose of a therapeutic amount of regadenoson. The term “single dose” does not encompass a dose or doses administered over an extended period of time by, for example continuous i.v. infusion.


Regadenoson will typically be incorporated into a pharmaceutical composition prior to use. The term “pharmaceutical composition” refers to the combination of regadenoson with at least one liquid carrier that together form a solution or a suspension. Lyophilized powders including compositions of this invention fall within the scope of “pharmaceutical compositions” so long as the powders are intended to be reconstituted by the addition of a suitable liquid carrier prior to use. Examples of suitable liquid carriers include, but are not limited to water, distilled water, de-ionized water, saline, buffer solutions, normal isotonic saline solution, dextrose in water, and combinations thereof. Such pharmaceutical compositions are generally suitable for injection.


The term “buffer solution” or “buffer” as used herein refers to a solution containing both a weak acid and its conjugate weak base. The buffer solutions are used in pharmaceutical compositions of this invention in order to resist pH changes. Non-limiting examples of useful buffer solutions are solutions that comprise sodium bicarbonate and sodium phosphate.


Pharmaceutical compounds including the compounds of this invention, and/or derivatives thereof, may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use. If used in liquid form the compounds of this invention are preferably incorporated into a buffered, isotonic, aqueous solution. Examples of suitable diluents are normal isotonic saline solution, standard 5% dextrose in water and buffered sodium or ammonium acetate solution. Such liquid formulations are suitable for parenteral administration, but may also be used for oral administration. It may be desirable to add excipients such as polyvinylpyrrolidinone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride, sodium citrate or any other excipient known to one of skill in the art to pharmaceutical compositions including compounds of this invention.


Pharmaceutical compositions including regadenoson may be prepared and then administered, with or without intervening storage. Various properties considered when formulating pharmaceutical compositions of this invention include, but are not limited to product shelf life, regadenoson solubility, composition pH, vein irritation, hemolysis, storage conditions (e.g., whether the pharmaceutical composition will be stored at room temperature or some other temperature) and the ability to withstand sterilization procedures.


One method to achieve the desired pharmaceutical composition properties is to include a co-solvent in the pharmaceutical composition. The co-solvent can be selected from any liquid or compound in solution that imparts the desired properties to the pharmaceutical composition. Examples of useful co-solvents include, but are not limited to methylboronic acid, borate buffer, propylene glycol, or polyethylene glycol. The amount of co-solvent in the pharmaceutical composition will depend upon properties, such as solubility and stability of the chosen A2A receptor agonist. Examples of pharmaceutical compositions containing co-solvents can be found in U.S. Patent Publication No. 2005/0020915, the specification of which is incorporated herein by reference in its entirety.


Regadenoson has solubility in water of about 50 micrograms/mL. Therefore, regadenoson can be dissolved and administered in water so long as the desired weight amount of regadenoson can be administered in an acceptable volume. For example, a preferred dose of about 400 micrograms can be administered in 8 mL of water. If this volume is too great for administration purposes, or if the pharmaceutical composition will be stored at other than room temperature (RT), then additional ingredients can be added to the composition to increase the solubility of regadenoson in the composition and/or to provide the resulting pharmaceutical composition with other improved properties such as improved stability and storage properties.


Pharmaceutical compositions of this invention that include regadenoson may include up to about 1 milligram/mL of regadenoson. It is preferred that pharmaceutical compositions including regadenoson include from about 50 to about 250 micrograms/mL, and more preferably from about 50 to 150 micrograms/mL of regadenoson.


In order to improve solubility and storage properties, regadenoson can be administered in a pharmaceutical composition including a methylboronic acid (MBA) co-solvent. The methylboronic acid is added to the pharmaceutical composition to improve agonist solubility and shelf life. MBA increases the pH of the resulting composition. The solubility of regadenoson in a pharmaceutical composition including MBA tends to decrease as the composition pH drops towards neutral. Therefore, with regadenoson, an optimal MBA-containing composition pH is from about 8.5 to 10 with a pH of about 9.1 to about 9.4 being preferred and a pH of about 9.3 being most preferred. This corresponds to a composition including from about 50 to about 250 mg/mL of MBA. As an alternative to MBA, regadenoson can be combined with a borate buffer solution. Typically, a borate buffer solution will be comprised of an aqueous solution of sodium borate that is adjusted to the desired pH such as a pH of 9.3 using an acid or a base.


MBA containing pharmaceutical compositions can suffer from storage problems. Namely, MBA can cause delamination when packaged in certain type I glass vessels. This problem can be overcome by storing the MBA containing pharmaceutical compositions in plastic vessels or in more resistant type I glass vessels.


If regadenoson containing pharmaceutical compositions having a pH closer to neutral are desired, then an alternative is to combine regadenoson with a propylene glycol (PG) co-solvent. The amount of PG used in the composition may range from about 5% to up to 25% by volume with a range of about 8% to about 20% by volume being more preferred when using regadenoson. An alternative to PG is polyethylene glycol—PEG. A preferred PEG will have an average molecular weight of from about 200 to 400.


Preferably, the regadenoson composition including PG or PEG will have a pH of from about 6 to about 8 with a pH of about 7 being preferred. Any physiologically acceptable buffer capable of adjusting the composition pH to the desired value can be used. Examples of such buffer include, but are not limited to, dibasic sodium phosphate, dibasic sodium phosphate dehydrate, and monobasic sodium phosphate monohydrate. Additional optional ingredients such as EDTA and dimethylacetamide could be employed in the composition as well.


The pharmaceutical compositions of this invention may include one or more anti-oxidants such as butylated hydroxyanisole (BHA).


Regadenoson has a rapid onset of action and a short duration of action when administered. Regadenoson is very useful when administered in a very small quantity in a single bolus intravenous (i.v.) injection. Regadenoson can be administered in amounts as little as 10 μg and as high as 2000 μg or more. An optimal dose may include as little as 10 μg and as much as about 1000 μg or more of regadenoson. More preferably, an optimal dose will range from about 100 to about 500 μg of regadenoson.


It is preferred that regadenoson is administered in a single bolus injection in an amount selected from about 300 μg, about 400 μg, about 500 μg, about 600 μg, and is about 700 μg. These amounts are unexpectedly small when compared with adenosine which is typically administered continuously by IV infusion at a rate of about 140 μg/kg/min. Unlike adenosine, the same dosage of regadenoson can be administered to a human patient regardless of the patient's weight. Thus, the administration of a single uniform amount of regadenoson by iv bolus for myocardial imaging is dramatically simpler and less error prone than the time and weight dependent administration of adenosine. The dose of regadenoson administered to a human patient can, however, be determined by weight. Typically, a weight based dose will range from about 0.05 to about 60 μg/kg and more preferably from about 0.1 to about 30 μg/kg. Regadenoson in particular is generally well tolerated when administered in an amount up to 10 μg/kg in standing patients and up to 20 μg/kg in supine patients.


In an alternative embodiment, regadenoson may be administered orally, intravenously, through the epidermis or by any other means known in the art for administering therapeutic agents with bolus i.v. administration being preferred. In one embodiment, the bolus dosing occurs in 60 seconds or less. In yet other embodiments, the bolus dosing occurs in about 30 seconds or less, and more preferably in about 20 seconds or less or in about 10 seconds or less.


The pharmacokinetics of regadenoson are disclosed in more detail in the following examples.


Example 1

The purpose of this study was to investigate the pharmacokinetics (PK), pharmacodynamics (PD), and the maximum tolerated dose of regadenoson in healthy human subjects.


Thirty-six healthy, male subjects were included in the study. Subjects received single, IV bolus doses of regadenoson ranging from 0.1 to 30 μg/kg. The regadenoson dosage administered in this example and in Examples 2 & 3 below was a neutral pH dose including the preferred ingredients discussed above. Concentrations of regadenoson were determined in plasma samples collected at various times and in urine samples collected over a 24-hour period after drug administration. ECG, blood pressure (BP), and heart rate (HR) were recorded for up to 24 hours post-dose. Adverse events (AE) were monitored for 24 hours post dose and via telephone 7 days later. A population approach was utilized in applying a three-compartmental PK model to the plasma concentration-time and a Michaelis-Menten model to the time-course of heart rate. The potential influence of various covariates on PK and PD model parameters was investigated.


The population value of clearance (CL) was estimated to be 40.6 Uh, with renal clearance accounting for 57% of the total clearance. The volume of distribution of regadenoson was estimated to be 83.3 L. The model estimated a baseline and a maximal increase in HR of 62 and 76 bpm. The concentration of regadenoson causing half-maximal increase in HR (potency) was estimated to be 12.4 ng/mL. Covariates such as, body mass index, body weight, age, and height had no influence on the PK or PD parameters. Adverse events were generally mild to moderate, of rapid onset, short duration, and none required medical intervention. They included abdominal discomfort, chest pressure/tightness, dizziness, dyspnea, flushing, headache, hyperventilation, nausea, palpitations, and vomiting, and increased with dose level. The maximum tolerated dose was 20 μg/kg in the supine position and 10 μg/kg in the standing position, with dose-limiting syncope or near syncope observed in subjects in the standing position.


This example demonstrates that regadenoson is well tolerated in healthy male subjects. The lack of any significant influence of the covariates on the PK and PD model parameters suggests a unit-based dosing for regadenoson.


Example 2

The purpose of this study was to investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of regadenoson in subjects undergoing clinically indicated cardiac catheterization.


Thirty-six male and female subjects undergoing clinically indicated coronary angiography were studied. Subjects received single, IV bolus doses of regadenoson ranging from 10 to 500 μg. Concentrations of regadenoson were determined in plasma samples collected at various times prior to and after drug administration. ECG, average coronary peak flow velocity (APV), measured using intracoronary Doppler flow wire, blood pressure (BP), and heart rate (HR) were continuously monitored for up to 3 hours post-dose. Occurrence of adverse events (AEs) was monitored for approximately 3 hours post dosing and via telephone approximately 14 days later. A population approach was utilized in applying PK and PD models to the plasma concentration, APV, and HR data. The potential influence of various covariates on PK and PD model parameters was investigated.


The PK data were best described by a three-compartment model. The population value of clearance and volume of distribution were estimated to be 29.9 L/h and 68.1 L, respectively. The PD model of the APV data included a hypothetical effect compartment. The baseline and the maximal increase in APV were estimated—based upon this data—to be 16.5 and 105 cm/seconds, with a potency (concentration of regadenoson that causes half maximal effect) of 29.9 ng/mL. The model estimated a small value for the distribution rate constant (4 min−1) from the plasma to the effect site, indicating a rather rapid onset of effect. A Michaelis-Menten model resulted in the best fit of the HR data, with estimates of 67 and 41 bpm for the baseline and maximum increase in the HR, and a potency of 27.5 ng/mL. Covariates such as body mass index, body weight, age, and height had no significant influence on the PK or PD parameters. AEs were reported for fewer than half (n=17) of the subjects; events reported for 3 or more subjects were chest discomfort (n=3), tachycardia (n=4), and bleeding at the catheter site (n=3).


These results demonstrate that regadenoson is a potent and well-tolerated coronary vasodilator. The lack of any significant influence of the covariates on the PK and PD model parameters suggests a unit-based dosing for regadenoson.


Example 3

Regadenoson is a selective A2-adenosine receptor agonist under development for acute dilation of the coronary arterial vasculature during myocardial perfusion imaging. A2A-adenosine receptor activation is reported to cause inhibition of platelet aggregation and neutrophil activation.


To characterize the drug more completely, in this study, we determined affinity and potency values for binding and for functional responses to regadenoson in preparations of human platelets and neutrophils (membranes and intact cells), CHO cells expressing human A2A receptors (membranes and intact cells), and rat brain striatal membranes. For comparison, parallel assays of responses to the reference A2A agonist CGS21680 were performed alongside each assay of regadenoson. Assay results are reported in Table 1 below.









TABLE 1







Values (mean ± SE) of affinity [Ki] and potency [EC50 or IC50] for


regadenoson at A2A-adenosine receptors









Preparation












Human
Human
CHO hisA2A-



Assay
platelets
neutrophils
expressing
Rat striatum





Membrane
534 ± 30
327 ± 14
347 ± 7 
318 ± 5


Binding1


Membrane


50 ± 4
 43 ± 3


Binding2


Cell cAMP
472 ± 17
406 ± 25
56 ± 4


Content


Platelet
437 ± 44


Aggregation


Cell calcium
108 ± 8 


Mobilization


Superoxide

328 ± 32


anion


Production






1displacement of binding of [3H]-ZM241385




2displacement of binding of [3H]-CG-S21680







Responses to regadenoson and to CGS21680 were similar in magnitude. In all assays, CGS21680 was slightly more potent than regadenoson (i.e., values of EC50 for the 12 assays were 13-fold lower for CGS 21680, on average). It can be concluded from this study that regadenoson, like CGS21680, is not only a coronary vasodilator, but is also an inhibitor of both platelet aggregation and neutrophil activation (i.e., inflammation).

Claims
  • 1. A method of producing coronary vasodilation in a human in need thereof comprising administering to the human a single intravenous (iv) bolus dose of a pharmaceutical composition comprising: a) regadenoson, a compound named (1-{9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide, which has the formula:
  • 2. The method of claim 1, wherein the single dose of the pharmaceutical composition further comprises a member selected from the group consisting of water, distilled water, de-ionized water, saline, buffer solutions, normal isotonic saline solution, dextrose in water, and combinations thereof.
  • 3. The method of claim 2, wherein the single dose of the pharmaceutical composition further comprises a buffer solution and the buffer is selected from the group consisting of dibasic sodium phosphate, dibasic sodium phosphate dehydrate, monobasic sodium phosphate monohydrate, and combinations thereof.
  • 4. The method of claim 3, wherein the buffer is dibasic sodium phosphate and monobasic sodium phosphate monohydrate.
  • 5. The method of claim 4, wherein the single dose of the pharmaceutical composition further comprises EDTA.
  • 6. The method of claim 5, wherein the single dose of the pharmaceutical composition further comprises propylene glycol in an amount from about 5% to about 25% (w:v).
  • 7. The method of claim 6, wherein the propylene glycol is present in an amount from about 8% to about 20% (w:v).
  • 8. The method of claim 7, wherein the single dose of the pharmaceutical composition comprises from about 10 to about 500 micrograms of regadenoson.
  • 9. The method of claim 8, wherein the single dose of the pharmaceutical composition comprises from about 0.05 to about 60 μg/kg of regadenoson.
  • 10. The method of claim 1, wherein the single dose of the pharmaceutical composition is administered in about 10 to about 20 seconds.
  • 11. The method of claim 1, wherein the amount of the single dose of the pharmaceutical composition is sufficient to raise the average coronary peak flow velocity by an amount ranging from about 16.5 to about 77.0 cm/sec.
  • 12. A method of performing myocardial perfusion imaging of a human in need thereof, said method comprising: 1) administering to the human a single intravenous (iv) bolus dose of a pharmaceutical composition comprising: a) regadenoson, a compound named (1-{9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide, which has the formula:
  • 13. The method of claim 12, wherein the single dose of the pharmaceutical composition and the radionuclide are administered to the human simultaneously.
  • 14. The method of claim 12, wherein the single dose of the pharmaceutical composition and the radionuclide are administered to the human separately.
  • 15. The method of claim 12, wherein the myocardium imaging begins no sooner than about 1 minute from the time the single dose of the pharmaceutical composition is administered to the human.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 11/253,322, filed Oct. 19, 2005, now U.S. Pat. No. 7,655,636, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/620,577 filed Oct. 20, 2004, which are hereby incorporated by reference in their entirety.

US Referenced Citations (81)
Number Name Date Kind
3845770 Theeuwes et al. Nov 1974 A
4089959 Diamond May 1978 A
4120947 Diamond Oct 1978 A
4325956 Kjellin et al. Apr 1982 A
4326525 Swanson et al. Apr 1982 A
4593095 Snyder et al. Jun 1986 A
4696932 Jacobson et al. Sep 1987 A
4804664 Kjellin et al. Feb 1989 A
4902514 Barclay et al. Feb 1990 A
4956345 Miyasaka et al. Sep 1990 A
4968697 Hutchison Nov 1990 A
4992445 Lawter et al. Feb 1991 A
5001139 Lawter et al. Mar 1991 A
5032252 Owen et al. Jul 1991 A
5070877 Mohiuddin et al. Dec 1991 A
5189027 Miyasita et al. Feb 1993 A
5270304 Kogi et al. Dec 1993 A
5459254 Yamaguchi et al. Oct 1995 A
5516894 Reppert May 1996 A
5593975 Cristalli Jan 1997 A
5616345 Geoghegan et al. Apr 1997 A
5641784 Kufner-Muhl et al. Jun 1997 A
5646156 Jacobsen et al. Jul 1997 A
5670498 Suzuki et al. Sep 1997 A
5703085 Suzuki et al. Dec 1997 A
5704491 Graves Jan 1998 A
5705491 Yamada Jan 1998 A
5770716 Khan et al. Jun 1998 A
5776960 Oppong et al. Jul 1998 A
5780481 Jacobson et al. Jul 1998 A
5854081 Linden et al. Dec 1998 A
5877180 Linden et al. Mar 1999 A
5939543 Morozumi et al. Aug 1999 A
6026317 Verani Feb 2000 A
6117878 Linden Sep 2000 A
6214807 Zablocki et al. Apr 2001 B1
6294522 Zablocki et al. Sep 2001 B1
6322771 Linden et al. Nov 2001 B1
6368573 Leung Apr 2002 B1
6387913 Mustafa May 2002 B1
6403567 Elzein et al. Jun 2002 B1
6448235 Linden et al. Sep 2002 B1
6514949 Linden et al. Feb 2003 B1
6552023 Zablocki et al. Apr 2003 B2
6599283 Marzilli et al. Jul 2003 B1
6605597 Zablocki et al. Aug 2003 B1
6642210 Zablocki et al. Nov 2003 B1
6670334 Linden et al. Dec 2003 B2
6677336 Zablocki et al. Jan 2004 B2
6770634 Zablocki et al. Aug 2004 B1
6825349 Kalla et al. Nov 2004 B2
6855818 Zablocki et al. Feb 2005 B2
6916804 Castelhano et al. Jul 2005 B2
6977300 Kalla et al. Dec 2005 B2
6995148 Jones et al. Feb 2006 B2
7109180 Zablocki et al. Sep 2006 B2
7109203 Hart et al. Sep 2006 B2
7125993 Elzein et al. Oct 2006 B2
7144872 Zablocki et al. Dec 2006 B2
7183264 Zablocki et al. Feb 2007 B2
7553823 Zablocki et al. Jun 2009 B2
7582617 Belardinelli et al. Sep 2009 B2
7655636 Gordi et al. Feb 2010 B2
7655637 Zablocki et al. Feb 2010 B2
7671192 Zablocki et al. Mar 2010 B2
7683037 Belardinelli Mar 2010 B2
20020012946 Belardinelli et al. Jan 2002 A1
20030235555 Shealey et al. Dec 2003 A1
20040137533 Belardinelli et al. Jul 2004 A1
20050020915 Belardinelli et al. Jan 2005 A1
20060159621 Barrett Jul 2006 A1
20060159627 Zeng et al. Jul 2006 A1
20070265445 Zablocki et al. Nov 2007 A1
20070299089 Belardinelli et al. Dec 2007 A1
20080170990 Lieu et al. Jul 2008 A1
20080213165 Lieu et al. Sep 2008 A1
20080267861 Lieu et al. Oct 2008 A1
20090081120 Lieu et al. Mar 2009 A1
20090317331 Belardinelli et al. Dec 2009 A1
20100081810 Zablocki et al. Apr 2010 A1
20100086483 Belardinelli et al. Apr 2010 A1
Foreign Referenced Citations (31)
Number Date Country
965411 Apr 1975 CA
2064742 Dec 1991 CA
0 354 638 Feb 1990 EP
0 386 683 Sep 1990 EP
SHO 48-26038 Aug 1973 JP
HEI 5 1993 9197 Jan 1993 JP
WO 9200297 Jan 1992 WO
WO 9212260 Jul 1992 WO
WO 9323401 Nov 1993 WO
WO 9325677 Dec 1993 WO
WO 9511681 May 1995 WO
WO 9852611 Nov 1998 WO
WO 9857651 Dec 1998 WO
WO 9963938 Dec 1999 WO
WO 0078778 Dec 2000 WO
WO 0078779 Dec 2000 WO
WO 0116134 Aug 2001 WO
WO 0162979 Aug 2001 WO
WO 03088978 Oct 2003 WO
WO 2004011010 Feb 2004 WO
WO 2005082379 Sep 2005 WO
WO 2006076698 Jul 2006 WO
WO 2007092372 Aug 2007 WO
WO 2008028140 Mar 2008 WO
WO 2008042796 Apr 2008 WO
WO 2008063712 May 2008 WO
WO 2008086096 Jul 2008 WO
WO 2008143667 Nov 2008 WO
WO 2006044856 Apr 2009 WO
WO 2009076580 Jun 2009 WO
WO 2010037122 Apr 2010 WO
Related Publications (1)
Number Date Country
20100158797 A1 Jun 2010 US
Provisional Applications (1)
Number Date Country
60620577 Oct 2004 US
Continuations (1)
Number Date Country
Parent 11253322 Oct 2005 US
Child 12637583 US