The present invention relates generally to image-forming devices such as printer and copiers, and more particularly, to providing to an image-forming device the identification of print media type using a bar code printed on the print media container.
In the art of printing, more generally, the forming of images (i.e., text, graphics, etc.) on a print media, it is desirable that the image-forming device know the type of print media, such as paper, for example, loaded in the print media supply or input tray. Given the several characteristics which determine the “type” of print media, such as material, size, color, weight and texture, for example, there are hundreds, if not thousands, of different types of print media available and in use today. Similarly, there are many different types of image-forming devices in use today, such as printers, copiers, scanners, facsimile machines and plotters, for example, many of which require special types of print media.
Consider one of the more important of print media characteristics, media size, for example. Without media size information, an error can occur during printing if the media size requested is not the same as the media size loaded in the media supply tray. If the image-forming device knows the size of the print media available in the media supply tray, the user can be notified that the presently available media does not agree with the requested size, thereby reducing the likelihood of an error.
Today, the most common method used to set or “inform” the image-forming device, such as a printer, of the type of print media contained in a given media supply tray is for a user to provide the media type information via a printer control panel. There is no assurance that once this information is set in the printer, that the setting will remain accurate in the future. For example, User A loads transparency film media in input tray 2 and sets the media type for input tray 2 as “transparencies.” At a later time, User B removes the transparency film and loads plain paper in input tray 2 and fails to reset the media type for input tray 2 to reflect the change in print media. Subsequent users expecting to print on transparency film may be disappointed when the print job is printed on plain paper instead thus causing a loss of time and a waste of resources.
Considering again the size of the print media, several methods of conveying the size of print media loaded in a supply tray to a printer have been developed. For example, a unique tray for each size of media that the printing device can accommodate will insure that only one size of media can be loaded in the tray. The primary disadvantage with this approach is increased cost in molding numerous size and configured trays. Additional disadvantages include increased cost in maintaining inventory of numerous trays to support the many media sizes used. For the user, storage of those trays not in current use must also be accommodated. Also, the user generally must purchase, at an additional cost, trays which are not initially provided with the printing device.
Another approach allows a manufacturer to manufacture one type of media tray that can be configured for all of the various sizes of print media. This approach reduces manufacturing cost since it requires only one molding for all media trays. However, the user still must indicate to the printing device the type and size of media loaded in the tray. One method is to provide a single tray which is adjustable to fit each size of media commonly available, the size of the media being provided to the printing device based on what size media the tray has been adjusted to receive. Another common method of indicating to the printing device the size of the media loaded in the tray requires the user to physically “punch out” a particular location in the media tray. Once punched out, the media tray is permanently configured for that particular media size. If the user subsequently wishes to use a different media size, a new tray must be purchased.
Further, in most printing devices, there is no way for a printing device to determine all characteristics for the print media loaded in a media supply tray. Currently, there are a very limited number of combinations of media type characteristics that are provided to and understood by today's printing devices. Typically, these characteristics are media size, letter or legal, for example, and basic material type, paper or transparency, for example.
Accordingly there is a need for a way to automatically provide print media characteristics to a printing device without the necessity for a user to manually input and continually update this information as the print media is changed.
In a preferred embodiment, the present invention provides a method of packaging print media in combination with a printing device which enables the printing device to automatically determine the type of media, and its characteristics and attributes, loaded in a media input tray. The print media package includes a pre-cut or perforated line which enables the removable of one end of the package forming a partial package encasing the print media and exposing one end of sheets of the print media. The print media is loaded in the media input tray encased in the partial package with the exposed ends of the print media sheets accessible to the printing device feed roller. The print media package includes an identifying code imprinted on an outside surface of the package located on the remaining portion of the package when the package end has been removed. The media input tray includes a sensor mounted in a location accessible to the identifying code when the print media encased in the partial package is loaded in the media input tray. When the loaded media input tray is inserted in the printing device, the sensor reads the identifying code and transmits the encoded information to the printing device control circuitry where the media settings are updated.
In a preferred embodiment of the present invention, a printing device includes one or more media input trays in which print media is loaded for feeding to the printing device on a sheet-by-sheet basis. The print media is encased in a partial package forming by removing one end of the package containing the media thus exposing one end of the sheets of media contained in the media partial package. The print media is loaded in the media input tray encased in the partial package, the exposed end of the media stack contained in the partial package is positioned in the media tray so that the exposed end of the top sheet engages the printing device feed roller. An identifying code is provided on an outside surface of the partial package, the identifying code encoding information which identifies the print media type encased within the partial package. The printing device media input tray includes a sensor mounted in a location accessible to the identifying code on the surface of the partial package. In a preferred embodiment, the identifying code is a bar code imprinted on the partial package outer surface and the sensor is an optical bar code reader. The sensor reads the encoded information and transmits it to a memory coupled to the sensor where the encoded information is stored. In a preferred embodiment, the memory is a non-volatile random access memory (NVRAM) and the encoded information is stored in a look-up table indexed by the media type. The printing device further includes a controller which controls the operation of the printing device. The controller is coupled to the sensor and to the memory and retrieves the encoded information from the memory and updates the printing device media settings upon the occurrence of any one of several predetermined events, such as power up, reset, change of selected media input tray or the opening and subsequent closing of a media input tray, for example.
Other embodiments and advantages of the present invention will be readily appreciated as the same become better understood by reference to the following detailed description, taken in conjunction with the accompanying drawings. The claims alone, not the preceding summary or the following detailed description, define the invention.
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the following detailed description illustrate by way of example the principles of the present invention. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. In the drawings like reference numbers indicate identical or functionally similar elements throughout the several views thereof, and wherein:
As shown in the drawings for purposes of illustration, the present invention is preferably embodied in a printing device, such as a laser printer, wherein a print media supply tray or bin includes an image-reading sensor adapted to read a bar code or other identifying image printed or otherwise marked on a print media package or container and provide the media type and characteristics to the printer controller. Typically, in most existing printing devices only limited information, such as size and media material, are provided to the printer via user input or mechanical means such as specific media tray characteristics, for example.
The present invention may be embodied in any image-forming device and is not limited to any specific embodiments illustrated herein. Referring now also to
Print media, such as paper, for example, is typically provided wrapped in heavy paper or other material forming a secure package to contain and protect the print media during shipment and storage. Print media is generally packaged with one ream (i.e., 500 sheets) to a package. Typically, in the prior art, the media is removed from the package prior to loading in an input tray 11 for input to a printer 10. Referring now also to
With continuing reference to
Referring now also to
With continuing reference to
Referring now also to
Alternatively, in another preferred embodiment, the information encoded in the identifying image 63 can include all of the media characteristics and attributes of interest as well as identifying the media type. When the sensor 81 reads the identifying image 63, the encoded information is transmitted to NVRAM 83 and stored in the look-up table. At the NVRAM, the encoded information will update any media information corresponding to the encoded media type already stored; if the encoded media type is a new media, i.e., not already in the look-up table, an new entry and file for the encoded media type is opened. In a preferred embodiment, the media information stored in the look-up table is indexed by media type.
The printer controller 85 then updates the printer media settings based on the media input tray 11 presently selected. The printer controller 85 updates the printer media settings at power-up 91 or a reset 93 of the printer. The controller 85 will also update the printer media settings anytime the media input tray 11 is changed 95, such as when a user submits a print job calling for a different type media than that loaded in the presently selected media input tray, or when an input tray is opened or removed 97 and then subsequently closed or replaced 99, such as when a user changes the media type loaded in a selected media input tray, for example.
While having described and illustrated the principles of the present invention with reference to various preferred embodiments and alternatives, it will be apparent to those familiar with the art that the invention can be further modified in arrangement and detail without departing from those principles. Accordingly, it is understood that the present invention includes all such modifications that come within the terms of the following claims and equivalents thereof.
This is a divisional application of U.S. patent application Ser. No. 09/556,766 filed on Apr. 24, 2000 now U.S. Pat. No. 6,598,795.
Number | Name | Date | Kind |
---|---|---|---|
3767188 | Rosenberg et al. | Oct 1973 | A |
4830186 | George et al. | May 1989 | A |
5053814 | Takano et al. | Oct 1991 | A |
5568229 | Szlucha | Oct 1996 | A |
5682986 | Cobler | Nov 1997 | A |
5703783 | Allen et al. | Dec 1997 | A |
5713567 | Owen et al. | Feb 1998 | A |
6011939 | Martin | Jan 2000 | A |
6219153 | Kawanabe et al. | Apr 2001 | B1 |
6227732 | Higuchi et al. | May 2001 | B1 |
6267522 | Slippy et al. | Jul 2001 | B1 |
6386671 | Huston | May 2002 | B1 |
Number | Date | Country |
---|---|---|
0768566 | Apr 1997 | EP |
11091958 | Apr 1999 | JP |
200148379 | Feb 2001 | JP |
200139078 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030209606 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09556766 | Apr 2000 | US |
Child | 10454408 | US |