The present invention relates to an arrangement whereby Web site reach is determined from the history files of browsers.
The Internet has proven to be an efficient and popular mechanism for the dissemination of information from content providers to content recipients. Content providers in many cases are organizations, such as businesses, governmental agencies, educational institutions, and the like, who operate Web sites in order to provide information that can be downloaded by content recipients. The content recipients are often consumers who use computers typically located in their dwellings to access the content provided by content providers. However, content recipients may also be other businesses, governmental agencies, educational institutions, and the like. In many cases, a content provider is also a content recipient.
The operators of Web sites, as well as those who create and place content (such as advertisements) for Web sites, have an interest in measuring the reach of content. Reach is typically determined by the number of unique visitors who visit a Web site. Web site operators, and those who create and place content, may then draw market relevant conclusions from the reach of their content.
Several arrangements have been proposed in order to measure reach. For example, it is known for a Web site to itself measure reach by determining the number of unique visitors who visit a Web site. However, such a measurement is localized in that it provides little information about the reach of content offered by other Web sites, such as competitive Web sites. Also, this measurement provides no information about the demographic information about the reach.
Accordingly, it has been proposed to install software meters on the computers of statistically selected panelists so that reach, and other information related to content, can be measured and extrapolated over the population as a whole, in much the same way that TV ratings are generated. According to this proposal, the software meters track operating system messages in order to detect communications of interest. When the software meters detect communications of interest, the software meters log the titles of the corresponding windows which are displayed to a computer user. However, logging titles of windows containing Internet content is not particularly useful because such titles can be very generic. For example, one such title which is popular with many content providers is simply “Home Page.” This title provides little indication of the information supplied to the content recipient.
Moreover, tagging of Internet content has been broadly suggested. However, the context in which tagging has been suggested requires widespread industry cooperation, and it is unlikely that such widespread industry cooperation is attainable.
The present invention overcomes one or more of the above noted problems.
In accordance with one aspect of the present invention, a method of metering Web site reach through execution of program code running on at least one computer comprises the following steps: a) accessing Web site access history information; and b) copying the Web site access history information.
In accordance with another aspect of the present invention, a method of metering Web site reach through execution of program code running on at least one of first and second computers comprises the following steps: a) accessing Web site access history information stored in a history file stored on the first computer; and b) communicating the Web site access history information to the second computer.
In accordance with yet another aspect of the present invention, a method of metering Web usage comprises the following steps: a) downloading a collection program from a server to a metered computer in response to a message transmitted from the metered computer to the server; and b) executing the collection program on the metered computer in order to collect Web usage history information stored in a history file by a browser running on the metered computer.
These and other features and advantages of the present invention will become more apparent from a detailed consideration of the invention when taken in conjunction with the drawings in which:
A metering system 10 is shown in
The purpose of the Web site reach survey is to determine the reach of one or more Web sites 18 to the users of the computers 12. The Web site reach survey may provide such information as the number of users reached by the Web sites 18, the demographics of the users reached by the Web sites 18, and the like.
As shown in
Many browsers, such as the Netscape Navigator® browser and the Internet Explorer browser, store the URLs and other information of the Web pages which are accessed by surfers whenever the surfers go to Web pages, either by clicking on hyper-links or by typing in URLs directly. The Netscape Navigator® browser stores the URLs in a flat database history file, while the Internet Explorer browser stores the URLs and other information in a directory as a structured historical hierarchy according to date and week of access. Surfers use the data stored in these histories to allow them to return to pages which they recently visited.
Therefore, in order to conduct the Web site reach survey, the users of the computers 12, who have been statistically selected as discussed above and who have agreed to participate in the survey, are directed to a Web page residing on a server of the central facility 16. The Web page at the central facility 16 contains a history file retrieval program which the server at the central facility 16 downloads to the computers 12 of those users who have accessed that Web page. The history file retrieval program retrieves the information stored by the browsers 22 in the history files and causes this information to be uploaded to the server of the central facility 16. It should be noted that the server of the central facility 16 preferably stores multiple history file retrieval programs, one for each of the different types of browsers of the panelists participating in the Web site reach survey. Thus, once the server at the central facility 16 has identified the type of browser a panelist accessing its Web page is using, it may download the correct history file retrieval program.
A browser does not necessarily retain the information in its history file indefinitely. For example, some browsers allow the user to set the length of time that history file information is retained. Such browsers may also time stamp each entry in the history file with the time of the last visit. Accordingly, if a user returns to a page that the user has seen before, the time stamp is overwritten with the latest time, such that entries in the history file are not duplicated on repeat visits.
Other browsers store the history information with time stamps in directories according to the week in which the Web pages are visited. These browsers may also permit the user to set the number of days that the historical information is retained. Thus, for example, if the user sets the number of retention days to twenty, these browsers will maintain three directories, one for two weeks ago, one for one week ago, and one for the current week. Therefore, if a user is running such a browser on a Wednesday, there will be subdirectories for Monday, Tuesday, and Wednesday under the Current Week directory in the history file. With this approach, many entries may be duplicated when the same page is visited more than once. For example, a page may appear in each weekday subdirectory and in each prior week directory depending on the user's use of the browser. However, as duplicate entries in the current week directory age (e.g., from Sunday to Monday), many of the entries are deleted or merged into one entry for the week. Duplicate entries across week boundaries are not merged.
Even though the information in these history files in not retained indefinitely, this information is still useful to indicate the number and demographics of people who reach the Web sites 18. Also, the information acquired by the server of the central facility 16 can be improved by the frequency with which the information is uploaded to the server of the central facility 16.
Accordingly, the server at the central facility 16 may execute a software routine 30 shown in
However, if the user is a panelist, an application is sent at a block 38 to the user's computer 12. This application may be a Java applet, JavaScript, or an ActiveX control. The user's permission is required to access information on the hard disk of the user's computer. In Java and JavaScript, permission is obtained in the form of a signed application (as opposed to an unprivileged application that runs in a sand-box environment). An ActiveX application requires the user's authorization even if the application does not need to access the hard disk of the user's computer. The latest versions of many browsers allow a programmer to automate the download and subsequent execution of a signed application on a single Web page. All the panelist may be required to do is to go to the specified Web page and click the “Okay” or similar icon or button in response to a security override request.
The application downloaded to the panelist's computer is arranged to access the history file stored by the computer's browser, to insert the appropriate information stored in the history file into a message, and to communicate the message to the server at the central facility 16. For example, the application may be arranged to open a regular socket back to the server, or the application may be arranged to post the information back to the server through an HTTP daemon, or the application may be arranged to simply e-mail the information back to the server. Alternatively, the application may be arranged to access the history file, to store appropriate information from the history file in a log, and to later communicate the logged information to the server at the central facility 16.
The server at the central facility 16 determines at a block 40 whether the central facility 16 has received information in response to the application downloaded at the block 38. If the server of the central facility 16 has not received the information, the server determines at a block 42 whether it should again send the application down to the user's computer. If the application can be resent, the processing at the blocks 38 and 40 is repeated. In this manner, a predetermined number of attempts may be made to retrieve history data from each panelist. If the application should not be resent, program flow returns to the block 32 to await another message.
If the server at the central facility 16 has received the history information as determined at the block 40, the server at a block 44 suitably processes the history information and then logs the history information in a database along with history information received from other panelists. The history information can be assembled into reports as directed by the customers of the central facility 16.
In processing the history information, the server at the central facility 16 preferably arranges the history information from different browsers into a common format. For example, because some browsers may contain duplicate data and some may not, it may be preferable to eliminate duplicate data. It should be noted that some or all of the processing required to transform the data to a common format may be effected on the panelist's computer.
Also, the data from all weeks and days should be merged and any entry that is a duplicate may be discarded in favor of the most recent entry. The parameter that controls the length of time that the history information is maintained is an integral part of the history information and should preferably be maintained in the server database so that reach data is given the proper time line. For example, data from a browser with an expiration time of ten days cannot be used to measure reach over a period extending to before that interval.
A metering system 50 shown in
In the metering system 50, a software meter 66 acquires the history information which is accumulated by the browsers running on corresponding ones of the computers 52. The software meter 66, as shown in
Certain modifications of the present invention have been discussed above. Other modifications will occur to those practicing in the art of the present invention. For example, the software routine 30 is arranged as described above to determine at the block 34 whether a user accessing the central facility is a panelist. Instead, the software routine 30 may be associated with a dedicated survey Web page that can be accessed only by a panelist. If so, the block 34 may be unnecessary, but may be provided as a filter to filter out non-panelists who accidentally access this dedicated Web page.
Also, the software meter 66 is arranged to intercept information being stored in a history file by a corresponding browser. However, the software meter 66 may instead be arranged to access information from this history file on a periodic basis, such as once a day, once a week, or the like.
Moreover, the software meter 66 is described above as being resident on a corresponding computer 52. Instead, the functions performed by the software meter 66 may be performed by a hardware and/or software unit connected to the corresponding computer 52.
Furthermore, the software meter 66 as described above transmits accumulated logged history information. Instead, the software meter 66 may be arranged to transmit the history information as soon as it is detected at the block 70. That is, the software meter 66 copies the history information for immediate transmission to the central facility or other destination. Alternatively, the history information may be simply copied to a disk for posting back to the central facility or other destination.
Additionally, the computers 12 and 52 may be provided with mechanisms to determine the identities of their users and to transmit such identities to the central facilities 16 and 56. For example, the computers 12 and 52 may implement face recognition or other recognition techniques in order to identify the users, or the computers 12 and 52 may require the users to identify themselves. These identifications, together with demographic data about the panelists stored at the computers 12 and 52 or at the central facilities 16 and 56, provide information which is useful in generating reports for the customers of the central facilities 16 and 56.
Accordingly, the description of the present invention is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the appended claims is reserved.
This is a Continuation of U.S. application Ser. No. 09/103,026 filed Jun. 23, 1998 now abandoned, the entire content of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3540003 | Murphy | Nov 1970 | A |
3818458 | Deese | Jun 1974 | A |
3906450 | Prado, Jr. | Sep 1975 | A |
3906454 | Martin | Sep 1975 | A |
T955010 | Ragonese et al. | Feb 1977 | I4 |
4168396 | Best | Sep 1979 | A |
4230990 | Lert, Jr. et al. | Oct 1980 | A |
4232193 | Gerard | Nov 1980 | A |
4306289 | Lumley | Dec 1981 | A |
4319079 | Best | Mar 1982 | A |
4361832 | Cole | Nov 1982 | A |
4367525 | Brown et al. | Jan 1983 | A |
4558413 | Schmidt et al. | Dec 1985 | A |
4588991 | Atalla | May 1986 | A |
4590550 | Eilert et al. | May 1986 | A |
4595950 | Lofberg | Jun 1986 | A |
4621325 | Naftzger et al. | Nov 1986 | A |
4658093 | Hellman | Apr 1987 | A |
4672572 | Alsberg | Jun 1987 | A |
4685056 | Barnsdale, Jr. et al. | Aug 1987 | A |
4696034 | Wiedemer | Sep 1987 | A |
4703324 | White | Oct 1987 | A |
4712097 | Hashimoto | Dec 1987 | A |
4718005 | Feigenbaum et al. | Jan 1988 | A |
4720782 | Kovalcin | Jan 1988 | A |
4734865 | Scullion et al. | Mar 1988 | A |
4740890 | William | Apr 1988 | A |
4747139 | Taaffe | May 1988 | A |
4754262 | Hackett et al. | Jun 1988 | A |
4757533 | Allen et al. | Jul 1988 | A |
4791565 | Dunham et al. | Dec 1988 | A |
4821178 | Levin et al. | Apr 1989 | A |
4825354 | Agrawal et al. | Apr 1989 | A |
4827508 | Shear | May 1989 | A |
4866769 | Karp | Sep 1989 | A |
4914689 | Quade et al. | Apr 1990 | A |
4926162 | Pickell | May 1990 | A |
4940976 | Gastouniotis et al. | Jul 1990 | A |
4956769 | Smith | Sep 1990 | A |
4970644 | Berneking et al. | Nov 1990 | A |
4977594 | Shear | Dec 1990 | A |
5023907 | Johnson et al. | Jun 1991 | A |
5032979 | Hecht et al. | Jul 1991 | A |
5086386 | Islam | Feb 1992 | A |
5113518 | Durst, Jr. et al. | May 1992 | A |
5182770 | Medveczky et al. | Jan 1993 | A |
5204897 | Wyman | Apr 1993 | A |
5214780 | Ingoglia et al. | May 1993 | A |
5233642 | Renton | Aug 1993 | A |
5283734 | Von Kohorn | Feb 1994 | A |
5287408 | Samson | Feb 1994 | A |
5343239 | Lappington et al. | Aug 1994 | A |
5355484 | Record et al. | Oct 1994 | A |
5374951 | Welsh | Dec 1994 | A |
5377269 | Heptig et al. | Dec 1994 | A |
5388211 | Hornbuckle | Feb 1995 | A |
5406269 | Baran | Apr 1995 | A |
5410598 | Shear | Apr 1995 | A |
5440738 | Bowman et al. | Aug 1995 | A |
5444642 | Montgomery et al. | Aug 1995 | A |
5450134 | Legate | Sep 1995 | A |
5483658 | Grube et al. | Jan 1996 | A |
5497479 | Hornbuckle | Mar 1996 | A |
5499340 | Barritz | Mar 1996 | A |
5584050 | Lyons | Dec 1996 | A |
5594934 | Lu et al. | Jan 1997 | A |
5675510 | Coffey et al. | Oct 1997 | A |
5732218 | Bland et al. | Mar 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
5892917 | Myerson | Apr 1999 | A |
5918014 | Robinson | Jun 1999 | A |
6006332 | Rabne et al. | Dec 1999 | A |
6012093 | Madalozzo, Jr. et al. | Jan 2000 | A |
6018344 | Harada et al. | Jan 2000 | A |
6018619 | Allard et al. | Jan 2000 | A |
6230204 | Fleming, III | May 2001 | B1 |
6338066 | Martin et al. | Jan 2002 | B1 |
Number | Date | Country |
---|---|---|
0 703 683 | Mar 1989 | EP |
0 325 219 | Jul 1989 | EP |
0 744 695 | Nov 1996 | EP |
2 176 639 | Dec 1986 | GB |
5-324352 | Dec 2003 | JP |
WO 9617467 | Jun 1996 | WO |
WO 9628904 | Sep 1996 | WO |
WO 9632815 | Oct 1996 | WO |
WO 9600950 | Nov 1996 | WO |
WO 9637983 | Nov 1996 | WO |
WO 9641495 | Dec 1996 | WO |
WO 9726729 | Jul 1997 | WO |
WO 9826529 | Jun 1998 | WO |
WO 9826571 | Jun 1998 | WO |
WO 9831155 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050216581 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09103026 | Jun 1998 | US |
Child | 11094061 | US |