Preterm birth is a leading cause of neonatal morbidity and death in children less than 5 years of age, with deliveries at the earlier gestational ages exhibiting a dramatically increased risk (Liu et al., Lancer, 385:61698-61706, 2015; and Katz et al., Lancet, 382:417-425, 2013). Compared with infants born after 38 weeks, the composite rate of neonatal morbidity doubles for each earlier gestational week of delivery according to the March of Dimes. Approximately two thirds of spontaneous preterm births are spontaneous in nature, meaning they are not associated with medical intervention (Goldenberg et al., Lancet, 371:75-84, 2008; and McElrath et al., Am J Epidemiol, 168:980-989, 2008). Yet, despite the compelling nature of this condition, there has been little recent advancement in our understanding of the etiology of spontaneous preterm birth (SPTB). While there is an increasing consensus that SPTB represents a syndrome rather than a single pathologic entity, it has been both ethically and physically difficult to study the pathophysiology of the utero-placental interface (Romero et al., Science, 345:760-765, 2014). The evolving field of circulating microparticle (CMP) biology may offer a solution to these difficulties as these particles present a sampling of the utero-placental environment. Additionally, studying the contents of these particles holds the promise of identifying novel blood-based, and clinically useful, biomarkers.
Microparticles are membrane-bound vesicles that range in size from 50-300 nm and shed by a wide variety of cell types. Microparticle nomenclature varies, but typically microparticles between 50-100 nm are called exosomes, those >100 nm are termed microvesicles and other terms, such as microaggregates, are often used in literature. Unless otherwise stated, the term microparticle is a general reference to all of these species. Increasingly, microparticles are recognized as important means of intercellular communication in physiologic, pathophysiologic and apoptotic circumstances. While the contents of different types of microparticles vary with cell type, they can include nuclear, cytosolic and membrane proteins, as well as lipids and messenger and micro RNAs. Information regarding the state of the cell type of origin can be derived from an examination of microparticle contents. Thus, microparticles represent an unique window in real-time into the activities of cells, tissues and organs that may otherwise be difficult to sample.
A high proportion of adverse pregnancy outcomes have their pathophysiologic origins at the utero-placental interface in early pregnancy (Romero et al., supra, 2014; Gagnon, Eur J Obstet Gynecol Reprod Biol, 110:S99-S107, 2003; and Masoura et al., J. Obstet Gynaecol, 32:609-616, 2012). The ability to assess the state of associated tissue and cell populations is expected to be predictive of impending complications. Noninvasive tools for discriminating between pregnancies delivering at gestational ages marked by considerable neonatal morbidity (<34 weeks) compared with those delivering at term are particularly desirable given that timely administration of therapeutic agents may prevent preterm labor or otherwise prolong pregnancy.
Much needed are tools for determining whether a pregnant subject is at an increased risk for premature delivery, as well as tools for decreasing a pregnant subject's risk for premature delivery.
Patents, patent applications, patent application publications, journal articles and protocols referenced herein are incorporated by reference.
The present disclosure relates to proteomic biomarkers of spontaneous preterm birth, proteomic biomarkers of term birth, and methods of use thereof. In particular, the present disclosure provides tools for determining whether a pregnant subject is at an increased risk for premature delivery, as well as tools for decreasing a pregnant subject's risk for premature delivery.
In one aspect, provided herein is a method for assessing risk of spontaneous preterm birth for a pregnant subject, the method comprising: (a) preparing a microparticle-enriched fraction from a blood sample from the pregnant subject; (b) determining a quantitative measure of a panel of microparticle-associated proteins in the fraction, wherein the panel comprises at least three proteins selected from the proteins of Table 1 or Table 2; and (c) assessing the risk of spontaneous preterm birth based on the measure. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 4. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 5. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 7. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 8. In some embodiments, the panel comprises at least three proteins selected from the group consisting of FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, panel comprises at least three proteins selected from the group consisting of AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least HEMO, KLKB1, and TRFE. In some embodiments, the panel comprises at least A2MG, HEMO, and MBL2. In some embodiments, the panel comprises at least KLKB1, IC1, and TRFE. In some embodiments, the panel comprises at least F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least CHLE, FETUB, and PROS. In some embodiments, the panel comprises at least 4 proteins from Table 1, at least 4 proteins from Table 2, at least 4 proteins from Table 4, or at least 4 proteins from Table 5. In some embodiments, the panel comprises at least 5 proteins from Table 1, at least 5 proteins from Table 2, at least 5 proteins from Table 4, or at least 5 proteins from Table 5. In some embodiments, the panel comprises at least 6 proteins from Table 1, at least 6 proteins from Table 2, at least 6 proteins from Table 4, or at least 6 proteins from Table 5. In some embodiments, the panel comprises at least 7 proteins from Table 1, at least 7 proteins from Table 2, at least 7 proteins from Table 4, or at least 7 proteins from Table 5. In some embodiments, the panel comprises at least 8 proteins from Table 1, at least 8 proteins from Table 2, at least 8 proteins from Table 4, or at least 8 proteins from Table 5. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from KLKB1, APOM, ITIH4, IC1, KNG1, C9. APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, or at least 7 proteins selected from AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least five proteins selected from A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least 4 or at least 5 proteins A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises any one of the five to eight plex multimarker panels presented in Table 9. In some embodiments, the panel comprises a first trimester panel. In some embodiments, the panel comprises a second trimester panel. In some embodiments, the panel comprises a 8-14 week panel. In some embodiments, the panel comprises a 18-24 week panel. In some embodiments, the panel comprises a 10-12 week panel. In some embodiments, the panel comprises a 22-24 week panel. In some embodiments, the pregnant subject is a primigravida female. In some embodiments, the sample is taken from the pregnant subject during the first trimester. In some embodiments, the sample is taken from the pregnant subject within 10 to 12 weeks of gestation. In some embodiments, the sample is taken from the pregnant subject during the second trimester. In some embodiments, the sample is taken from the pregnant subject within 18 to 24 weeks of gestation. In some embodiments, the steps of the method are carried out on a first sample taken from the pregnant subject during the first trimester, the steps of the method are repeated on a second sample taken from the pregnant subject during the second trimester. In some embodiments, a first sample is taken from the pregnant subject within 8 to 12 weeks of gestation and a second sample is taken from the pregnant subject within 18 to 24 weeks of gestation. In some embodiments, at least five markers are measured in both the first and second samples, and wherein the at least five markers selected from AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1 are measured. In some embodiments, the blood sample is a serum or plasma sample. In some embodiments, the blood sample is plasma. In some embodiments, the blood sample is serum. In some embodiments, the microparticle-enriched fraction is prepared using size-exclusion chromatography. In some embodiments, the size-exclusion chromatography comprises elution with water. In some embodiments, the size-exclusion chromatography is performed with an agarose solid phase and an aqueous liquid phase. In some embodiments, the preparing step further comprises using ultrafiltration or reverse-phase chromatography. In some embodiments, the preparing step further comprises denaturation using urea, reduction using dithiothreitol, alkylation using iodoacetamine, and digestion using trvpsin prior to the size exclusion chromatography. In some embodiments, determining a quantitative measure comprises mass spectrometry. In some embodiments, determining a quantitative measure comprises liquid chromatography/mass spectrometry (LC/MS). In some embodiments, the mass spectrometry comprises multiple reaction monitoring, the liquid chromatography is done using a solvent comprising acetonitrile, and/or the detecting step comprises assigning an indexed retention time to the proteins. In some embodiments, the mass spectrometry comprises multiple reaction monitoring. In some embodiments, the determining comprises executing a classification rule, which rule classifies the subject at being at risk of spontaneous preterm birth, and wherein execution of the classification rule produces a correlation between preterm birth or term birth with a p value of less than at least 0.05. In some embodiments, the determining comprises executing a classification rule, which rule classifies the subject at being at risk of spontaneous preterm birth, and wherein execution of the classification rule produces a receiver operating characteristic (ROC) curve, wherein the ROC curve has an area under the curve (AUC) of at least 0.6. In some embodiments, values on which the classification rule classifies a subject further include at least one of: maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, the classification rule employs cut-off, linear regression (e.g., multiple linear regression (MLR), partial least squares (PLS) regression, principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). In some embodiments, the classification rule is configured to have a specificity of at least 80%, at least 90% or at least 95%. In some embodiments, the determining comprises determining whether the protein is above or below a threshold level. In some embodiments, the determining comprises comparing the measure of each protein in the panel to a reference standard. In some embodiments, the method further comprises communicating the risk of spontaneous preterm birth for a pregnant subject to a health care provider, wherein the communication informs a subsequent treatment decision for the pregnant subject. In some embodiments, the treatment is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the treatment comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate. In some embodiments, the method further comprises a treatment step. In some embodiments, the treatment is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the treatment comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate. In some embodiments, provided herein is a method of decreasing risk of spontaneous preterm birth for a pregnant subject and/or reducing neonatal complications of spontaneous preterm birth, the method comprising: (a) assessing risk of spontaneous preterm birth for a pregnant subject according to any of the methods provided herein; and (b) administering a therapeutic agent to the subject in an amount effective to decrease the risk of spontaneous preterm birth and/or reduce neonatal complications of spontaneous preterm birth. In some embodiments, the therapeutic agent is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the therapeutic agent comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate.
In another aspect provided herein, is a method comprising administering to a pregnant subject characterized as having a panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth, an effective amount of a treatment designed to reduce the risk of spontaneous preterm birth, wherein the panel comprises at least three proteins selected from the proteins of Table 1 or Table 2. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 4. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 5. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 7. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 8. In some embodiments, the panel comprises at least three proteins selected from the group consisting of FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOAL. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A1AG1. A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, panel comprises at least three proteins selected from the group consisting of AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least HEMO, KLKB1, and TRFE. In some embodiments, the panel comprises at least A2MG, HEMO, and MBL2. In some embodiments, the panel comprises at least KLKB1, IC1, and TRFE. In some embodiments, the panel comprises at least F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least CHLE, FETUB, and PROS. In some embodiments, the panel comprises at least 4 proteins from Table 1, at least 4 proteins from Table 2, at least 4 proteins from Table 4, or at least 4 proteins from Table 5. In some embodiments, the panel comprises at least 5 proteins from Table 1, at least 5 proteins from Table 2, at least 5 proteins from Table 4, or at least 5 proteins from Table 5. In some embodiments, the panel comprises at least 6 proteins from Table 1, at least 6 proteins from Table 2, at least 6 proteins from Table 4, or at least 6 proteins from Table 5. In some embodiments, the panel comprises at least 7 proteins from Table 1, at least 7 proteins from Table 2, at least 7 proteins from Table 4, or at least 7 proteins from Table 5. In some embodiments, the panel comprises at least 8 proteins from Table 1, at least 8 proteins from Table 2, at least 8 proteins from Table 4, or at least 8 proteins from Table 5. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, or at least 7 proteins selected from AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least five proteins selected from A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least 4 or at least 5 proteins A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises any one of the five to eight plex multimarker panels presented in Table 9. In some embodiments, the panel comprises a first trimester panel. In some embodiments, the panel comprises a second trimester panel. In some embodiments, the panel comprises a 8-14 week panel. In some embodiments, the panel comprises a 18-24 week panel. In some embodiments, the panel comprises a 10-12 week panel. In some embodiments, the panel comprises a 22-24 week panel. In some embodiments, the treatment is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the treatment comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate.
In another aspect, provided herein is a method comprising: (a) preparing a microparticle-enriched fraction from a blood sample from the pregnant subject; and (b) determining a quantitative measure of a panel of microparticle-associated proteins in the fraction, wherein the panel comprises at least three proteins selected from the proteins of Table 1 or Table 2. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 4. In some embodiments, the panel comprises at least three proteins selected from the proteins of Table 5. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 7. In some embodiments, the panel comprises at least three proteins selected from the triplexes of Table 8. In some embodiments, the panel comprises at least three proteins selected from the group consisting of FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least three proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least three proteins selected from the group consisting of A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, panel comprises at least three proteins selected from the group consisting of AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least HEMO, KLKB1, and TRFE. In some embodiments, the panel comprises at least A2MG, HEMO, and MBL2. In some embodiments, the panel comprises at least KLKB1, IC1, and TRFE. In some embodiments, the panel comprises at least F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least CHLE, FETUB, and PROS. In some embodiments, the panel comprises at least 4 proteins from Table 1, at least 4 proteins from Table 2, at least 4 proteins from Table 4, or at least 4 proteins from Table 5. In some embodiments, the panel comprises at least 5 proteins from Table 1, at least 5 proteins from Table 2, at least 5 proteins from Table 4, or at least 5 proteins from Table 5. In some embodiments, the panel comprises at least 6 proteins from Table 1, at least 6 proteins from Table 2, at least 6 proteins from Table 4, or at least 6 proteins from Table 5. In some embodiments, the panel comprises at least 7 proteins from Table 1, at least 7 proteins from Table 2, at least 7 proteins from Table 4, or at least 7 proteins from Table 5. In some embodiments, the panel comprises at least 8 proteins from Table 1, at least 8 proteins from Table 2, at least 8 proteins from Table 4, or at least 8 proteins from Table 5. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B. HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, or at least 7 proteins selected from AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least five proteins selected from A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least 4 or at least 5 proteins A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises any one of the five to eight plex multimarker panels presented in Table 9. In some embodiments, the panel comprises a first trimester panel. In some embodiments, the panel comprises a second trimester panel. In some embodiments, the panel comprises a 8-14 week panel. In some embodiments, the panel comprises a 18-24 week panel. In some embodiments, the panel comprises a 10-12 week panel. In some embodiments, the panel comprises a 22-24 week panel.
In another aspect, provided here is a method for assessing risk of spontaneous preterm birth for a pregnant subject, the method comprising: (a) preparing a microparticle-enriched fraction from a blood sample from the pregnant subject; (b) detecting a level of one or more proteins in the fraction, wherein the one or more proteins comprise one or more of CHLE, FETUB, and PROS; and (c) determining that the pregnant subject is at an increased risk of spontaneous preterm birth when the level of one or more proteins of a preterm birth group consisting of FETUB and PROS is above a threshold level, and/or when the level of one or more proteins of a term birth group consisting of CHLE is below a threshold level; or determining that the pregnant subject is at not at an increased risk of spontaneous preterm birth when the level of one or more proteins of the preterm birth group consisting of FETUB and PROS is below a threshold level, and/or when the level of one or more of proteins of the term birth group consisting of CHLE is above a threshold level. In some embodiments, the method further comprises (b2) detecting a level of one or more further proteins in the fraction from the pregnant subject, wherein the one or more further proteins comprise one or more of CBPN, C9, F13B, HEMO, IC1, and TRFE; and (c2) determining that the pregnant subject is at an increased risk of spontaneous preterm birth when the level of one or more further proteins of a further preterm birth group consisting of HEMO and TRFE is above a threshold level, and/or when the level of one or more of further proteins of a further term birth group consisting of CBPN, C9, F13B, and IC1, is below a threshold level in the sample; or determining that the pregnant subject is at not at an increased risk of spontaneous preterm birth when the level of one or more proteins of the preterm birth group consisting of HEMO and TRFE is below a threshold level, and/or when the level of one or more of proteins of the term birth group consisting of CBPN, C9, F13B, and IC1, is above a threshold level. In some embodiments, the detecting step comprises detecting the level of at least 4, 5, 6, 7 or 8 of the proteins in the fraction. In some embodiments, the pregnant subject is a primigravida female. In some embodiments, the sample is taken from the pregnant subject during the first trimester. In some embodiments, the ample is taken from the pregnant subject within 10 to 12 weeks of gestation. In some embodiments, the blood sample is a serum or plasma sample. In some embodiments, the microparticle-enriched fraction is prepared using size-exclusion chromatography with an agarose solid phase and an aqueous liquid phase. In some embodiments, the preparing step further comprises using ultrafiltration or reverse-phase chromatography. In some embodiments, the preparing step further comprises denaturation using urea, reduction using dithiothreitol, alkylation using iodoacetamine, and digestion using trypsin prior to the size exclusion chromatography. In some embodiments, the detecting step comprises liquid chromatography/mass spectrometry (LC/MS). In some embodiments, the mass spectrometry comprises multiple reaction monitoring, the liquid chromatography is done using a solvent comprising acetonitrile, and/or the detecting step comprises assigning an indexed retention time to the proteins. In some embodiments, the above claims, further comprising communicating the risk of spontaneous preterm birth for a pregnant subject to a health care provider, and optionally wherein the communication informs a subsequent treatment decision for the pregnant subject.
In another aspect, provided herein is a method for assessing risk of spontaneous preterm birth for a pregnant subject, the method comprising: (a) preparing a microparticle-enriched fraction from a blood sample from the pregnant subject; (b) detecting a level of one or more proteins in the fraction, wherein the one or more proteins comprise one or more of A2GL, AACT, BTD, C1QA, CFAD, CFAI, CHLE, CLUS, F9, F10, F13A, FCN3, FETUB, GPX3, HBA, HBB, HBD, HEP2, IGHG1, IGHG3, KAIN, LCAT, MASP1, MBL2, PGRP2, PLF4, PON1, PRG4, PROS, SEPP1, TRY3, and ZPI; and (c) determining that the pregnant subject is at an increased risk of spontaneous preterm birth when the level of one or more proteins of a preterm birth group consisting of C1QA, CFAD, CFAI, F9, FETUB, HBA, HBB, HBD, IGHG1, IGHG3, PLF4, PRG4, and PROS, is above a threshold level, and/or when the level of one or more proteins of a term birth group consisting of A2GL, AACT, BTD, CHLE, CLUS, F10, F13A, FCN3, GPX3, HEP2, KAIN, LCAT, MASP1, MBL2, PGRP2, PON1, SEPP1, TRY3, and ZPI, is below a threshold level; or determining that the pregnant subject is at not at an increased risk of spontaneous preterm birth when the level of one or more proteins of the preterm birth group consisting of C1QA, CFAD, CFAI, F9, FETUB, HBA, HBB, HBD, IGHG1, IGHG3, PLF4, PRG4, and PROS, is below a threshold level, and/or when the level of one or more of proteins of the term birth group consisting of A2GL, AACT, BTD, CHLE, CLUS, F10, F13A, FCN3, GPX3, HEP2, KAIN, LCAT, MASP1, MBL2, PGRP2, PON1, SEPP1, TRY3, and ZPI, is above a threshold level. In some embodiments the method further comprises (b2) detecting a level of one or more further proteins in the fraction from the pregnant subject, wherein the one or more further proteins comprise one or more of ANGT, APOA4, APOC3, APOE, C6, C8G, CBG, F13B, FIBA, HABP2, PLMN, THBG, and THRB; and (c2) determining that the pregnant subject is at an increased risk of spontaneous preterm birth when the level of one or more further proteins of a further preterm birth group consisting of ANGT, APOC3, APOE, CBG, and PLMN, is above a threshold level, and/or when the level of one or more of further proteins of a further term birth group consisting of APOA4, C6, C8G, F13B, FIBA, HABP2, THBG, and THRB, is below a threshold level in the sample; or determining that the pregnant subject is at not at an increased risk of spontaneous preterm birth when the level of one or more proteins of the preterm birth group consisting of ANGT, APOC3, APOE, CBG, and PLMN, is below a threshold level, and/or when the level of one or more of proteins of the term birth group consisting of APOA4, C6, C8G, F13B, FIBA, HABP2, THBG, and THRB, is above a threshold level. In some embodiments, the method further comprises (b3) detecting a level of one or more still further proteins in the fraction from the pregnant subject, wherein the one or more further proteins comprise one or more of A1AG1, A1AG2, A1AT, A1BG, A2MG, AMBP, ANT3, APOA1, APOB, APOD, APOH, APOL1, APOM, ATRN, C1QC, C1R, C1S, C4BPA, C8A, C9, CD5L, CERU, CFAB, CPN1, CPN2, F12, FBLN1, FETUA, FINC, HEMO, HPT, HPTR, IC1, IGHA2, IGJ, ITIH1, ITIH2, ITIH4, KLKB1, KNG1, LG3BP, SAA4, TRFE, TSP1, TTHY, VTDB, VTNC, and ZA2G; and (c3) determining that the pregnant subject is at an increased risk of spontaneous preterm birth when the level of one or more further proteins of a further preterm birth group consisting of APOB, APOH, C1S, C4BPA, CERU, HEMO, IGHA2, LG3BP, SAA4, TRFE, TSP1, and VTNC, is above a threshold level, and/or when the level of one or more of further proteins of a further term birth group consisting of A1AG1, A1AG2, A1AT, A1BG, A2MG, AMBP, ANT3, APOA1, APOD, APOL1, APOM, ATRN, C1QC, C1R, C8A, C9, CD5L, CFAB, CPN1, CPN2, F12, FBLN1, FETUA, FINC, HPT, HPTR, IC1, IGJ, ITIH1, ITIH2, ITIH4, KLKB1, KNG1, TTHY, VTDB, and ZA2G, is below a threshold level in the sample; or determining that the pregnant subject is at not at an increased risk of spontaneous preterm birth when the level of one or more proteins of the preterm birth group consisting of APOB, APOH, C1S, C4BPA, CERU, HEMO, IGHA2, LG3BP, SAA4, TRFE, TSP1, and VTNC, is below a threshold level, and/or when the level of one or more of proteins of the term birth group consisting of A1AG1, A1AG2, A1AT, A1BG, A2MG, AMBP, ANT3, APOA1, APOD, APOL1, APOM, ATRN, C1QC, CR, C8A, C9, CD5L, CFAB, CPN1, CPN2, F12, FBLN1, FETUA, FINC, HPT, HPTR, IC1, IGJ, ITIH1, ITIH2, ITIH4, KLKB1, KNG1, TTHY, VTDB, and ZA2G, is above a threshold level. In some embodiments, the detecting step comprises detecting the level of three or more proteins in the fraction from the pregnant subject, wherein the three or more proteins are selected from the group consisting of CBPN, CHLE, C9, F13B, HEMO, ICI, PROS, and TRFE. In some embodiments, the detecting step comprises detecting the level of at least 4, 5, 6, 7 or 8 of the proteins in the fraction. In some embodiments, the pregnant subject is a primigravida female. In some embodiments, the sample is taken from the pregnant subject during the first trimester. In some embodiments, the ample is taken from the pregnant subject within 10 to 12 weeks of gestation. In some embodiments, the blood sample is a serum or plasma sample. In some embodiments, the microparticle-enriched fraction is prepared using size-exclusion chromatography with an agarose solid phase and an aqueous liquid phase. In some embodiments, the preparing step further comprises using ultrafiltration or reverse-phase chromatography. In some embodiments, the preparing step further comprises denaturation using urea, reduction using dithiothreitol, alkylation using iodoacetamine, and digestion using trypsin prior to the size exclusion chromatography. In some embodiments, the detecting step comprises liquid chromatography/mass spectrometry (LC/MS). In some embodiments, the mass spectrometry comprises multiple reaction monitoring, the liquid chromatography is done using a solvent comprising acetonitrile, and/or the detecting step comprises assigning an indexed retention time to the proteins. In some embodiments, the above claims, further comprising communicating the risk of spontaneous preterm birth for a pregnant subject to a health care provider, and optionally wherein the communication informs a subsequent treatment decision for the pregnant subject.
In another aspect, provided herein is a method of decreasing risk of spontaneous preterm birth for a pregnant subject and/or reducing neonatal complications of spontaneous preterm birth, the method comprising: assessing risk of spontaneous preterm birth for a pregnant subject according to the methods presented herein, and administering a therapeutic agent to the subject in an amount effective to decrease the risk of spontaneous preterm birth and/or reduce neonatal complications of spontaneous preterm birth. In some embodiments, the therapeutic agent is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the therapeutic agent comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate.
In another aspect, provided herein is a method comprising: a) preparing a microparticle-enriched fraction from plasma or serum of a pregnant subject at from 8 to 14 weeks of gestation; b) using selected reaction monitoring mass spectrometry, determining a quantitative measure of one or more proteins in the fraction, wherein the proteins are selected from the proteins of Tables 1, 2, 4, 5, 7, 8, or 9; and c) executing a classification rule of a classification system which rule, based on values including the quantitative measures, classifies the subject as being at risk of spontaneous preterm birth, wherein the classification system, in a receiver operating characteristic (ROC) curve, has an area under the curve (AUC) of at least 0.6. In some embodiments, the subject is at 10-12 weeks of gestation. In some embodiments, executing is performed by computer. In some embodiments, the microparticle-enriched fraction is enriched by size exclusion chromatography. In some embodiments, the size exclusion chromatography comprises elusion with water. In some embodiments, mass spectrometry comprises LC-MS. In some embodiments, values on which the classification rule classifies a subject further include at least one of: maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, the classification system is a linear classification system. In some embodiments, the classification system employs cut-off, linear regression (e.g., multiple linear regression (MLR), partial least squares (PLS) regression, principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). In some embodiments, the classification rule is configured to have a specificity of at least 80%, at least 90% or at least 95%.
In another aspect provided herein is a method comprising: a) preparing a microparticle-enriched fraction from plasma or serum of a pregnant subject at from 8 to 14 weeks of gestation; b) using selected reaction monitoring mass spectrometry, determining a quantitative measure of one or more pairs proteins in the fraction, wherein the pairs are selected from the pairs of proteins of Table 6; and c) executing a classification rule which rule, based on values including the quantitative measures, classifies the subject as being at risk of spontaneous preterm birth, wherein the classification model produces a correlation between preterm birth or term birth with a p value of less than any of 0.07, 0.01, 0.005 or 0.001. In some embodiments, the subject is at 10-12 weeks of gestation. In some embodiments, executing is performed by computer. In some embodiments, the microparticle-enriched fraction is enriched by size exclusion chromatography. In some embodiments, the size exclusion chromatography comprises elusion with water. In some embodiments, mass spectrometry comprises LC-MS. In some embodiments, values on which the classification rule classifies a subject further include at least one of: maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, the classification system is a linear classification system. In some embodiments, the classification system employs cut-off, linear regression (e.g., multiple linear regression (MLR), partial least squares (PLS) regression, principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). In some embodiments, the classification rule is configured to have a specificity of at least 80%, at least 90% or at least 95%.
In another aspect, provided herein is a method comprising: a) preparing a microparticle-enriched fraction from plasma or serum of a pregnant subject at from 8 to 14 weeks of gestation; b) using selected reaction monitoring mass spectrometry, determining a quantitative measure of a panel of proteins in the fraction, wherein the panel comprises at least three proteins selected from the triplexes of Table 7; and c) executing a classification rule of a classification system which rule, based on values including the quantitative measures, classifies the subject as being at risk of spontaneous preterm birth, wherein the classification system, in a receiver operating characteristic (ROC) curve, has an area under the curve (AUC) of at least 0.86. In some embodiments, the panel is a panel of Table 9. In some embodiments, the subject is at 10-12 weeks of gestation. In some embodiments, executing is performed by computer. In some embodiments, the microparticle-enriched fraction is enriched by size exclusion chromatography. In some embodiments, the size exclusion chromatography comprises elusion with water. In some embodiments, mass spectrometry comprises LC-MS. In some embodiments, values on which the classification rule classifies a subject further include at least one of: maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, the classification system is a linear classification system. In some embodiments, the classification system employs cut-off, linear regression (e.g., multiple linear regression (MLR), partial least squares (PLS) regression, principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). In some embodiments, the classification rule is configured to have a specificity of at least 80%, at least 90% or at least 95%.
In another aspect, provided herein is a method comprising: a) preparing a microparticle-enriched fraction from plasma or serum of a pregnant subject at from 8 to 14 weeks of gestation; b) using selected reaction monitoring mass spectrometry, determining a quantitative measure of one or more proteins in the fraction, wherein the one or more proteins are selected from: i) proteins of the coagulation/wound healing pathway selected from: F13A, F13B, FBLN1, FA9, FA10, PROS, FIBA, FIBG, FINC, HABP2 and PLF4; ii) proteins of the inflammation/oxidative stress pathway selected from: CBPN, CHLE, HEMO, TRFE, VTDB, PGRP2, CD5L, SEPP1, CPN2, FETUA, FETUB, PON1, SAA4, GPX3; iii) proteins of the kinin-kallikrein-angiotensin system pathway selected from: AACT, KLKB1, KNG1, KAIN, HEP2; iv) proteins of the complement/adaptive immunity pathway selected from: IC1, C9, CBPN, C6, CBA, HPT, MBL2, A2GL, A1AG1, C7, ATRN, C1R, FCN3, HPTR, IGJ, MASP1, C8G, CLUS, A1AG2, A1BG; v) proteins of the fibrinolysis/anti-coagulation/itih related pathway selected from: ITIH1, ITIH2, ITIH4, AMBP, TRY3, A2AP, A2MG, A1AT, ZPI; vi) proteins of the lipid metabolism pathway selected from: APOM, APOL1, APOA1, LCAT, ZA2G, APOD, APOF; vii) proteins of the thyroid related pathway selected from: THBG, TTHY, THRB; and c) executing a classification rule which rule, based on values including the quantitative measures, classifies the subject as being at risk of pre-term birth. In some embodiments, the subject is at 10-12 weeks of gestation. In some embodiments, executing is performed by computer. In some embodiments, the microparticle-enriched fraction is enriched by size exclusion chromatography. In some embodiments, the size exclusion chromatography comprises elusion with water. In some embodiments, mass spectrometry comprises LC-MS. In some embodiments, values on which the classification rule classifies a subject further include at least one of: maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, the classification system is a linear classification system. In some embodiments, the classification system employs cut-off, linear regression (e.g., multiple linear regression (MLR), partial least squares (PLS) regression, principal components regression (PCR)), binary decision trees (e.g., recursive partitioning processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). In some embodiments, the classification rule is configured to have a specificity of at least 80%, at least 90% or at least 95%.
In another aspect, provided herein is a method of decreasing risk of spontaneous preterm birth and/or reducing neonatal complications, the method comprising: a) determining by any of the methods presented herein that a subject is at risk of spontaneous preterm birth; and b) administering to the subject a therapeutic agent in an amount effective to decrease the risk of spontaneous preterm birth and/or reduce neonatal complications.
In another aspect, provided herein is a method comprising: a) providing a microparticle-enriched fraction from plasma or serum of a plurality of pregnant subjects obtained at from 8 to 14 weeks of gestation, wherein the plurality of subjects include a plurality of subjects that subsequently experienced preterm birth and a plurality of subjects that subsequently experienced term birth; b) using selected reaction monitoring mass spectrometry, determining a quantitative measure of a plurality of proteins in the fraction, wherein the proteins are selected from: the proteins of Tables 1, 2, 4, 5, 7, 8, or 9; b) preparing a training data set indicating, for each sample, values indicating: (i) classification of the sample as belonging to preterm birth or term birth classes; and (ii) the quantitative measures of the plurality of protein biomarkers; and c) training a learning machine algorithm on the training data set, wherein training generates one or more classification rules that classify a sample as belonging to the preterm birth class or the term birth class. In some embodiments the training data set further comprises values indicating at least one of: (iii) subject status as maternal age, maternal body mass index, primiparous, and smoking during pregnancy. In some embodiments, further comprising choosing a model from among a plurality of models generated. In some embodiments, the model is chosen based on pre-selected criteria including sensitivity and specificity. In some embodiments, the classification rule is configured to have a sensitivity of at least 75%, at least 85% or at least 95%.
In another aspect provided herein is a computer readable medium in tangible, non-transitory form comprising code to implement a classification rule generated any of the methods presented herein.
In another aspect provided herein is a computer system comprising: (a) a processor; and (b) a memory, coupled to the processor, the memory storing a module comprising: (i) test data for a sample from a subject including values indicating a quantitative measure of a plurality of protein biomarkers in the fraction, wherein the proteins are selected from the proteins of Tables 1, 2, 4, 5, 7, 8, or 9; (ii) a classification rule which, based on values including the measurements, classifies the subject as being at risk of pre-term birth, wherein the classification rule is configured to have a sensitivity of at least 75%, at least 85% or at least 95%; and (iii) computer executable instructions for implementing the classification rule on the test data.
This disclosure provides statistically significant CMP-associated (circulation microparticle-associated) protein biomarkers and multiplex panels associated with biological processes relevant to pregnancy that are already unique in their expression profiles at 10-12 weeks gestation among females who go on to deliver spontaneously at <38 weeks. These biomarkers are useful for the clinical stratification of patients at risk of SPTB well before clinical presentation. Such identification is indicative of a need for increased observation and may result in the application of prophylactic therapies, which together may significantly improve the management of these patients.
The present disclosure provides tools for assessing and decreasing risk of spontaneous preterm birth. The methods of the present disclosure include a step of detecting the level of at least one microparticle-associated protein in a biological sample.
A microparticle refers to an extracellular microvesicle or lipid raft protein aggregate having a hydrodynamic diameter of from about 50 to about 5000 nm. As such the term microparticle encompasses exosomes (about 50 to about 100 nm), microvesicles (about 100 to about 300 nm), ectosomes (about 50 to about 1000 nm), apoptotic bodies (about 50 to about 5000 nm) and lipid protein aggregates of the same dimensions. As used herein, the term “about” as used herein in reference to a value refers to 90 to 110% of that value. For instance a diameter of about 1000 nm is a diameter within the range of 900 nm to 1100 nm.
A microparticle-associated protein refers to a protein or fragment thereof (e.g., polypeptide) that is detectable in a microparticle-enriched sample from a mammalian (e.g., human) subject. As such a microparticle-associated protein is not restricted to proteins or fragments thereof that are physically associated with microparticles at the time of detection; the proteins or fragments may be incorporated between microparticles, or the proteins or fragments may have been associate with the microparticle at some earlier time prior to detection.
Unless otherwise stated, the term protein encompasses polypeptides and fragments thereof. “Fragments” include poly peptides that are shorter in length than the full length or mature protein of interest. If the length of a protein is x amino acids, a fragment is x−1 amino acids of that protein. The fragment may be shorter than this (e.g., x−2, x−3, x−4, . . . ), and is preferably 100 amino acids or less (e.g., 90, 80, 70, 60, 50, 40, 30, 20 or 10 amino acids or less). The fragment may be as short as 4 amino acids, but is preferably longer (e.g., 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, or 100 amino acids).
The present disclosure provides tools for detecting the level of at least one microparticle-associated protein. As used herein “detecting the level” of at least one microparticle-associated protein encompasses detecting the expression level of the protein, detecting the absolute concentration of the protein, detecting an increase or decrease of the protein level in relation to a reference standard, detecting an increase or decrease of the protein level in relation to a threshold level, measuring the protein concentration, quantifying the protein concentration, determining a quantitative measure, detecting the presence (e.g., level above a threshold or detectable level) or detecting the absence (e.g., level below a threshold or undetectable level) of at least one microparticle-associated protein in a sample from a pregnant subject. In some embodiments, the quantitative measure can be an absolute value, a ratio, an average, a median, or a range of numbers.
As used herein, “detection of a protein” and “determining a quantitative measure of one or more proteins” encompasses any means, including, detection by an MS method that detects fragments of a protein. The data disclosed in the tables and figures was obtained by MRM-MS, which detects proteins by selecting peptide fragments of a parent protein for detection.
During development of the present disclosure numerous microparticle-associated proteins were determined to be altered in samples from subjects having preterm births (as compared to samples from subjects have term births), and are therefore termed “preterm birth biomarkers.” Additionally during development of the present disclosure numerous microparticle-associated proteins were determined to be not altered in samples from subjects having preterm births (as compared to samples from subjects have term births), and are therefore termed “term birth biomarkers.”
In some embodiments, the methods of the present disclosure include a step of detecting the level of a panel of microparticle-associated proteins in a biological sample from a pregnant test subject, where the microparticle-associated proteins are from Table 1. In some embodiments, the methods of the present disclosure include a step of detecting the level of at least one microparticle-associated protein in a biological sample from a pregnant test subject, where the at least one protein is selected from Table 1. In some embodiments, the methods of the present disclosure include a step of detecting the level of at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten microparticle-associated proteins in a biological sample from a pregnant test subject, where the at least one protein is selected from Table 1. In some embodiments, the methods of the present disclosure include a step of detecting the level of five, six, seven, eight, or nine microparticle-associated proteins in a biological sample from a pregnant test subject, where the proteins are selected from Table 1. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of six microparticle-associated proteins in a biological sample from a pregnant test subject, where the six proteins are selected from Table 1. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of seven microparticle-associated proteins in a biological sample from a pregnant test subject, where the seven proteins are selected from Table 1. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of eight microparticle-associated proteins in a biological sample from a pregnant test subject, where the eight proteins are selected from Table 1. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of nine microparticle-associated proteins in a biological sample from a pregnant test subject, where the nine proteins are selected from Table 1.
In some embodiments, if the sample is obtained at about 10-12 weeks gestation, the microparticle-associated protein can display the directionality (+ or −) indicated in the last column of Table 1. In the last column of Table 1. (−) indicates the biomarker is downregulated in SPTB cases versus TERM controls; and (+) indicates the biomarker is upregulated in SPTB cases vs TERM controls.
In some embodiments, the methods of the present disclosure include a step of detecting the level of a panel of microparticle-associated proteins in a biological sample from a pregnant test subject, where the microparticle-associated proteins are from Table 2. In some embodiments, the methods of the present disclosure include a step of detecting the level of at least one microparticle-associated protein in a biological sample from a pregnant test subject, where the at least one protein is selected from Table 2. The proteins listed in Table 2 correspond to proteins with statistically consistent performance as differentiating SPTB from term controls. In some embodiments, the methods of the present disclosure include a step of detecting the level of at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, or at least ten microparticle-associated proteins in a biological sample from a pregnant test subject, where the at least one protein is selected from Table 2. In some embodiments, the methods of the present disclosure include a step of detecting the level of five, six, seven, eight, or nine microparticle-associated proteins in a biological sample from a pregnant test subject, where the proteins are selected from Table 2. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of five microparticle-associated proteins in a biological sample from a pregnant test subject, where the five proteins are selected from Table 2. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of six microparticle-associated proteins in a biological sample from a pregnant test subject, where the six proteins are selected from Table 2. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of seven microparticle-associated proteins in a biological sample from a pregnant test subject where the sevent proteins are selected from Table 2. In an exemplary embodiment the methods of the present disclosure include a step of detecting the level of eight microparticle-associated proteins in abiological sample from a pregnant test subject, where the eight proteins are selected from Table 2. In an exemplary embodiment, the methods of the present disclosure include a step of detecting the level of nine microparticle-associated proteins in a biological sample from a pregnant test subject, where the nine proteins are selected from Table 2.
In another embodiment, the methods of the present disclosure include a step of detecting the level of three proteins selected from the proteins of Table 1, Table 2, Table 4, Table 5, Table 7 or Table 8. In some embodiments, the at least 3 proteins comprise at least HEMO, KLKB1, and TRFE. In some embodiments, the at least 3 proteins comprise at least A2MG, HEMO, and MBL2. In some embodiments, the at least 3 proteins comprise at least KLKB1, IC1, and TRFE. In some embodiments, the at least 3 proteins comprise at least 3 proteins from F13A, IC1, PGRP2, and THBG. In some embodiments, the at least 3 proteins comprise at least IC1, PGRP2, and THBG. In some embodiments, the at least 3 proteins comprise at least CHLE, FETUB, and PROS. In some embodiments, the at least 3 proteins comprise any one of the triplexes presented in Table 7 or Table 8.
In another embodiment, the methods of the present disclosure include a step of detecting the level of four proteins selected from the proteins of Table 1, Table 2, Table 4, or Table 5. In another embodiment, the methods of the present disclosure include a step of detecting the level of five proteins selected from the proteins of Table 1, Table 2, Table 4, Tor Table 5. In another embodiment, the methods of the present disclosure include a step of detecting the level of six proteins selected from the proteins of Table 1, Table 2, Table 4, or Table 5. In another embodiment, the methods of the present disclosure include a step of detecting the level of seven proteins selected from the proteins of Table 1, Table 2, Table 4, or Table 5. In another embodiment, the methods of the present disclosure include a step of detecting the level of eight proteins selected from the proteins of Table 1, Table 2. Table 4, or Table 5.
In another embodiment, the methods of the present disclosure include a step of detecting the level of at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3.
In another embodiment, the methods of the present disclosure include a step of detecting the level of at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1 are used to longitudinally monitor a pregnant subject's risk of spontaneous preterm birth. In some embodiments a first sample is taken between 8-14 weeks gestation (e.g. 10-12 weeks) and second sample is taken between 18-24 weeks gestation (e.g. 22-24 weeks). If upon assessment, it is determined that after the second measurement the subject is no longer at risk of spontaneous preterm birth, the management of the remainder of the pregnancy can be adjusted accordingly by a medical professional. Likewise, if upon assessment, it is determined after the second measurement the subject continues to be at risk of spontaneous preterm birth, or is at a greater risk of spontaneous preterm birth than previously determined, the management of the remainder of the pregnancy can be adjusted accordingly by a medical professional.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, or at least 5 proteins selected from the group consisting of A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3.
In another embodiment, the methods of the present disclosure include a step of detecting the level of least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2.
Provided herein are panels of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth. In some embodiments, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the proteins of Table 1 or Table 2. In some embodiments, the panel of microparticle-associated proteins comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the proteins of Table 4. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the proteins of Table 5. In some embodiments, the panel comprises at least 3 proteins selected from the triplexes of Table 7. In some embodiments, the panel comprises at least 3 proteins selected from the triplexes of Table 8. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of FETUB, CBPN, CHLE, C9, F13B, HEMO, IC1, PROS and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1. In some embodiments, the panel comprises at least 3, at least 4, at least 5 proteins selected from the group consisting of A1AG1, A2MG, CHLE, IC1, KLKB1, and TRFE. In some embodiments, the panel comprises at least 3 proteins selected from the group consisting of F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, TRFE, A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, TRY3, AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of AACT, A1AG1, A2MG, CBPN, CHLE, C9, F13B, HEMO, IC1, KLKB1, LCAT, PGRP2, PROS, and TRFE. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins selected from the group consisting of A2AP, A2GL, APOL1, APOM, C6, CPN2, FBLN1, ITIH4, KAIN, KNG1, MBL2, SEPP1, THBG, and TRY3. In some embodiments, the panel comprises at least 3, at least 4, at least 5, at least 6, or at least 7 proteins selected from the group consisting of AMBP, APOA1, CD5L, C8A, F13A, HPT, ITIH1, and ITIH2. In some embodiments, the panel comprises at least HEMO, KLKB1, and TRFE. In some embodiments, the panel comprises at least A2MG, HEMO, and MBL2. In some embodiments, the panel comprises at least KLKB1, IC1, and TRFE. In some embodiments, the panel comprises at least F13A, IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least IC1, PGRP2, and THBG. In some embodiments, the panel comprises at least CHLE, FETUB, and PROS.
In some embodiments, a first panel (e.g. a first trimester panel, a 8-12 week panel, or a 10-12 week panel) of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth is provided. In some embodiments, a second panel (e.g. a second trimester panel, a 18-24 week panel, or a 22-24 week panel) of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth is provided. In some embodiments, a pregnant subject is assessed for risk during the first trimester, between 8-12 weeks gestation or between 10-12 weeks gestation, and then again during the second trimester, 18-24 weeks gestation, or 22-24 weeks gestation. In such embodiments, the useful panel may comprise at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 proteins from group consisting of AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, CBA, ITIH1, TTHY, and APOA1. In some embodiments, the first trimester panel
In some embodiments of the panels presented herein, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises no more than 30, no more than 25, no more than 20, no more than 15, no more than 10, no more than 9, no more than 8, no more than 7, no more than 6, or no more than 5 microparticle-associated proteins. In an exemplary embodiment, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises no more than 5 proteins. In another exemplary embodiment, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises no more than 6 proteins. In another exemplary embodiment, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises no more than 7 proteins. In another exemplary embodiment, the panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth comprises no more than 8 proteins.
In some embodiments, provided herein is a method comprising: preparing a microparticle-enriched fraction from a blood sample from the pregnant subject; and determining a quantitative measure of any one of the panels of microparticle-associated proteins provided herein.
The tools and methods provided herein can be used to assess the risk of SPTB in a pregnant subject, wherein the subject can be any mammal, of any species. In some embodiments of the present disclosure, the pregnant subject is a human female. In some embodiments, the pregnant human subject is in the first trimester (e.g., weeks 1-12 of gestation), second trimester (e.g., weeks 13-28 of gestation) or third trimester of pregnancy (e.g., weeks 29-37 of gestation). In some embodiments, the pregnant human subject is in early pregnancy (e.g., from 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, but earlier than 21 weeks of gestation; from 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9, but later than 8 weeks of gestation). In some embodiments, the pregnant human subject is in mid-pregnancy (e.g., from 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30, but earlier than 31 weeks of gestation; from 30, 29, 28, 27, 26, 25, 24, 23, 22 or 21, but later than 20 weeks of gestation). In some embodiments, the pregnant human subject is in late pregnancy (e.g., from 31, 32, 33, 34, 35, 36 or 37, but earlier than 38 weeks of gestation; from 37, 36, 35, 34, 33, 32 or 31, but later than 30 weeks of gestation). In some embodiments, the pregnant human subject is in less than 17 weeks, less than 16 weeks, less than 15 weeks, less than 14 weeks or less than 13 weeks of gestation; from 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 or 9, but later than 8 weeks of gestation). In some embodiments, the pregnant human subject is in about 8-12 weeks of gestation. In some embodiments, the pregnant human subject is in about 18-24 weeks of gestation. In an exemplary embodiment, the pregnant human subject is at 10-12 weeks of gestation. In some embodiments, the pregnant human subject is in about 22-24 weeks of gestation. The stage of pregnancy can be calculated from the first day of the last normal menstrual period of the pregnant subject.
In some embodiments, the pregnant human subject is primagravida. In other embodiments, the pregnant subject multigravida. In some embodiments, the pregnant subject may have had at least one prior spontaneous preterm birth (e.g., birth prior to week 38 of gestation). In some embodiments, the pregnant human subject is asymptomatic. In some embodiments, the subject may have a risk factor of PTB such as a history of pre-gestational hypertension, diabetes mellitus, kidney disease, known thrombophilias and/or other significant preexisting medical condition (e.g., short cervical length).
A sample for use in the methods of the present disclosure is a biological sample obtained from a pregnant subject. In preferred embodiments, the sample is collected during a stage of pregnancy described in the preceding section. In some embodiments, the sample is a blood, saliva, tears, sweat, nasal secretions, urine, amniotic fluid or cervicovaginal fluid sample. In some embodiments, the sample is a blood sample, which in preferred embodiments is serum or plasma. In some embodiments, the sample has been stored frozen (e.g., −20° C. or −80° C.).
The phrase “increased risk of spontaneous preterm birth” as used herein indicates that a pregnant subject has a greater likelihood of having a spontaneous preterm birth (before 38 weeks gestation) when one or more preterm birth markers are detected, when a particular panel of microparticle-associated proteins indicative of an increased risk of spontaneous preterm birth are detected, and/or when one or more term birth markers are not detected. In some embodiments, assessing risk of spontaneous preterm birth involves assigning a probability on the risk of preterm birth. In some embodiments, assessing risk of spontaneous preterm birth involves stratifying a pregnant subject as being at high risk, moderate risk, or low risk of spontaneous preterm birth. In some embodiments, assessing risk of spontaneous preterm birth involves determining whether a pregnant subject's risk is increased or decreased, as compared to the population as a whole, or the population in a particular demographic (age, weight, medical history, geography, and/or other factors). In some embodiments, assessing risk of spontaneous preterm birth involves assigning a percentage risk of spontaneous preterm birth.
In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth between 37 and 38 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 37 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 36 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 35 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 34 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 33 weeks gestation. In some embodiments, the methods provided herein indicate that a pregnant subject has a greater likelihood of having a spontaneous preterm birth before 32 weeks gestation.
Numerically an increased risk is associated with a hazard ratio of over 1.0, preferably over 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, or 3.0 for preterm birth.
In some embodiments, detecting the level (e.g., including detecting the presence) of one or both of spontaneous preterm birth biomarkers and term birth biomarkers is done using a liquid chromatography/mass spectrometry (LC/MS)-based proteomic analysis. In an exemplary embodiment the method involves subjecting a sample to size exclusion chromatography and collecting the high molecular weight fraction to obtain a microparticle-enriched sample. The microparticle-enriched sample is then extracted before digestion with a proteolytic enzyme such as trypsin to obtain a digested sample comprising a plurality of peptides. The digested sample is then subjected to a peptide purification/concentration step before liquid chromatography and mass spectrometry to obtain a proteomic profile of the sample. In some embodiments, the purification/concentration step comprises reverse phase chromatography (e.g., ZIPTIP pipette tip with 0.2 μL C18 resin, from Millipore Corporation, Billerica, Mass.).
In some embodiments, detecting the level (e.g., including detecting the presence) of one or both of spontaneous preterm birth biomarkers and term birth biomarkers is done using an antibody-based method. Suitable antibody-based methods include but are not limited to enzyme linked immunosorbent assay (ELISA), chemiluninescent assay. Western blot, and antibody microarray.
Methods of assessing risk of spontaneous preterm birth can involve classifying a subject as at increased risk of spontaneous preterm birth based on information including at least a quantitative measure of at least one biomarker of this disclosure. Classifying can employ a classification algorithm or model. Many types of classification algorithms are suitable for this purpose, including linear and non-linear models, e.g., processes such as CART—classification and regression trees), artificial neural networks such as back propagation networks, discriminant analyses (e.g., Bayesian classifier or Fischer analysis), logistic classifiers, and support vector classifiers (e.g., support vector machines). Certain classifiers, such as cut-offs, can be executed by human inspection. Other classifiers, such as multivariate classifiers, can require a computer to execute the classification algorithm.
Classification algorithms can be generated by mathematical analysis, including by machine learning algorithms that perform analysis of datasets of biomarker measurements derived from subjects classed into one or another group. Many machine learning algorithms are known in the art, including those that generate the types of classification algorithms above.
Diagnostic tests are characterized by sensitivity (percentage classified as positive that are true positives) and specificity (percentage classified as negative that are true negatives). The relative sensitivity and specificity of a diagnostic test can involve a trade-off—higher sensitivity can mean lower specificity, while higher specificity can mean lower sensitivity. These relative values can be displayed on a receiver operating characteristic (ROC) curve. The diagnostic power of a set of variables, such as biomarkers, is reflected by the area under the curve (AUC) of an ROC curve.
In some embodiments, the classifiers of this disclosure have a sensitivity of at least 85%, at least 90%, at least 95%, at least 98%, or at least 99%. Classifiers of this disclosure have an AUC of at least 0.6, at least 0.7, at least 0.8, at least 0.9 or at least 0.95.
In one embodiment, if a pregnant subject is determined to be at increased risk of spontaneous preterm birth, the appropriate treatment plans can be employed. By way of example, a surgical intervention such as cervical cerclage and progesterone supplementation have been shown to be effective in preventing preterm birth (Committee on Practice Bulletins, Obstetrics & Gynecology, 120:964-973, 2012). In some embodiments, other measures are taken by health care professionals, such as switching to an at-risk protocol such as increased office visits and/or tracking the patient to a physician specially trained to deal with high risk patients. In some embodiments, if a pregnant subject is determined to be at increased risk of spontaneous preterm birth, steps can be taken such that the pregnant subject will have access to NICU facilities and plans for access to such facilities for rural patients. Additionally, the pregnant subject and family members can have better knowledge of acute-phase symptomatic interventions such as fetal fibronectin testing (diagnostic) and corticosteroids (e.g. for baby lung development) and mag sulfate (e.g. for baby neuroprotective purposes). Additionally, the pregnant subject can be monitored such as better adherence to dietary, smoking cessation, and other recommendations from the physician are followed.
In one embodiment, the pregnant subject is prescribed progesterone supplementation. Currently progesterone supplementation for the prevention of recurrent spontaneous preterm birth is offered to: females with a singleton pregnancy and a prior spontaneous preterm birth; and females with no history of spontaneous preterm birth who have an incidentally detected very short cervix (<15 mm). The present disclosure provides tools to identify additional pregnant subjects that may benefit from progesterone supplementation. These subjects include the following: pregnant females who are primigravidas without a history of risk and without an incidentally detected very short cervix; and pregnant females who are multigravidas but who did not previously have a spontaneous preterm birth.
Pregnant subjects determined to be at increased risk for preterm birth are recommended to receive or are administered progesterone until 36 weeks of gestation (e.g., upon identification or between 16 weeks, 0 days and 20 weeks, 6 days gestation until 36 weeks gestation). In some embodiments, progesterone supplementation comprises 250 mg weekly intramuscular injections. In an exemplary embodiment, the weekly progesterone supplementation comprises administration of hydroxyprogesterone caproate by injection. In other embodiments, progesterone supplementation comprises vaginal progesterone in doses between 50 and 300 mg daily, between 75 and 200 mg daily or between 90 and 110 mg daily.
In another embodiment, in females with a singleton pregnancy determined to be at increased risk for preterm birth and who have had a documented prior spontaneous preterm birth at less than 34 weeks of gestation and short cervical length (less than 25 mm) before 24 weeks of gestation, are recommended to receive or are given a cervical cerclage (also known as tracheloplasty or cervical stitch). In some embodiments, the cervical cerclage is a McDonald cerclage, while in other embodiments it is a Shirodkar cerclage or an abdominal cerclage.
Accordingly, provided herein is one method of decreasing risk of spontaneous preterm birth for a pregnant subject and/or reducing neonatal complications of spontaneous preterm birth, the method comprising: assessing risk of spontaneous preterm birth for a pregnant subject according to any of the methods provided herein; and administering a therapeutic agent, prescribing a revised care management protocol, carrying out fetal fibronectin testing, administering corticosteroids, administering mag sulfate, or increasing the monitoring and surveillance of the subject in an amount effective to decrease the risk of spontaneous preterm birth and/or reduce neonatal complications of spontaneous preterm birth. In some embodiments, the therapeutic agent is selected from the group consisting of a hormone and a corticosteroid. In some embodiments, the therapeutic agent comprises vaginal progesterone or parenteral 17-alpha-hydroxyprogesterone caproate.
In another embodiment, a kit of reagents capable of one or both of spontaneous preterm birth biomarkers and term birth biomarkers in a sample is provided. Reagents capable of detecting protein biomarkers include but are not limited to antibodies. Antibodies capable of detecting protein biomarkers are also typically directly or indirectly linked to a molecule such as a fluorophore or an enzyme, which can catalyze a detectable reaction to indicate the binding of the reagents to their respective targets.
In some embodiments, the kits further comprise sample processing materials comprising a high molecular gel filtration composition (e.g., agarose such as SEPHAROSE) in a low volume (e.g., 1 ml) vertical column for rapid preparation of a microparticle-enriched sample from plasma. For instance, the microparticle-enriched sample can be prepared at the point of care before freezing and shipping to an analytical laboratory for further processing, for example by size exclusion chromatography.
In some embodiments, the kits further comprise instructions for assessing risk of spontaneous preterm birth. As used herein, the term “instructions” refers to directions for using the reagents contained in the kit for detecting the presence (including determining the expression level) of a protein(s) of interest in a sample from a subject. The proteins of interest may comprise one or both of spontaneous preterm birth biomarkers and term birth biomarkers. In some embodiments, the instructions further comprise the statement of intended use required by the U.S. Food and Drug Administration (FDA) in labeling in vitro diagnostic products. The FDA classifies in vitro diagnostics as medical devices and required that they be approved through the 510(k) procedure. Information required in an application under 510(k) includes: 1) The in vitro diagnostic product name, including the trade or proprietary name, the common or usual name, and the classification name of the device; 2) The intended use of the product; 3) The establishment registration number, if applicable, of the owner or operator submitting the 510(k) submission; the class in which the in vitro diagnostic product was placed under section 513 of the FD&C Act, if known, its appropriate panel, or, if the owner or operator determines that the device has not been classified under such section, a statement of that determination and the basis for the determination that the in vitro diagnostic product is not so classified; 4) Proposed labels, labeling and advertisements sufficient to describe the in vitro diagnostic product, its intended use, and directions for use, including photographs or engineering drawings, where applicable; 5) A statement indicating that the device is similar to and/or different from other in vitro diagnostic products of comparable type in commercial distribution in the U.S., accompanied by data to support the statement; 6) A 510(k) summary of the safety and effectiveness data upon which the substantial equivalence determination is based; or a statement that the 510(k) safety and effectiveness information supporting the FDA finding of substantial equivalence will be made available to any person within 30 days of a written request; 7) A statement that the submitter believes, to the best of their knowledge, that all data and information submitted in the premarket notification are truthful and accurate and that no material fact has been omitted; and 8) Any additional information regarding the in vitro diagnostic product requested that is necessary for the FDA to make a substantial equivalency determination.
The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention. It is understood that the examples and embodiments described herein are for illustrative purposes only.
Abbreviations: AUC (area under curve); CI (confidence interval); CMP (circulating microparticles); DDN (Differential Dependency Network); FDR (false discovery rate); LC (liquid chromatography); LMP (last menstrual period); MRM (multiple reaction monitoring); MS (mass spectrometry); ROC (receiver operating characteristic); SEC (size exclusion chromatography); SPTB (spontaneous preterm birth); and TERM (full term birth).
This example describes a study utilizing plasma samples obtained between 10-12 weeks gestation as part of a prospectively collected birth cohort. Singleton cases of SPTB prior to 34 weeks were matched by maternal age, race and gestastional age of sampling to uncomplicated term deliveries after 37 weeks. Circulating microparticles (CMPs) from first trimester samples were isolated and subsequently analyzed by multiple reaction monitoring mass spectrometery (MRM-MS) to identify protein biomarkers. SPTB <34 weeks was assessed given the increased neonatal morbidity in that gestational age range.
Clinical Data and Specimen Collection. Clinical data and maternal K2-EDTA plasma samples (10-12 weeks gestation) were obtained and stored at −80° C. at Brigham and Women's Hospital (BWH), Boston, Mass. between 2009-2014 as part of the prospectively collected LIFECODES birth cohort (McElrath et al., Am J Obstet Gynecol, 207:407-414, 2012). Eligibility criteria included patients who were >18 yrs of age, initiated their prenatal care at <15 weeks of gestation and planned on delivering at the BWH. Exclusion criteria included preexisting medical disorders and fetal anomalies. Gestational age of pregnancy was confirmed by ultrasound scanning ≤12 weeks gestation. If consistent with last menstrual period (LMP) dating, the LMP was used to determine the due date. If not consistent, then the due date was set by the earliest available ultrasound. Full-term birth was defined as after 37 weeks of gestation, and preterm birth for the purposes of this investigation was defined as SPTB prior to 34 weeks. All cases were independently reviewed and validated by two board certified maternal fetal medicine physicians. When disagreement in pregnancy outcome or characteristic arose, the case was re-reviewed and a consensus conference held to determine the final characterization. Twenty-five singleton cases of SPTB prior to 34 weeks were matched to two control term deliveries by maternal age, race, and gestational age of sampling (plus or minus two weeks).
CMP Enrichment. Plasma samples were shipped on dry ice to the David H Murdock Research Institute (DHMRI, Kannapolis, N.C.) and randomized to blind laboratory personnel performing sample processing and testing to caselcontrol status. CMPs were enriched by size exclusion chromatography (SEC) and isocratically eluted using water (RNAse free, DNAse free, distilled water). Briefly, PD-10 columns (GE Healthcare Life Sciences) were packed with 10 mL of 2% agarose bead standard (pore size 50-150 um) from ABT (Miami, Fla.), washed and stored at 4° C. for a minimum of 24 hrs and no longer than three days prior to use. On the day of use columns were again washed and 1 mL of thawed neat plasma sample was applied to the column. That is, the plasma samples were not filtered, diluted or treated prior to SEC.
The circulating microparticles were captured in the column void volume, partially resolved from the high abundant protein peak (Ezrin et al., Am J Perinatol, 32:605-614, 2015). The samples were processed in batches of 15 to 20 across four days to minimize variability between processing individual samples. One aliquot of the pooled CMP column fraction from each clinical specimen, containing 200 μg of total protein (determined by BCA) was transferred to a 2 mL microcentrifuge tube (VWR) and shipped on dry ice to Biognosys (Zurich, Switzerland) for proteomic analysis.
Liquid Chromatography-Mass Spectrometry. Quantitative proteomic liquid chromatography-mass spectrometry (LC-MS) analysis was performed by Biognosys AG. Briefly, for each sample 20 μg of total protein was lyophilized and then denatured with 8M urea, reduced using dithiothreitol, alkylated with iodoacetamide, and digested overnight with trypsin (Promega). Resulting sample peptides were dried using a SpeedVac system and re-dissolved in 45 μL of Biognosys LC solvent and mixed with Biognosys PlasmaDive (extended version 2.0) stable isotope-labeled reference peptide mix containing Biognosys iRT kit.
Then 1 μg of total protein was injected into an in-house packed C18 column (75 μm inner diameter and 10 cm column length, New Objective); column material was Magic AQ, 3 μm particle size, 200 Å pore size from Michrom) on a Thermo Scientific Easy nLC nano-liquid chromatography system. LC-MRM assays were measured on a Thermo Scientific TSQ Vantage triple quadrupole mass spectrometer equipped with a standard nano-electrospray source. The LC gradient for LC-MRM was 5-35% solvent B (97% acetonitrile in water with 0.1% FA) in 30 minutes followed by 35-100% solvent B in 2 minutes and 100% solvent B for 8 minutes (total gradient length was 40 minutes). For quantification of the peptides across samples, the TSQ Vantage was operated in scheduled MRM mode with an acquisition window length of 3.25 minutes. The LC eluent was electrosprayed at 1.9 kV and Q1 was operated at unit resolution (0.7 Da). Signal processing and data analysis was carried out using SpectroDive™ Biognosys' software for multiplexed MRM data analysis based on mProphet (Reiter et al., Nature Methods, 8:430-435, 2011). A Q-value filter of 1% was applied. Protein concentration was determined based on the normalized 1 μg of protein injected into the LC/MS.
Statistical Analysis. To select informative analytes that differentiate SPTB from term deliveries, the processed protein quantitation data were first subjected to univariate receiver-operating characteristic (ROC) curve analysis (Fawcett. Pattern Recognition Letters, 27:861-874, 2006; and Robin et al., BMC Bioinformatics, 19:12:77, 2011). Bootstrap resampling against nulls from sample label permutation was used to control the false-discovery rate (FDR) (Carpenter and Bithell, Statistics in Medicine, 19:1141-1164, 2000; and Xie et al., Bioinformatics, 21:4280-4288, 2005). Briefly, for each protein, a ROC analysis was repeated on bootstrap samples from the original data, the mean and standard deviation (SD) of the area-under-curve (AUC) was estimated. The bootstrap procedure was then applied on the same data again but with sample SPTB status labels randomly permutated. The permutation analysis provided the null results in order to control the FDR and adjust for multiple comparison during the selection of candidate protein biomarkers. The Differential Dependency Network (DDN) bioinformatic tool was then applied in order to extract SPTB phenotype-dependent high-order co-expression patterns among the proteins (Tian et al., Bioinformatics, 32:287-289, 2015). An additional bioinformatic tool, BiNGO, was used to identify gene ontology categories that were overrepresented in the DDN subnetworks in order to explore functional links between the observed proteomic dis-regulations and SPTB (Maere et al., Bioinformatics, 21:3448-3449, 2005). In order to assess the complementary values among the selected proteins and the range of their potential clinically relevant performance, multivariate linear models were derived and evaluated using bootstrap resampling.
The demographic and clinical characteristics of the sample set are presented in Table 3. Maternal age, race, body mass index (BMI), use of public insurance, smoking during pregnancy, and gestational age at enrollment were similar in both groups. Maternal educational levels were higher in the controls and a greater proportion of the SPTB cases tended to be primiparous.
aP-values calculated with Wilcoxon Rank Sum test, Chi Square test, Fisher Exact test or ANOVA where appropriate
The 132 proteins evaluated via targeted MRM were individually assessed for ability to differentiate SPTB from term deliveries. By requiring that the mean bootstrap AUCs for each candidate protein be significantly greater than the null (>mean+SD of mean bootstrap AUCs estimated with label permutation) and excluding proteins with large bootstrap AUCs variances, 62 of the 132 proteins demonstrated robust power for the detection of SPTB (lower right quadrant of
Individually, 25 of the 62 proteins had the lowest p values (≤0.10) and greatest AUC (≥0.618) for differentiating SPTB from term controls (Table 5).
Differential dependency network analysis among the 62 selected proteins identified a number of SPTB phenotype-associated co-expression patterns (
Based on the available sample size, and in order to avoid overtraining, only linear models were evaluated to assess the clinically relevant performance and the variables were limited to all possible combinations of two or three proteins out of the 20 proteins in Table 6 (1330 models). Each model was derived and evaluated using 200 bootstrap resampled data in order to estimate the median (90% CI) and specificity for ROC AUCs with a fixed sensitivity of 80%. The top 20 models in terms of the lower-bound of 90% CI of AUCs and specificities are listed in Table 7 and Table 8, respectively. Given limitations imposed by the sample size, the model could not be tested on an independent sample set. To compensate for this the Cis for the panel's performances in the training dataset were estimated through iterative bootstrap analysis. Table 7 shows triplexes from that which, when sensitivity is set at 80%, have the best the area under the curve (AUC). Table 8 shows triplexes from study D which, when sensitivity is set at 80%, have the best specificity.
The frequency of individual proteins from the DDN analysis being included in the top 20 model panels was assessed. The protein biomarkers that appeared most frequently were HEMO, KLKB1, and TRFE (
Protein biomarkers with an appreciable single analyte AUC were also selected for evaluation as multiplexing candidates: CBPN, CHLE, C9, F131B, HEMO, IC1, PROS and TRFE. The top 20 five-to-eight marker panels based on AUC and specificity at 75;% sensitivity estimated using a linear model and bootstrap resampling.
The performance criteria include p-values, specificity at 75% sensitivity, and AUC from ROC analysis. For each criteria, there are three numbers corresponding to bootstrap estimated 95% confidence interval (5% CI, 95% CI) and median (50% CI).
Numerous protein biomarkers associated with several clinically relevant biological processes that exhibit characteristic expression profiles by 10-12 weeks gestation among SPTB cases were identified. The protein biomarkers identified are primarily involved in inter-related biological networks linked to coagulation, fibrinolysis, immune modulation and the complement system (Table 10). These systems, in turn, are believed to have an interaction with adaptive immunity and the mediation of inflammatory processes necessary to sustain a successful pregnancy.
It is increasingly understood that immune dysregulation, aberrant coagulation and intrauterine inflammation are common to a large proportion of cases of SPTB (Romero et al., Science, 345:760-765, 2014). A high proportion of adverse pregnancy outcomes are believed to have their pathophysiologic origins in early pregnancy. Abnormalities of early placentation and trophoblast function have been observed not only in pregnancies complicated by hypertension, but also in approximately 30% of those experiencing SPTB (Kim et al., Am J Obstet Gynecol, 189; 1063-1069, 2003). The state, condition, and function of cells at the maternal-fetal interface during this critical period have already predisposed the pregnancy to adverse outcomes. Others have observed that the concentration of placental-specific microparticles increases significantly with advancing gestation (Sarker et al., J Transl Med, 12:204, 2014). Early perturbations in microparticle-mediated signaling may gradually become magnified as the pregnancy progresses. Ultimately, the anomalies in the maternal fetal cross-talk may become sufficiently great to cause a network crash of the systems that were facilitating tolerance, resulting in a spontaneous preterm birth.
One of the traditional hindrances to a greater understanding of the underlying causes of SPTB is the difficulty of investigating the maternal-fetal interface itself and the unique nature of human placentation. The intrauterine space is both physically and ethically remote. As such, this is perhaps why, with the possible exception of the measurement of cervical length by ultrasound, little recent progress has been made in the development of useful biomarkers to stratify patients according to risk of SPTB (Conde-Agudelo et al., BJOG, 118:1042-1054, 2011). Differences in the protein content of microparticles represent an untapped source of information regarding biology of the maternal-fetal interface. As determined during development of the present disclosure, improved specificity (as indicated by increased AUC) can be obtained with the simultaneous consideration of multiple protein biomarkers associated with a CMP-enriched plasma fraction.
This example describes a study utilizing plasma samples obtained between 22-24 weeks gestation, from the same pregnant subjects of Example 1. The sample preparation, analysis and statistical methods were the same as that described for Example 1.
As examples, measurements of three biomarkers (ITIH4, AACT, and F13A) analyzed in Example 1 (time point D1) were plotted against the proteins' corresponding measurements at the later time point of this example (time point D2). This is depicted in
The following proteins displayed consistent performance as predictive for SPTB at week 10-12 (time point D1, Example 1) and week 22-24 (time point D2, this example): AACT, KLKB1, APOM, ITIH4, IC1, KNG1, C9, F13B, APOL1, LCAT, PGRP2, FBLN1, ITIH2, CD5L, CBPN, VTDB, AMBP, C8A, ITIH1, TTHY, and APOA1.
This example describes a study utilizing plasma samples obtained between 10-12 weeks gestation. Using an independent cohort from that of Example 1, a set of markers was validated that, when obtained between 10-12 weeks, predict SPTB <35 weeks.
Obstetrical outcomes in 75 singleton pregnancies with prospectively collected plasma samples obtained between 10-12 weeks were validated by physician reviewers for SPTB <35 weeks. These were matched to 150 uncomplicated singleton term deliveries. Controls were matched on gestational age at sampling (+/−2 weeks), maternal age (+/−2 years), race and parity. CMPs from these specimens were isolated and analyzed by multiple reaction monitoring mass spectrometry for known protein biomarkers selected from the previous study for their ability to predict the risk of delivery <35 weeks. The biological relevance of these analytes via a combined functional profiling/pathway analysis was also examined.
Cases and controls did not differ by BMI (26 vs 25 kg/m2; p=0.37) or in vitro fertilization (17% vs 10%; p=0.10) status respectively. Mean gestational age at delivery was 33 vs 39 weeks (p<10−5). It was observed that the CMP markers identified in the previous study again demonstrated distinct Kaplan-Meier curves for SPTB.
As depicted in
It was noted that the following proteins displayed consistent performance between the sample set in Example 1 and the sample set in Example 3. These proteins are: KLKB1, APOM, ITIH4, IC1, KNG1, C9, APOL1, PGRP2, THBG, FBLN1, ITIH2, VTDB, C8A, APOA1, HPT, and TRY3.
The sample preparation methods were further investigated.
While the described invention has been described with reference to the specific embodiments thereof it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. The various embodiments described above can be combined to provide further embodiments. In addition, many modifications may be made to adopt a particular situation, material, composition of matter, process, process step or steps, to the objective spirit and scope of the described invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation of International Application No. PCT/US2016/065024, filed on Dec. 5, 2016, which claims the benefit of priority to U.S. Provisional Application No. 62/263,549, filed on Dec. 4, 2015 which are hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62263549 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15997540 | Jun 2018 | US |
Child | 17133195 | US | |
Parent | PCT/US2016/065024 | Dec 2016 | US |
Child | 15997540 | US |