Ohmacht et al, J. Med. Chem., vol. 39, pp 4592-4601, 1996.* |
Bayles et al., “A Smiles Rearrangement Involving Non-Activated Aromatic Systems; the Facile Conversion of Phenols to Anilines”, Synthesis, 1977, vol. 1, pp. 33-34. |
Bayles et al.,, “The Smiles Rearrangement of 2-Aryloxy-2-methylpropanamides. Synthesis of N-Aryl-2-hydroxy-2-methyl-propanamides”, Synthesis, 1977, vol. 1, pp, 31-33. |
Empfield et al., “4-sulfonamidoanilide Tertiary Carbinols: A Novel Series Of Potassium Channel Openers”, Bioorg Med. Chem. Letters, 1997, vol. 7, No. 7, pp. 775-778, XP004136128 see table I, compounds e, f. |
Furr et al., “A Novel Non-Steroidal, Peripherally Selective Antiandrogen”, J. Endrocrinol., 1987, vol. 113 (3), R7-R9. |
Glen et al., Structure-Activity Relationships among Non-steriodal Antiandrogens, Third SCI-RSC Medicinal Chemistry Symposium, 1986, vol. 55, pp. 345-361. |
Grant et al., “Anilide Tertiary Carbinols: A New Structural Class Of Potent Potassium Channel Openers”, Bioorg. Med. Chem. Lett., 1993, vol. 3 (12), pp. 2723-2724. |
Howe et al., “ZENCA ZD6169: A Novel KATP Channel Opener with in Vivo Selectivity for Urinary Bladder”, J. Pharmacol. Exp. Ther. 1995, vol. 274 (2), pp, 884-890. |
Jackman et al., “Studies in the Field of Diuretics”, J. Pharm. and Pharmacol., vol. 12, 1960, pp. 648-655; Chemical Abstracts, vol. 55, No. 9, May 1, 1961, Columbus, Ohio, US; abstract No. 8336a, XP002107578 see abstract, col. 8336, lines 8-9 &. |
Li et al., “Zeneca ZD6169 and Its Analogs from a Novel Series of Anilide Tertiary Carbinols: in vitro KATP Channel Opening Activity in Bladder Detrusor”, Pharmacology, 1995, vol. 51, pp. 33-42. |
Morris et al., “Hydrogen Bonding Parameters In The S.A.R. of Non-Steroidal Anti-Androgens”, Pharmacol. Libr., 1987, vol. 10, pp. 204-206. |
Morris et al., “Non-Steroidal Antiandrogens. Design of Novel Compounds Based on an Infrared Study of the Dominant Conformationand Hydrogen-Bonding Properties of a Series of Anilide Antiandrogens”, J. Med. Chem. 1991, vol. 34, pp., 447-455. |
Ohnmacht et al., N-Aryl-3,3,3-trifluoro-2-hydroxy-2-methylpropanamides: KATP Potassium Channel Openers. Modifications on the Western Region, J. Med. Chem., 1996, Additions and Corrections, vol. 39 (6), p. 1048. |
Russell, “Crystal Receptor Models In Medicinal Chemistry: Application To The Generation of Highly Potent Potassium Channel Openers”, Bioorg. Med. Chem. Lett. 1996, vol. 6 (7), pp. 913-918. |
Tenthorey et al.; “New Antiarrhythmic Agents. 3. Primary β-Amino Anilides”, J. Med. Chem. 1979, vol. 22 (10), pp. 1182-1186. |
Trivedi et al., “K-Channel Opening Activity of ZD6169 and Its Analogs: Effect on 86Rb Efflux and 3H-1075 Binding in Bladder Smooth Muscle”, Pharmacology, 1995, vol. 50 (6), pp. 388-397. |
Tucker et al., “Nonsteroidal Antiandrogens. Synthesis and Structure-Activity Relationships of 3-Substituted Derivatives of 2-Hydroxypropionanilides”, J. Med. Chem., 1988, vol. 31, pp. 954-959. |
Tucker et al., “Resolution of the Nonsteriodal Antiandrogen 4′-Cyano-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3′-(trifluoromethyl)- propionanilide and the Determination of the Absolute Configuration of the Active Enantiomer”, J. Med. Chem. 1988. vol. 31 (4), pp. 885-887. |
Wakeling et al., “Receptor Binding And Biological Activity Of Steriodal and Nonsteriodal Antiandrogens”, J. Steriod Biochem., 1981, vol. 15, pp. 355-359. |