The present invention relates to the use of cannabidiol (CBD) for the treatment of seizures associated with rare epilepsy syndromes. In particular the seizures associated with rare epilepsy syndromes that are treated are those which are experienced in patients with mutations on GR1N2B and CACNA1H genes. In a further embodiment the types of seizures include tonic-clonic, absence and focal seizures with impairment. Preferably the dose of CBD is between 5 mg/kg/day to 50 mg/kg/day.
In a further embodiment the CBD used is in the form of a highly purified extract of cannabis such that the CBD is present at greater than 95% of the total extract (w/w) and the cannabinoid tetrahydrocannabinol (THC) has been substantially removed, to a level of not more than 0.15% (w/w).
Preferably the CBD used is in the form of a botanically derived purified CBD which comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids. More preferably the other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w). The botanically derived purified CBD preferably also comprises a mixture of both trans-THC and cis-THC. Alternatively, a synthetically produced CBD is used.
Most preferably the other cannabinoids present are THC at a concentration of about 0.01% to about 0.1% (w/w); CBD-C1 at a concentration of about 0.1% to about 0.15% (w/w); CBDV at a concentration of about 0.2% to about 0.8% (w/w); and CBD-C4 at a concentration of about 0.3% to about 0.4% (w/w). Most preferably still the THC is present at a concentration of about 0.02% to about 0.05% (w/w).
Where the CBD is given concomitantly with one or more other anti-epileptic drugs (AED), the CBD may be formulated for administration separately, sequentially or simultaneously with one or more AED or the combination may be provided in a single dosage form.
Epilepsy occurs in approximately 1% of the population worldwide, (Thurman et al., 2011) of which 70% are able to adequately control their symptoms with the available existing anti-epileptic drugs (AED). However, 30% of this patient group, (Eadie et al., 2012), are unable to obtain seizure freedom from the AED that are available and as such are termed as suffering from intractable or “treatment-resistant epilepsy” (TRE).
Intractable or treatment-resistant epilepsy was defined in 2009 by the International League Against Epilepsy (ILAE) as “failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom” (Kwan et al., 2009).
Individuals who develop epilepsy during the first few years of life are often difficult to treat and as such are often termed treatment resistant. Children who undergo frequent seizures in childhood are often left with neurological damage which can cause cognitive, behavioral and motor delays.
Childhood epilepsy is a relatively common neurological disorder in children and young adults with a prevalence of approximately 700 per 100,000. This is twice the number of epileptic adults per population.
When a child or young adult presents with a seizure, investigations are normally undertaken in order to investigate the cause. Childhood epilepsy can be caused by many different syndromes and genetic mutations and as such diagnosis for these children may take some time.
The main symptom of epilepsy is repeated seizures. In order to determine the type of epilepsy or the epileptic syndrome that a patient is suffering from an investigation into the type of seizures that the patient is experiencing is undertaken. Clinical observations and electroencephalography (EEG) tests are conducted and the type(s) of seizures are classified according to the ILEA classification.
Generalized seizures, where the seizure arises within and rapidly engages bilaterally distributed networks, can be split into six subtypes: tonic-clonic (grand mal) seizures; absence (petit mal) seizures; clonic seizures; tonic seizures; atonic seizures and myoclonic seizures.
Focal (partial) seizures where the seizure originates within networks limited to only one hemisphere, are also split into sub-categories. Here the seizure is characterized according to one or more features of the seizure, including aura, motor, autonomic and awareness/responsiveness. Where a seizure begins as a localized seizure and rapidly evolves to be distributed within bilateral networks this seizure is known as a bilateral convulsive seizure, which is the proposed terminology to replace secondary generalized seizures (generalized seizures that have evolved from focal seizures and are no longer remain localized).
Focal seizures where the subject's awareness/responsiveness is altered are referred to as focal seizures with impairment and focal seizures where the awareness or responsiveness of the subject is not impaired are referred to as focal seizures without impairment.
CACNA1H encodes a member of the alpha-1 subunit family, a protein in the voltage-dependent calcium channel complex, which may be involved in the modulation of firing patterns of neurons.
Genetic changes of this gene are associated with childhood absence epilepsy 6 and autism spectrum disorder (ASD). Childhood absence 6 is a subtype of idiopathic generalized epilepsy characterized by an onset at age 6-7 years, frequent absence seizures. Tonic-clonic seizures often develop in adolescence. Absence seizures may either remit or persist into adulthood. The condition is usually treated with antiepileptic drugs such as ethosuximide, valproic acid, or lamotrigine. ASD begins early in childhood and lasts throughout a person's life It is characterized by impaired communication, social interaction and repetitive behaviours. Early treatment for ASD is important and is adapted to the individual's symptoms, with behavioural therapy usually being involved.
The GRIN2B gene encodes a protein called GIuN2B, found in neurons in the brain, primarily during development before birth. The GIuN2B protein forms a subunit of N-methyl-D-aspartate (NMDA) receptors, which are involved in normal brain development, synaptic plasticity, learning, and memory.
Genetic changes of the gene are associated with GRIN2B-related neurodevelopmental disorder and ASD. GRIN2B-related neurodevelopmental disorder is characterized by intellectual disability, delayed development of speech and motor skills, seizures, weak muscle tone, movement disorders, and behavioral problems. Treatment for this condition depends on the individual's symptoms but may include physiotherapy, occupational therapy, speech therapy and behavioural therapy.
Cannabidiol (CBD), a non-psychoactive derivative from the cannabis plant, has demonstrated anti-convulsant properties in several anecdotal reports, pre-clinical and clinical studies both in animal models and humans. Three randomized control trials showed efficacy of the purified pharmaceutical formulation of CBD in patients with Dravet and Lennox-Gastaut syndrome.
Based on these three trials, a botanically derived purified CBD preparation was approved by FDA in June 2018 for the treatment of seizures associated with Dravet and Lennox-Gastaut syndromes.
Documents such as GB 2531282, GB 2531278 and WO2020/109806 disclose the use of CBD to treat epileptic syndromes. Agarwal et al (2019)1 and Fleury-Teixeira et al. (2019)2 disclose the use of CBD to treat Autism Spectrum Disorder. However, none provide any data of patients with specific GR1N2B and CACNA1H mutations nor is there any mention of these mutations.
The applicant has found by way of an open label, expanded-access program that treatment with CBD resulted in a significant reduction in tonic-clonic seizures and focal seizures with impairment in patients with GR1N2B and CACNA1H mutations.
In accordance with a first aspect of the present invention there is provided a cannabidiol (CBD) preparation for use in the treatment of seizures associated with GR1N2B and CACNA1H mutations.
In a further embodiment, the seizures associated with GR1N2B and CACNA1H mutations are tonic-clonic, absence and focal seizures with impairment.
In a further embodiment, the CBD preparation comprises greater than 95% (w/w) CBD and not more than 0.15% (w/w) tetrahydrocannabinol (THC).
Preferably the CBD preparation comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) other cannabinoids, wherein the less than or equal to 2% (w/w) other cannabinoids comprise the cannabinoids tetrahydrocannabinol (THC); cannabidiol-C1 (CBD-C1); cannabidivarin (CBDV); and cannabidiol-C4 (CBD-C4), and wherein the THC is present as a mixture of trans-THC and cis-THC.
Preferably the CBD preparation is used in combination with one or more concomitant anti-epileptic drugs (AED).
Preferably the one or more AED is zonisamide and/or diazepam.
In one embodiment the CBD is present is isolated from cannabis plant material. Preferably at least a portion of at least one of the cannabinoids present in the CBD preparation is isolated from cannabis plant material.
In a further embodiment the CBD is present as a synthetic preparation. Preferably at least a portion of at least one of the cannabinoids present in the CBD preparation is prepared synthetically.
Preferably the dose of CBD is greater than 5 mg/kg/day. More preferably the dose of CBD is 20 mg/kg/day. More preferably the dose of CBD is 25 mg/kg/day. More preferably the dose of CBD is 50 mg/kg/day.
In accordance with a second aspect of the present invention there is provided a method of treating seizures associated with GR1N2B and CACNA1H mutations comprising administering a cannabidiol (CBD) preparation to the subject in need thereof.
Definitions of some of the terms used to describe the invention are detailed below:
Over 100 different cannabinoids have been identified, see for example, Handbook of Cannabis, Roger Pertwee, Chapter 1, pages 3 to 15. These cannabinoids can be split into different groups as follows: Phytocannabinoids; Endocannabinoids and Synthetic cannabinoids (which may be novel cannabinoids or synthetically produced phytocannabinoids or endocannabinoids).
“Phytocannabinoids” are cannabinoids that originate from nature and can be found in the cannabis plant. The phytocannabinoids can be isolated from plants to produce a highly purified extract or can be reproduced synthetically.
“Highly purified cannabinoids” are defined as cannabinoids that have been extracted from the cannabis plant and purified to the extent that other cannabinoids and non-cannabinoid components that are co-extracted with the cannabinoids have been removed, such that the highly purified cannabinoid is greater than or equal to 95% (w/w) pure.
“Synthetic cannabinoids” are compounds that have a cannabinoid or cannabinoid-like structure and are manufactured using chemical means rather than by the plant.
Phytocannabinoids can be obtained as either the neutral (decarboxylated form) or the carboxylic acid form depending on the method used to extract the cannabinoids. For example, it is known that heating the carboxylic acid form will cause most of the carboxylic acid form to decarboxylate into the neutral form.
“Treatment-resistant epilepsy” (TRE) or “intractable epilepsy” is defined as per the ILAE guidance of 2009 as epilepsy that is not adequately controlled by trials of one or more AED.
“Tonic-clonic seizures” consist of two phases: the tonic phase and the clonic phase. In the tonic phase the body becomes entire rigid, and in the clonic phase there is uncontrolled jerking. Tonic-clonic seizures may or may not be preceded by an aura, and are often followed by headache, confusion, and sleep. They may last mere seconds or continue for several minutes. These seizures are also known as a grand mal seizure.
“Absence seizures” also may be called “petit mal” seizures. These types of seizure cause a loss of awareness for a short time. They mainly affect children although can happen at any age. During an absence seizure, a person may: stare blankly into space; look like they're “daydreaming”; flutter their eyes; make slight jerking movements of their body or limbs. The seizures usually only last up to 15 seconds and may occur several times a day.
“Focal Seizures” are defined as seizures which originate within networks limited to only one hemisphere. What happens during the seizure depends on where in the brain the seizure happens and what that part of the brain normally does.
“Focal seizure with impairment” usually start in a small area of the temporal lobe or frontal lobe of the brain and involve other areas of the brain within the same hemisphere that affect alertness and awareness. Most subjects experience automatisms during a focal seizure with impaired consciousness.
The following describes the production of the highly-purified (>95% w/w) cannabidiol extract which has a known and constant composition.
In summary the drug substance used is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD. The crystallisation process specifically removes other cannabinoids and plant components to yield greater than 95% CBD. Although the CBD is highly purified because it is produced from a cannabis plant rather than synthetically there is a small number of other cannabinoids which are co-produced and co-extracted with the CBD. Details of these cannabinoids and the quantities in which they are present in the medication are as described in Table A below.
The following describes the production of the botanically derived purified CBD which comprises greater than or equal to 98% w/w CBD and less than or equal to other cannabinoids was used in the open label, expanded-access program described in Example 1 below.
In summary the drug substance used in the trials is a liquid carbon dioxide extract of high-CBD containing chemotypes of Cannabis sativa L. which had been further purified by a solvent crystallization method to yield CBD. The crystallisation process specifically removes other cannabinoids and plant components to yield greater than 95% CBD w/w, typically greater than 98% w/w.
The Cannabis sativa L. plants are grown, harvested, and processed to produce a botanical extract (intermediate) and then purified by crystallization to yield the CBD (botanically derived purified CBD).
The plant starting material is referred to as Botanical Raw Material (BRM); the botanical extract is the intermediate; and the active pharmaceutical ingredient (API) is CBD, the drug substance.
All parts of the process are controlled by specifications. The botanical raw material specification is described in Table B and the CBD API is described in Table C.
E. coli
The purity of the botanically derived purified CBD preparation was greater than or equal to 98%. The botanically derived purified CBD includes THC and other cannabinoids, e.g., CBDA, CBDV, CBD-C1, and CBD-C4.
In some embodiments, the CBD preparation comprises not more than 0.15% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.01% to about 0.1% THC based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.02% to about 0.05% THC based on total amount of cannabinoid in the preparation.
In some embodiments, the CBD preparation comprises about 0.2% to about 1.0% CBDV based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.2% to about 0.8% CBDV based on total amount of cannabinoid in the preparation.
In some embodiments, the CBD preparation comprises about 0.3% to about 0.5% CBD-C4 based on total amount of cannabinoid in the preparation. In some embodiments, the CBD preparation comprises about 0.3% to about 0.4% CBD-C4 based on total amount of cannabinoid in the preparation.
In some embodiments, the CBD preparation comprises about 0.1% to about 0.15% CBD-C1 based on total amount of cannabinoid in the preparation.
Distinct chemotypes of the Cannabis sativa L. plant have been produced to maximize the output of the specific chemical constituents, the cannabinoids. Certain chemovars produce predominantly CBD. Only the (−)-trans isomer of CBD is believed to occur naturally. During purification, the stereochemistry of CBD is not affected.
An overview of the steps to produce a botanical extract, the intermediate, are as follows:
High CBD chemovars were grown, harvested, dried, baled and stored in a dry room until required. The botanical raw material (BRM) was finely chopped using an Apex mill fitted with a 1 mm screen. The milled BRM was stored in a freezer prior to extraction.
Decarboxylation of CBDA to CBD was carried out using heat. BRM was decarboxylated at 115° C. for 60 minutes.
Extraction was performed using liquid CO2 to produce botanical drug substance (BDS), which was then crystalized to produce the test material. The crude CBD BDS was winterized to refine the extract under standard conditions (2 volumes of ethanol at −20° C. for approximately 50 hours). The precipitated waxes were removed by filtration and the solvent was removed to yield the BDS.
The manufacturing steps to produce the botanically derived purified CBD preparation from BDS were as follows:
The BDS produced using the methodology above was dispersed in C5-C12 straight chain or branched alkane. The mixture was manually agitated to break up any lumps and the sealed container then placed in a freezer for approximately 48 hours. The crystals were isolated via vacuum filtration, washed with aliquots of cold C5-C12 straight chain or branched alkane, and dried under a vacuum of <10 mb at a temperature of 60° C. until dry. The botanically derived purified CBD preparation was stored in a freezer at −20° C. in a pharmaceutical grade stainless steel container, with FDA food grade approved silicone seal and clamps.
The botanically derived purified CBD used in the clinical trial described in the invention comprises greater than or equal to 98% (w/w) CBD and less than or equal to 2% (w/w) of other cannabinoids. The other cannabinoids present are THC at a concentration of less than or equal to 0.1% (w/w); CBD-C1 at a concentration of less than or equal to 0.15% (w/w); CBDV at a concentration of less than or equal to 0.8% (w/w); and CBD-C4 at a concentration of less than or equal to 0.4% (w/w).
The botanically derived purified CBD used additionally comprises a mixture of both trans-THC and cis-THC. It was found that the ratio of the trans-THC to cis-THC is altered and can be controlled by the processing and purification process, ranging from 3.3:1 (trans-THC:cis-THC) in its unrefined decarboxylated state to 0.8:1 (trans-THC:cis-THC) when highly purified.
Furthermore, the cis-THC found in botanically derived purified CBD is present as a mixture of both the (+)-cis-THC and the (−)-cis-THC isoforms.
Clearly a CBD preparation could be produced synthetically by producing a composition with duplicate components.
Example 1 below describes the use of a botanically derived purified CBD in an open label, expanded-access program to investigate the clinical efficacy and safety of purified pharmaceutical cannabidiol formulation (CBD) in the treatment of seizures associated with GR1N2B and CACNA1H mutations.
Subjects were required to be on one or more AEDs at stable doses for a minimum of two weeks prior to baseline and to have stable vagus nerve stimulation (VNS) settings and ketogenic diet ratios for a minimum of four weeks prior to baseline.
Patients were administered botanically derived purified CBD in a 100 mg/mL sesame oil-based solution at an initial dose of 5 milligrams per kilogram per day (mg/kg/day) in two divided doses. Dose was then increased to a goal of 20 to 25 mg/kg/day.
A maximum dose of 50 mg/kg/day could be utilised for patients who were tolerating the medication but had not achieved seizure control; these patients had further weekly titration by 5 mg/kg/day.
There was one patient in this study, and they received CBD for 144 weeks. Modifications were made to concomitant AEDs as per clinical indication.
Seizure frequency, intensity, and duration were recorded by caregivers in a diary during a baseline period of at least 28 days. Changes in seizure frequency relative to baseline were calculated after at least 2 weeks and at defined timepoints of treatment.
Patients may be defined as responders if they had more than 50% reduction in seizure frequency compared to baseline. The percent change in seizure frequency was calculated as follows:
The percent change of seizure frequency may be calculated for any time interval where seizure number has been recorded. For the purpose of this example the percent change of seizure frequency for the end of the treatment period was calculated as follows:
One patient enrolled in the open label, expanded-access program had mutations in GR1N2B and CACNA1H genes. The patient experienced several different seizure types including tonic-clonic, absence and focal seizures with impairment and was taking several concomitant AEDs.
The patient was 14 years old and he was male as detailed in Table 1 below.
The patient on the study was titrated up to 29 mg/kg/day of CBD. The patient was on two concomitant AEDs at the time of starting CBD.
Table 2 illustrates the seizure frequency for the patient as well as the dose of CBD given.
Patient 1 was treated for 144 weeks and experienced a 28.3% reduction in tonic-clonic seizures and a 100% reduction in focal seizures with impairment over the treatment period.
Overall, the patient reported an average reduction of 64.2% in tonic-clonic seizures and focal seizures with impairment over period of treatment with CBD. Significantly, the patient became seizure free in their focal seizures with impairment after 132 weeks of treatment with CBD.
These data indicate that CBD was able to significantly reduce the number of seizures associated with GR1N2B and CACNA1H mutations. Clearly the treatment is of significant benefit in this difficult to treat epilepsy syndrome given the high response rate experienced in the patient.
In conclusion, this study signifies the use of CBD for treatment of seizures associated with GR1N2B and CACNA1H mutations. Seizure types include tonic-clonic seizures and focal seizures with impairment for which seizure frequency rates decreased significantly by an average of 64%.
Number | Date | Country | Kind |
---|---|---|---|
2011159.7 | Jul 2020 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/069902 | 7/15/2021 | WO |