Benya, P., et al., Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels, Cell, 30 (1982), 215-224. |
Mayne, R., et al., Changes in the Synthesis of Minor Cartilage Collagens after Growth of Chick Chondrocytes in 5-Bromo-2′-Deoxyuridine or to Senescence, Experimental Cell Research 151 (1984) 171-182. |
Mayne, R., et al., Changes in Type of Collagen Synthesized as Clones of Chick Chondrocytes Grow and Eventually Lose Division Capacity, Proc. Natl. Acad. Sci. 73(5) (1976) 1674-1678. |
Okayama, M., et al., Differences Among Sulfated Proteoglycans Synthesized in Nonchondrogenic Cells, Presumptive Chondroblasts, and Chondroblasts, Proc. Natl. Acad. Sci. 73(9) (1976) 3224-3228. |
Oegama, T, et al., Characterization of a Hyaluronic Acid • Dermatan Sulfate Proteoglycan Complex from Dedifferentiated Human Chondrocycte Cultures, The Journal of Biological Chemistry, 256(2) (1981) 1015-1022. |
Pacifici, Maurizio, et al., Changes in the Sulfated Proteoglycans Synthesized by “Aging” Chondrocytes, The Journal of Biological Chemistry 256(2) (1981) 1029-1037. |
Pacifici, et al., 12-O-Tetradecanoylphorbol-13-Acetate-Induced Changes in Sulfated Proteoglycan Synthesis in Cultured Chondroblasts, Cancer Research 40 (1980) 2461-2464. |
Pacifici, M., et al., Transformation of Chondroblasts by Rous Sarcoma Virus and Synthesis of the Sulfated Proteoglycan Matrix, Cell 11 (1977) 891-899. |
Von Der Mark, K., Relationship Between Cell Shape and type of Collagen Synthesised as Chondrocytes Lose Their Cartilage Phenotype in Culture, Nature 267 (1977) 531-532. |
West, C. Fibronectin Alters the Phenotypic Properties of Cultured Chick Embryo Chondroblasts, Cell, 17 (1979) 491-501. |
60/123,711, Peterson et al, Mar. 10, 1999. |
60/162,462, Peterson et al, Oct. 29, 1999. |
Ashton et al., “Formation of Bone and Cartilage by Marrow Stromal Cells in Diffusion Chambers in Vivo,” Clin Orthop Rel Res, (1980), vol. 151, pp. 294-307. |
Ballock & Reddi, “Thyroxine Is the Serum Factor That Regulates Morphogenesis of Columnar Cartilage from Isolated Chondrocytes in Chemically Defined Medium,” J. Cell Biol., (1994), vol. 126:5, pp. 1311-1318. |
Bonadio et al., “Localized, Direct Plasmid Gene Delivery in Vivo: Prolonged Therapy Results in Reproducible Tissue Regeneration,” Nat. Med., (1999), vol. 5, pp. 753-759. |
Bruder et al., “Osteochondral Differentiation and the Emergence of State-Specific Osteogenic Cell-Surface Molecules by Bone Marrow Cells in Diffusion Chambers,” Bone Mineral, (1990), vol. 11, pp. 141-151. |
Byk T. et al., “Lipofectamine and Related Cationic Lipids Strongly Improve Adenoviral Infection Efficiency of Primitive Human Hematopoietic Cells,” Human Gene Therapy, (1998), vol. 9, pp. 2493-2502. |
Chu CR et al., “Articular Cartilage Repair Using Allogenic Perichondrocyteseeded Biodegradable Porous Polylactic Acid (PLA): A Tissue-Engineering Study,” J. Biomed. Mater. Res., (1995), vol. 29, pp. 1147-1154. |
Dennis et al., “Osteogenesis in Marrow Derived Mesenchymal Cell Porous Ceramic Composites Transplanted Subcutaneously: Effect of Fibronectin and Laminin on Cell Retention and Rate of Osteogenic Expression,” Cell Transpl, (1991), vol. 1, pp. 23-32. |
Dorheim et al., “Osteoblastic Gene Expression During Adipogenesis in Hematopoietic Supporting Murine Bone Marrow Stromal Cells,” J. Cell Physiol., (1993), vol. 154, pp. 317-328. |
Elmer et al., “Immunohistochemical Localization of Cyclic AMP During Normal and Abnormal Chick and Mouse Limb Development,” Teratology, (1981), vol. 24, pp. 215-223. |
Gimble et al., “Adipogenesis in a Myeloid Supporting Bone Marrow Stromal Cell Line,” J. Cell Biochem., (1992), vol. 50, pp. 73-82. |
Gimble et al., “The Function of Adipocytes in the Bone Marrow Stroma: An Update,” Bone, (Nov. 1996), vol. 19:5, pp. 421-428. |
Goshima et al., “The Origin of Bone Formed in Composite Grafts of Porous Calcium Phosphate Ceramic Loaded with Marrow Cells,” Clin Orthop Rel Res, (1991), vol. 269, pp. 274-283. |
Hauschka, S. D., “Clonal Analysis of Vertebrate Myogenesis III. Developmental Changes in the Muscle-Colony-Forming Cells of the Human Fetal Limb,” Developmental Biology, (1974), vol. 37, pp. 345-368. |
Hendrickson DA et al., “Chondrocyte-Fibrin Matrix Transplants for Resurfacing Extensive Articular Cartilage Defects,” Orthop. Res., (1994), vol. 12, pp. 485-497. |
Ichinose et al., “Structure of Transglutaminases,” J. Biol. Chem., (1990), vol. 265:3, pp. 13411-13414. |
Kato et al., “Terminal Differentiation and Calcification in Rabbit Chondrocyte Cultures Grown in Centrifuge Tubes: Regulation by Transforming Growth Factor β and Serum Factors,” PNAS, (1988), vol. 85, pp. 9552-9556. |
Nakahara et al., “In Vitro Differentiation of Bone and Hypertrophic Cartilage from Periosteal-Derived Cells,” Exp Cell Res, (1991), vol. 195, pp. 492-503. |
Perka C. et al., “Matrix-Mixed Culture: New Methodology for Chondrocyte Culture and Preparation of Cartilage Transplants,” J. Biomed. Mater. Res., (2000), vol. 49, pp. 305-311. |
Phinney et al., “Plastic Adherent Stromal Cells From the Bone Marrow of Commonly Used Strains of Inbred Mice: Variations in Yield, Growth, and Differentiation,” J. Cell Biochem., (1999), vol. 72:4, pp. 570-585. |
Remy-Martin et al., “Vascular Smooth Muscle Differentiation of Murine Stroma: A Sequential Model,” Exp. Hematol., (1999), vol. 27:12, 1782-1795. |
Sechriest VF. et al., “GAG-Augmented Polysaccharide Hydrogel: A Novel Biocompatible and Biodegradable Material to Support Chondrogenesis,” J. Biomed. Mater. Res., (2000), vol. 49, pp. 534-541. |
Solursh et al., “Stage- and Position-Related Changes in Chondrogenic Response of Chick Embryonic Wing Mesenchyme to Treatment with Dibutyryl Cyclic AMP,” Developmental Biology, (1981), vol. 83, pp. 9-19. |
Solursh, “Formation of Cartilage Tissue In Vitro,” J. Cell Biochem., (1991), vol. 45, pp. 258-260. |
Sommer B. et al., “Efficient Gene Transfer into Normal Human Skeletal Cells Using Recombinant Adenovirus and Conjugated Adenovirus-DNA Complexes,” Calcif. Tissue Int., (1999), vol. 64, pp. 45-49. |
Swalla et al., “The Independence of Myogenesis and Chondrogenesis in Micromass Cultures of Chick Wing Buds,” Developmental Biology, (1986), vol. 116, pp. 31-38. |
Yoo et al., “The Chondrogenic Potential of Human Bone-Marrow-Derived Mesenchymal Progenitor Cells,” J Bone Joint Surg. Am., (1998), vol. 80:12, pp. 1745-1757. |