Epidermal Growth Factor Receptor (EGFR) is regarded as an effective target for the development of anti-tumor therapy. It has been more than 15 years since the first introduction of EGFR-targeted therapy, which has helped countless cancer patients to prolong their lives. Epidermal growth factor receptor inhibitor (EGFRI) includes anti-epidermal growth factor receptor monoclonal antibody (mAb) and epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI).
Amongst them, the mechanism of action of the anti-epidermal growth factor receptor monoclonal antibody is specific binding to the epidermal growth factor receptor, and competitively inhibit the function of the epidermal growth factor, so that the cancer cells cannot proliferate. Currently, the commonly used monoclonal antibody drugs in clinical setting are Cetuximab, Zalutumumab, Nimotuzumab, Matuzumab and Panitumumab.
EGFR-TKI inhibits the activity of tyrosine kinase. Because tyrosine kinase acts as a switch of many intracellular signal transmissions, it plays an important role in cell growth, proliferation and differentiation, and its mutation often causes cancer.
Therefore, tyrosine kinase inhibitors can be used as an anti-cancer drug. In addition to inhibiting the proliferation of cancer cells, they also prevent new angiogenesis and block the supply of nutrients and oxygen to cancer cells. Currently, the commonly used tyrosine kinase inhibitors in clinical setting include erlotinib, gefitinib, lapatinib, afatinib, dacomitinib, osimertinib, etc.
Although epidermal growth factor receptor inhibitors can be used to treat a variety of cancers, the following epithelial cell damages are still common in clinical practice, including: intestinal epithelial toxicity, lung toxicity, liver toxicity and epithelial cell damage of the skin. Skin epithelial cell damage includes papulopustular rash, purpuric drug eruption, skin thinning, dermatitis, rosacea, xerosis, hair thinning, curly hair, or skin barrier damage. Due to the high expression of EGFR in the epidermal base, the use of epidermal growth factor receptor inhibitor is often associated with cutaneous adverse drug reactions that damage normal or uninjured epithelial cells. Compared with normal skin, epidermal growth factor receptor inhibitor can cause inflammatory cell infiltration in the skin, especially in the hair follicle, thinning of the stratum corneum layer of the skin, the loss of normal basket-weave structure and a denser, more eosinophilic, and parakeratotic appearance of the stratum corneum layer (see
In view of the above problems, the object of the present invention is to provide the use of β-1 adrenergic receptor antagonist for manufacturing a composition for reducing or preventing EGFRI-induced damage to normal epithelial cells.
To address the damage caused by epidermal growth factor receptor inhibitor (EGFRI) for the treatment of cancer to normal (or not yet injured) epithelial cells, a composition comprising β-1 adrenergic receptor antagonist is administered to a subject or a patient in need thereof to reduce or prevent damage to normal epithelial cells caused by the administration of EGFRI for the treatment of cancer.
In one embodiment, said normal epithelial cells are epithelial cells that have not been damaged by an EGFRI or by the toxicity induced by an EGFRI.
In one example, said β-1 adrenergic receptor antagonist may be administered before, after, or concurrently with an EGRFI. In one example, the β-1 adrenergic receptor antagonist may be administered before the administration an EGFRI.
Some embodiments of the present invention are directed to methods of inhibiting normal (or not yet injured) epithelial cell damage in a subject due to the use of EGFRI for cancer treatment, comprising administering to the subject in need thereof an effective amount of at least one β-1 adrenergic receptor antagonist, thereby reducing or preventing the symptoms and/or signs of epithelial cell damage in the subject.
Some specific examples of the present invention provide the use of a β-1 adrenergic receptor antagonist for manufacturing a composition for inhibiting cancer cells. The composition comprises a combination of at least one β-1 adrenergic receptor antagonist and at least one EGRFI. The combination of at least one β-1 adrenergic receptor antagonists and at least one EGFRI can produce additive or synergistic effects.
Some specific examples of the present invention are directed to methods of inhibiting cancer growth in a subject comprising administering to the subject in need thereof an effective amount of a combination including at least one β-1 adrenergic receptor antagonist and at least one EGFRI, thereby alleviating the symptoms and/or signs of cancer in the subject.
The compositions and methods of the present invention can be used to treat or inhibit the growth of any type of cancer. In some specific examples, the cancer to be treated or the growth of cancer to be inhibited is a solid tumor or hematological tumor, such as liver cancer, bile duct cancer, breast cancer, lung cancer, stomach cancer, pancreatic cancer, colorectal cancer, uterine cancer, cervical cancer, leukemia and lymphoma.
In one embodiment, said EGFRI is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Non-limiting examples of EGFR-TKI include erlotinib, gefitinib, lapatinib, afatinib, dacomitinib, osimertinib, or any combination thereof.
In one embodiment, said EGFRI is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody. Non-limiting examples of anti-EGFR monoclonal antibody include Erlotinib, Gefitinib, Lapatinib, Afatinib, Dacomitinib, Osimertinib, or any combination thereof.
In one embodiment, said epithelial cells refer to skin epithelial cells, intestinal epithelial cells or corneal epithelial cells.
In one embodiment, non-limiting examples of the β-1 adrenergic receptor antagonists include atenolol, betaxaolol, bisoprolol, esmolol, acebutolol, metoprolol, nebivolol, or any combination thereof.
In one embodiment, the EGFRI-induced skin epithelial cytotoxicity comprises at least one of the following: papulopustular rash, purpuric drug eruption, skin thinning, dermatitis, rosacea, dryness, hair thinning, curly hair or skin barrier damage.
In one embodiment, the EGFRI-induced intestinal epithelial cell toxicity comprises at least one of the following: oral mucositis, genital mucositis, or diarrhea.
In one embodiment, the composition comprising a β-1 adrenergic receptor antagonist may further comprise the aforementioned EGFRI, said composition is used to inhibit the growth of cancer cells and reduce EGFRI induced epithelial cell damage.
The terms “invention,” “the invention,” “this invention,” and “the present invention” as used in herein are intended to broadly refer to the subject matter of the invention and the full scope of the following claims. Statements containing these terms should be understood not to limit the meaning of, or the scope of, the subject matter of the invention described herein or the scope of the claims below. The embodiments of the invention covered by the present application are defined by the following claims, not by the content of the present invention. The present application is a high-level overview of various aspects of the invention and introduces some concepts that are further described in the following description. The present application is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used alone to determine the claimed subject matter. The subject matter of the invention should be understood by reference to the entire specification, any or all drawings, and appropriate portions of the scope of each claim.
The invention will become more apparent when read in conjunction with the accompanying drawings and the following detailed description.
The following description is accompanied with the drawings and specific working examples to illustrate the technical content of the present invention. Those skilled in the art can easily understand other advantages and effects of the present invention from the disclosure of this specification. The present invention can also be implemented or applied through other working examples. Various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the spirit of the present invention.
The terms “subject” and “patient” are used interchangeably and refer to a mammal diagnosed with or suspected of having EGFRI-induced epithelial cell damage and/or cancer. Subjects include primates, preferably humans.
An “effective amount” of an antagonist is an amount of an inhibitor that produces a desired effect, for example, a reduction in the rate of epithelial cell damage and/or rate of cancer cell inhibition by at least about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%, as compared to an untreated subject,
The technical term “treatment” as used herein includes preventative (for example, prophylactic), palliative and curative uses or results. Subjects or patients in need of treatment or prevention are those diagnosed with or suspected of having epithelial cell damage; subjects or patients are those diagnosed or suspected of having cancer, or patients whose normal epithelial cells are not yet damaged by EGFRI.
All numbers herein may be understood as modified by “about.” As used herein, the term “about” refers to a range of ±10% of a specified value.
In addition, one skilled in the art can quickly determine the dosage and dose numbers of β-1 adrenergic receptor antagonists for a particular type of epithelial cell damage, depending on, for example, the severity and type of epithelial cell damage, the patient's age, weight, gender, complications, and other co-administered drugs. Those skilled in the art will appreciate that the preferred dose is one that produces a therapeutic effect in a patient in need thereof, such as accelerating epithelial cell repair.
The β-1 adrenergic receptor antagonist can be administered in any effective amount. In some specific examples, the dose to be administered maybe within the range from about 0.01% w/w to about 10% w/w, from about 0.05% w/w to about 5% w/w, from about 0.1% w/w to about 1% w/w.
Suitable dosages of the compositions provided herein are determined by comparing the in vitro activity of the compositions provided herein with in vivo activity in animal models. Methods for extrapolating effective doses in mice and other animals to effective doses in human are known in the art; for example, U.S. Pat. No. 4,938,949, which is incorporated herein by reference.
The composition is administered in an effective amount to inhibit epithelial cell damage or reduce cancer cell growth. The dosage of the pharmaceutical composition to be administered depends on the severity of the condition, the particular formulation, and other clinical factors (such as the recipient's weight, the general condition and route of administration). In one embodiment, a single dose is administered once a day for a given number of days (for example, 1 day, 7 days, 14 days, 21 days, 1 month, etc.).
In another embodiment, multiple doses may be administered in one day (every 2 hours, 4 hours, 6 hours, or 12 hours, etc.) or for multiple days.
According to the methods provided herein, the composition can be delivered by any of the following routes including, but not limited to, injection (for example, subcutaneous, intramuscular, intravenous, intra-arterial, intraperitoneal, intradermal); skin; dermis; transdermal; oral (for example, lozenges, pills, liquids, edible tapes); implanted osmotic pumps; suppositories; aerosol sprays; topical; intraarticular; ocular, nasal, inhalation, skin and vagina insertion.
In one embodiment, the composition is formulated for topical delivery in any of the following forms: ointment, cream, solution, gel, suspension, spray or lotion. In another embodiment, the composition is formulated as slow or sustained release.
The MTT test (i.e., cell viability analysis) was performed to examine the effect of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) on epithelial cells. The steps are as follows:
A fixed number (7×104 cells/dish) of HaCaT cells (human skin keratinocytes) were seeded in each well of a multi-well plate (24 wells). After 24 hours of culture, different concentrations of afatinib (0, 1, 2.5, 5, 10, 20, 50 μM) and 0.1% DMSO were added to the cells and incubated for 24 hours. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 300λ bromide-3-(4,5-dimethyl-2-thiazole)-2,5-diphenyltetrazolium) were added and 1 hour later, the supernatant was removed, DMSO was added and the resultant was shook. 200 λ/well of liquid was extracted and added into another multi-well plate (96 wells). ELISA was used to measure the absorbance value (OD570, optical density 570 nm) and calculate the cell cell viability. The experiment was repeated 3 times. Table 1 below shows the results of absorbance value and cell viability.
Referring to
The MTT test was carried out to examine the effect of β-1 adrenergic receptor antagonists on epithelial cells. The experimental procedure was similar to that of Example 1 and not be repeated here, except that afatinib was replaced by betaxolol. The experiments were repeated 4 times and the data of absorbance and cell viability are shown in Table 2 below.
Referring to
The MTT test was carried out to examine the effect of first administering β-1 adrenergic receptor antagonist followed by EGFR-TKI on epithelial cells. The experimental procedure was similar to that of Example 1. HaCaT cells were contacted with betaxolol and an hour later, afatinib was added and the cells were cultured for 24 hours to observe the cell viability.
Referring to
A MTT test was conducted to examine the effect of simultaneously administering a β-1 adrenergic receptor antagonist and an EGFR-TKI on epithelial cells. The experimental procedure was similar to that of Example 1. Betaxolol and afatinib were simultaneously added to HaCaT cells and the cells were cultured for 24 hours to observe cell viability. Referring to
From the foregoing examples, it was found that the normal epithelial cell viability increases with simultaneous administration of a β-1 adrenergic receptor antagonist and an EGFR-TKI to normal epithelial cells.
The effect of EGFR-TKI alone and the simultaneous administration of a β-1 adrenergic receptor antagonist and an EGFR-TKI on cancer cells was examined. The experimental procedure was similar to that of Example 1, and details not repeated here.
Referring to
As illustrated in
According to
According to
In order to verify that only β-1 adrenergic receptor antagonist can reduce epithelial cell damage caused by EGFR-TKI and increase inhibitory effect of EGFR-TKI on cancer cells, anon-selective β-adrenergic receptor antagonist, such as, but not limited to, Timolol, was co-administered with EGFR-TKI. The effects on HaCaT cells as well as A549 cancer cells was examined. The experimental procedure was similar to that of Example 1, and details not repeated here.
Referring to
According to
According to
Patients with EGFR-TKI or anti-EGFR monoclonal antibodies induced epithelial cell damage, for example, rosacea or papulopustular rash, were recruited. A composition comprising β-1 adrenergic receptor antagonist was formulated for topical use, and was administered to recruited patients to observe its therapeutic effect.
Referring to
Referring to
In conclusion, β-1 adrenergic receptor antagonists can indeed reduce or prevent EGFR-TKI and anti-EGFR monoclonal antibody (mAb)-induced normal epithelial cell damage, reduce EGFR-TKI and anti-epithelial growth factor receptor monoclonal antibody (mAb)-induced epithelial cell damage, and increase the inhibitory effect of EGFR-TKI on cancer cells. In addition, using non-selective β-adrenergic receptor antagonists as a comparison, the non-selective β-adrenergic receptor antagonists cannot reduce or prevent EGFR-TKI-induced damage to normal epithelial cells, and cannot increase the inhibitory effect of EGFR-TKI on cancer cells.
Therefore, the use of β-1 adrenergic receptor antagonists to reduce EGFR-TKI-induced epithelial cell damage and to improve the inhibitory effect of EGFR-TKI on cancer cells, is unexpected for a person skilled in the art in view of the prior art knowledge
The above-mentioned embodiments merely illustrate the principle and effect of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be as listed in the claims of the present invention.
This application claims the benefit of U.S. Application No. 63/050,390, filed on Jul. 10, 2020. The entire contents of which are incorporated herein by reference The present invention relates to the use of a β-1 adrenergic receptor antagonist for preparing a composition for reducing or preventing epidermal growth factor receptor inhibitor-induced damage to normal epithelial cells and inhibiting cancer cells.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/105167 | 7/8/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63050390 | Jul 2020 | US |