Code Division Multiple Access (CDMA) modulation is a multi-user access transmission scheme in which signals from different users overlap both in frequency and in time. This is in contrast with Frequency Division Multiple Access (FDMA) in which user signals overlap in time, but are assigned unique frequencies, and Time Division Multiple Access (TDMA) in which user signals overlap in frequency, but are assigned unique time slots. CDMA signaling is frequently used in cellular communication systems between a base station within a cell and a plurality of access units, e.g., wireless handsets, in the possession of users within the cell. The CDMA transmitted signal for each user that broadcasts from the user's access unit is spread over a wide bandwidth, which is greater than the initial user information bandwidth. Each user's signal is spread by a different spreading code to create a wideband spread. All of the spread wideband signals transmitted by the different users are received at the base station and form a composite received signal. The receiver at the base station distinguishes different users by using a local copy (or local reference) of the spreading code, which is available to both the access units and the base station in the CDMA system. Such a process is called channelization.
In an exemplary CDMA system according to the IS-95 standard, channels are defined for a reverse link, i.e., when an access unit is transmitting to a base station in the system, using a code called a pseudorandom noise (PN) code. The receiver at the base station detects the desired signal from a particular user out of the composite signal by correlating the composite signal with the original PN code. All other signals having codes that do not match the code for the desired user code are rejected by the correlator.
An exemplary CDMA reverse link includes a plurality of channels, e.g., access and traffic channels (or even more channel types depending on the design of the CDMA system). The traffic channel is used to transmit user data and voice, as well as signaling messages. The access channel is used on the reverse link to communicate control information to the base station. For example, when the access unit does not have a traffic channel assigned, the access channel is used to make call originations and to respond to pages and orders. The traffic channels are principally used to communicate voice or data payload information but are also used for other functions.
In presently proposed so-called third generation (3G) systems, multiple traffic channels may be assigned to each user, and the traffic channels may be encoded at different rates. This requires a receiver to configure a correlator for different data rates such that a single output is produced for a particular data rate. However, if multiple outputs and options are required, without a priori knowledge as to which channel is used, multiple codes must be searched, thus requiring multiple correlators. Such requirements contribute to the complexity and increase the cost of the receiver design.
There is a need for a wireless system with a flexible, simple receiver design. A wireless communications system is particularly needed that provides a single correlator in the receiver which can be used to receive multiple channels.
In general, the present invention relates to use of combinations of correlation results to achieve detection of multiple coded signals at a receiver in a wireless communications system. One aspect of the invention provides a method of detecting coded signals wherein the code applied to the signal includes a lower rate code and a higher rate code. The lower rate code is a nested or tiered code such that it comprises at least two repetitions or two sequences of the higher rate code. The received coded signal is correlated with the higher rate code using a single higher rate correlator to provide a higher rate code correlation result. The higher rate code correlation results are fed to two or more lower rate code correlators that combine multiple higher rate code correlation results, each using a different lower rate code, to provide corresponding lower rate code correlation results. The presence of at least one coded signal can be determined from the lower rate code correlation results.
In an embodiment that uses a first lower rate code and a second lower rate code, the presence of one or another of two mutually exclusive coded signals can be determined from the corresponding first and second lower rate code correlation results. In particular, the first and second lower rate code correlation results are compared with each other to determine the presence of either a first indication corresponding to the first lower rate code or a second indication corresponding to the second lower rate code. In one embodiment, one of the two indications corresponds to a request by an access unit to enter an active mode in order to communicate a data payload from the access unit to a base station in a wireless communications system. The other indication corresponds to a notification by the access unit to the base station that the access unit desires to remain in a standby mode.
According to another aspect of the invention, N lower rate codes are used in the detection to provide M lower rate code correlation results. The presence of at least one coded signal can be determined from the N lower rate code correlation results. The N lower rate codes can be selected from a set of M possible codes based on a priori system information. The system information can be used to limit the hypothesis outcomes, if any are known, such as the mutual exclusivity of the presence of coded signals. In one embodiment, the set of M possible codes may represent data or instructions relating to a set of nearby base stations that are candidates for possible cell handoff and N may represent the subset of the M nearby base stations that are identified as actual active candidates based on system criteria such as signal strength or signal-to-noise figure.
The lower rate codes are preferably orthogonal to each other and can be Walsh codes, Gutleber codes, maximum length (M)-sequences, or PN-sequences.
According to another aspect of the invention, detection of the received coded signal is provided independent of the correlation method that is used. In particular, for a code applied to the signal that includes a nested code, the nested code being one of a set of M possible nested codes, the detection method comprises correlating the received coded signal to provide N nested code correlation results and determining the presence of at least one coded signal from the N nested code correlation results.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The system 100 supports communications between interface 50 and network 20. Network 20 is typically a Public Switched Telephone Network (PSTN) or computer network such as the Internet. Interface 50 is preferably coupled to a digital processing device such as a portable computer (not shown), to provide wireless access to network 20.
In an illustrative embodiment, the forward link channels 60 and reverse link channels 55 are defined in the wireless communications system 100 as Code Division Multiple Access (CDMA) channels. That is, each CDMA channel is preferably defined by encoding data to be transmitted over the channel with a channel code. The channel coded data is then modulated onto a radio frequency carrier. This enables a receiver to decipher one CDMA channel from another knowing only the particular channel code assigned to that channel.
The forward link channels 60 include at least three logical channel types. Included among these are a Link Quality Management (LQM) channel 60L, a paging channel 60P, and multiple traffic channels 60T.
The reverse link 65 includes heartbeat channels 55H, an access channel 55A and multiple traffic channels 55T. Generally, the reverse link channels 55 are similar to the forward link channels 60 except that each reverse link traffic channel 55T may support variable data rates from 2.4 kbps to a maximum of 160 kbps.
Data transmitted between base station 25 and an access unit 42 typically consists of encoded digital information, such as hypertext transfer protocol (HTTP) encoded Web page data. Based on the allocation of traffic channels in the reverse link 65 or forward link 70, data transfer rates are generally limited by the number of available traffic channels 55T, 60T.
As shown in
The reverse link heartbeat channel 55H is shared among multiple users. For example, the heartbeat channel 55H is also partitioned into periodically repeating time slots. Each time slot is assigned to one of many access units 42 for transmitting heartbeat messages to the base station 25. Accordingly, the base station 25 identifies from which access unit 42A a message is transmitted based upon the receipt of a message in a particular time slot. The heartbeat channel 55H and the LQM channel 60L are described in more detail below.
In the following description, reference is again generally made to
Generally, to establish a synchronized link with the base station 25, access units 42 transmit link request messages on the access channel 55A to base station receiver 35 via access unit transmitter 40. Messages are then acknowledged and processed at the base station 25. If available, resources are then allocated at the base station 25 to establish a bidirectional communication link with the requesting access unit 42A.
Within the forward link 70, the paging channel 60P is used by the base station transmitter 30 to send overhead and paging messages or commands to the access unit receiver 45. Overhead information includes data such as system configuration parameters for establishing wireless links with access units 42.
As mentioned previously, wireless communication system 100 includes a heartbeat channel 55H in the reverse link 65 and link quality management channel (LQM) 60L in the forward link 70. These channels are shared between the base station 25 and multiple access units 42. That is, the base station 25 transmits messages to multiple access units 42 using the same forward link LQM channel 60L, where a message to a particular access unit 42A is transmitted in an assigned time slot. In this way, time slot assignments serve as a way of addressing messages to a particular access unit and corresponding communication link.
The present system can support users that require on-demand, sporadic high speed throughput. For example, remote users connected to the Internet over a wireless link typically require high speed throughput when downloading an object file such as a Web page. Such users then typically do not require any data transfer for a period of time. To support such users, it is advantageous to maintain synchronization with the base station for future on-demand data transfers. This is achieved in the wireless communication system 100 by maintaining a minimal connection with the base station 25 even when no data is being actively transferred between the base station 25 and a specific access unit 42.
Repeatedly creating or reviving connections for users who sporadically need a link can be time consuming and an inefficient use of resources. It is also inefficient to reserve resources such as traffic channels 55T for subscribers who are not transmitting data. Accordingly, traffic channels 55T are allocated on an as-needed basis to support data transfers, optimizing the use of available resources in wireless communication system 100.
As shown, 64 time slots (in each direction) are defined per EPOCH period in each of the heartbeat 55H and LQM 60L channels. The EPOCH period in the illustrated embodiment is 13.3 mS, so that each time slot is 208 mS or 256 code chips where a chip is a unit of time that corresponds to the output interval of the spreading code. Because time slots repeat on a periodic basis, base station 25 exchanges information with a particular access unit 42A every EPOCH or 13.3 mS.
Data transmissions on the LQM channel 60L are maintained by the base station 25, which is preferably used as a master timing reference. That is, timing of the access units 42 is aligned with base station 25. Access units 42, therefore, must synchronize themselves to the base station 25, and specifically to the LQM channel 60L, in order to maintain synchronization with the base station 25.
Generally, a link between the base station 25 and an access unit 42A is maintained in one of three modes: active, standby or idle. Synchronization between base station 25 and a particular access unit 42A is maintained only for the active and standby mode.
While in the active mode, synchronization of the forward and reverse link is maintained between the LQM channel 60L and traffic channels 55T since the heartbeat channel time slot is no longer dedicated on the reverse link 65 to. the access unit 42A.
Each access unit 42A in the standby mode is assigned one time slot in the forward link LQM channel 60L and one time slot in the reverse link heartbeat channels 55H. Accordingly, information is targeted to a receiving access unit 42A (subscriber) based upon the transmission of a message in a particular time slot. For example, an access unit 42A assigned to time slot #1 decodes information received in time slot #1 on the forward link LQM channel 60L, while data is transmitted back to the base station 25 from access unit 42A in time slot #1 of the reverse link heartbeat channel 55H. Both base station 25 and access unit 42A identify to which link a message pertains based on receipt of a message in a particular time slot. It should be noted that although the LQM channel 60L is used as the time reference as described above, the principles of the present invention equally apply where the heartbeat channel 55H is alternatively used as a master timing reference rather than the LQM channel 60L. In other words, base station 25 is optionally synchronized with respect to an access unit 42A.
In the standby mode, synchronization is maintained between the forward link LQM channel 60L and reverse link heartbeat channel 55H based upon messages sent in the appropriate time slot on the LQM channel 60L indicating to a particular access unit 42A whether messages transmitted to the base station 25 from that access unit are received in the appropriate time slot. Message transmissions from the access unit transmitter 40 to base station 25 on the heartbeat channel 55H are analyzed at base station receiver 35 to achieve fine tuning alignment between base station 25 and each of multiple access units 42.
As shown in
At any given time, there are typically no more than 48 time slots in the heartbeat channel 55H or LQM channel 60L assigned to respective access units 42. This ensures that on completion of a data transfer between an access unit 42A and base station 25, an access unit 42A in the active mode assigned an active time slot can revert back to the standby mode and consequently be assigned an unused standby mode time slot 1-48 in the LQM channel 60L again.
The details relating to use of the LQM channel 60L and heartbeat channels 55H for synchronization and timing alignment are disclosed in the above-mentioned U.S. patent application Ser. No. 09/775,305.
A set of channel codes are used at the access units 42, one code of which is generally to be transmitted in the assigned time slot in the reverse link heartbeat channel 55H. The transmission of this code is used as a signal received by the base station 25 to retain synchronization with the access unit 42A while in a “standby” mode. Each code however, may also correspond to a particular command or request. For example, one code is used to notify the base station that the access unit 42A is ready to begin transmitting a data payload to the base station, i.e., an access unit requests to go into an “active” transmission mode. This is referred to herein as a “heartbeat with request” signal. Another code is used to notify the base station that the access unit desires to remain in standby mode. This is referred to herein as a “heartbeat” signal.
The wireless system according to the invention provides three tiers of data rates, i.e., tier 1, tier 2, and tier 3, for use by the CDMA channels. At tier 1, a transmitter transmits 8 chips per symbol to a receiver. At tier 2, the transmitter transmits 32 chips per symbol to the receiver. At tier 3, the transmitter transmits 128 chips per symbol.
In the preferred embodiment, the difference between the channel code assigned to the heartbeat signal versus the heartbeat with request signal is the specific tier 3 code that is applied. That is, the channel codes assigned to the heartbeat and heartbeat with request signals are selected such that the tier 1 and tier 2 codes are the same for each signal. The difference is only in the tier 3 code sequence that nests the tier 1 and tier 2 codes. The nesting of the tier 1 and tier 2 codes with respect to the tier 3 codes for the heartbeat and heartbeat with request signals is illustrated in
The tier 3 codes are preferably orthogonal to each other. The orthogonal codes can be Walsh codes or Gutleber codes or other code such as maximal length (M)-sequences or PN-sequences. It should be noted that while a three-level or three-tiered code is used in the preferred embodiment, other embodiments can use two tiers. For example, a 64 chip tier 1 code nested in a four element tier 2 code, that is, 256 chips in length could be used. Another two-tiered code includes a 16 chip tier 1 code nested in an eight element tier 2 code, that is, 128 chips in length.
Turning attention now to
A second code modulation step is applied to the (i) and (q) signal paths by multiplying the two signal paths with a tier 1 code. This is accomplished by the tier 1 code generator 110 and code multipliers 120-1 and 120-q.
A third step in the encoding process is to apply a tier 2 code as generated by tier 2 code generator 112. This is accomplished by the multipliers 122-i and 122-q impressing the tier 2 code on each of the in-phase and quadrature signal paths.
In a fourth and final step of the encoding process, a tier 3 code is applied to the (i) and (q) signal paths. This is accomplished by the tier 3 code generator 114 and the code multipliers 124-i and 124-q. As noted previously, the tier 3 code (x) for sending the heartbeat signal is selected to be different from the tier 3 (y) code selected for sending the heartbeat with request signal.
The tier 3 encoded in-phase and quadrature signal paths modulate a carrier wave as generated by carrier wave source 126 using an RF modulator 128. The modulated signal is amplified through amplifier 130 and transmitted via antenna 132.
A chip clock 108 provides chip clock timing at the rate of 1.2288 MHz to the tier 1, tier 2, and tier 3 generators 110, 112 and 114. As noted previously, the tier 1 code is at a rate of 8 chips per symbol. The chip clock is divided down by a factor of 8 using divider 116. The tier 2 code generator operates at 32 chips per symbol. The chip clock is divided again by a factor of 4 by divider 118 for the tier 3 generator 114 which provides 128 chips per symbol.
The channel correlation process includes a number of codes as generated by spreading code generator 220, tier 1 code generator 208 and tier 2 code generator 210. In addition, to detect separate coded signals that are coded at the tier 3 code rate, corresponding separate codes are generated by tier 3 code generators 212x and 212y, respectively.
As shown in
A second step in the correlation process is to apply the tier 1 code as generated by tier 1 code generator 208. This is accomplished by the multipliers 224-i and 224-q impressing the tier 1 code on each of the in-phase and quadrature signal paths.
In a third step of the correlation process, the tier 2 code as generated by the tier 2 code generator 210 is applied to each of the in-phase and quadrature signal paths by multipliers 226-i and 226-q.
In the final step of the correlation process, a particular tier 3 code as generated by the respective tier 3 code generators 212x and 212y is applied to each of the in-phase and quadrature signal paths.
As shown in
As configured, the integrators 230 integrate over 128 chips. In other embodiments, the integration can be distributed at each tier stage rather than at the final tier 3 stage as shown in
The correlation in
In particular, the presence of one or another of two mutually exclusive coded signals can be determined from the lower rate code correlation results. For example, the lower rate code correlation results 236x, 236y can be compared with each other to determine the presence of either heartbeat (code x was sent) or heartbeat with request (code y was sent) signals.
It should be understood that while two correlation legs 227x and 227y are shown in
Accordingly, the N lower rate codes can be used in the detection to provide M lower rate code correlation results. That is, in general, the presence of at least one coded signal can be determined from the N lower rate code correlation results. The N lower rate codes can be selected from a set of M possible codes based on a priori system information. The system information can be used to limit the hypothesis outcomes, if any are known, such as the mutual exclusivity of the presence of coded signals.
In one embodiment, the set of M possible codes may represent a set of nearby base stations that are candidates for possible cell handoff of one or more of the code channels and N may represent the subset of the M nearby base stations that are identified as actual active or preferred candidates based on system criteria such as signal strength or signal-to-noise figure.
For example, consider the process of hand over in a cellular communication system, where a mobile access unit is moving from an area serviced by one cell site to another. To avoid disruption of communications (e.g., dropping a call) while the access unit crosses a cell boundary, the timing of handing over control to a new base station must be carefully orchestrated. In a process known as Mobile Assisted Hand Over (MAHO) the mobile access unit performs certain calculations to determine when to communicate to both the current serving base station and a new serving base station that hand over is imminent. For CDMA based systems that employ soft hand-off of the reverse link, this may be transmitted to both base stations simultaneously, but it is not required.
In this process, each access unit maintains a list of candidate base stations in its general vicinity. This can be done, for example, by detecting the presence of forward link paging channels 60P or pilot channels from various base stations 25 in the vicinity (
The embodiment illustrated in
The correlation process described above with respect to
The tier 1, 2, and 3 codes are shown in
It should also be understood that detection of the received coded signal can be provided independent of the correlation method that is used where there is a priori system knowledge available. In particular, for a code applied to the signal that includes a nested code, the nested code being one of a set of M possible nested codes, detection can be achieved by correlating the received coded signal to provide N nested code correlation results and determining the presence of at least one coded signal from the N nested code correlation results using the system knowledge to limit outcomes. The specific N nested codes can change over time, with information indicating the changes in the current set of codes being communicated between base station and access units to provide a priori system information that is current.
While the specific embodiments described herein relate to operation on a reverse link, it should be understood that the principles of the present invention are also applicable to embodiments that detect coded signals on a forward link.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 13/306,547, filed on Nov. 29, 2011, now U.S. Pat. No. 8,638,877, issued Jan. 28, 2014, which is a continuation of U.S. patent application Ser. No. 12/488,798, filed on Jun. 22, 2009, now abandoned on Nov. 30, 2011, which is a continuation of U.S. patent application Ser. No. 10/119,522, filed on Apr. 9, 2002, now U.S. Pat. No. 7,551,663, issued Jun. 23, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 09/775,305 filed Feb. 1, 2001, now U.S. Pat. No. 7,079,523, issued Jul. 18, 2006. This application claims priority from U.S. Provisional Application No. 60/282,936, filed on Apr. 10, 2001. This application is also related to U.S. patent application Ser. No. 09/738,934 filed Dec. 15, 2000. The entire teachings of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3560978 | Himmel et al. | Feb 1971 | A |
3725938 | Black et al. | Apr 1973 | A |
3742498 | Dunn | Jun 1973 | A |
3846799 | Guegen | Nov 1974 | A |
3950753 | Chisholm | Apr 1976 | A |
4021813 | Black et al. | May 1977 | A |
4099184 | Rapshys | Jul 1978 | A |
4107469 | Jenkins | Aug 1978 | A |
4170766 | Pridham et al. | Oct 1979 | A |
4260994 | Parker | Apr 1981 | A |
4290071 | Fenwick | Sep 1981 | A |
4387378 | Henderson | Jun 1983 | A |
4488155 | Wu | Dec 1984 | A |
4577316 | Schiff | Mar 1986 | A |
4599733 | Gutleber | Jul 1986 | A |
4625308 | Kim et al. | Nov 1986 | A |
4631546 | Dumas et al. | Dec 1986 | A |
4642806 | Hewitt et al. | Feb 1987 | A |
4675863 | Paneth et al. | Jun 1987 | A |
4700197 | Milne | Oct 1987 | A |
4817089 | Paneth et al. | Mar 1989 | A |
4841526 | Wilson et al. | Jun 1989 | A |
4862453 | West et al. | Aug 1989 | A |
4866709 | West et al. | Sep 1989 | A |
4887266 | Neve et al. | Dec 1989 | A |
4901307 | Gilhousen et al. | Feb 1990 | A |
4912705 | Paneth et al. | Mar 1990 | A |
4949395 | Rydbeck | Aug 1990 | A |
4954950 | Freeman et al. | Sep 1990 | A |
5022024 | Paneth et al. | Jun 1991 | A |
5027125 | Tang | Jun 1991 | A |
5027348 | Curry | Jun 1991 | A |
5027400 | Baji et al. | Jun 1991 | A |
5038149 | Aubry et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5068916 | Harrison et al. | Nov 1991 | A |
5101416 | Fenton et al. | Mar 1992 | A |
5103459 | Gilhousen et al. | Apr 1992 | A |
5114375 | Wellhausen et al. | May 1992 | A |
5115309 | Hang | May 1992 | A |
5117236 | Chang et al. | May 1992 | A |
5124981 | Golding | Jun 1992 | A |
5130983 | Heffner, III | Jul 1992 | A |
5166929 | Lo | Nov 1992 | A |
5226044 | Gupta et al. | Jul 1993 | A |
5235343 | Audren et al. | Aug 1993 | A |
5257283 | Gilhousen et al. | Oct 1993 | A |
5267262 | Wheatley, III | Nov 1993 | A |
5268900 | Hluchyj et al. | Dec 1993 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5293172 | Lamberty et al. | Mar 1994 | A |
5294939 | Sanford et al. | Mar 1994 | A |
5303240 | Borras et al. | Apr 1994 | A |
5325394 | Bruckert | Jun 1994 | A |
5325419 | Connolly et al. | Jun 1994 | A |
5337316 | Weiss et al. | Aug 1994 | A |
5339316 | Diepstraten | Aug 1994 | A |
5353332 | Raith et al. | Oct 1994 | A |
5355374 | Hester et al. | Oct 1994 | A |
5373502 | Turban | Dec 1994 | A |
5375124 | D'Ambrogio et al. | Dec 1994 | A |
5377192 | Goodings et al. | Dec 1994 | A |
5388102 | Griffith et al. | Feb 1995 | A |
5394473 | Davidson | Feb 1995 | A |
5412429 | Glover | May 1995 | A |
5414728 | Zehavi | May 1995 | A |
5422887 | Diepstraten et al. | Jun 1995 | A |
5430452 | DuBois | Jul 1995 | A |
5437055 | Wheatley, III | Jul 1995 | A |
5442625 | Gitlin et al. | Aug 1995 | A |
5446727 | Bruckert et al. | Aug 1995 | A |
5463629 | Ko | Oct 1995 | A |
5471463 | Hulbert | Nov 1995 | A |
5479176 | Zavrel, Jr. | Dec 1995 | A |
5481533 | Honig et al. | Jan 1996 | A |
5487180 | Ohtake | Jan 1996 | A |
5490136 | Sereno et al. | Feb 1996 | A |
5493569 | Buchholz et al. | Feb 1996 | A |
5502447 | Kumpfbeck et al. | Mar 1996 | A |
5511068 | Sato | Apr 1996 | A |
5537397 | Abramson | Jul 1996 | A |
5537414 | Takiyasu et al. | Jul 1996 | A |
5550828 | Gries et al. | Aug 1996 | A |
5559789 | Nakano et al. | Sep 1996 | A |
5577022 | Padovani et al. | Nov 1996 | A |
5581575 | Zehavi et al. | Dec 1996 | A |
5585850 | Schwaller | Dec 1996 | A |
5586119 | Scribano et al. | Dec 1996 | A |
5590409 | Sawahashi et al. | Dec 1996 | A |
5592178 | Chang et al. | Jan 1997 | A |
5592468 | Sato | Jan 1997 | A |
5592470 | Rudrapatna et al. | Jan 1997 | A |
5592471 | Briskman | Jan 1997 | A |
5598416 | Yamada et al. | Jan 1997 | A |
5598417 | Crisler et al. | Jan 1997 | A |
5604730 | Tiedemann, Jr. | Feb 1997 | A |
5606580 | Mourot et al. | Feb 1997 | A |
5617102 | Prater | Apr 1997 | A |
5617423 | Li et al. | Apr 1997 | A |
5619492 | Press et al. | Apr 1997 | A |
5619524 | Ling et al. | Apr 1997 | A |
5621752 | Antonio et al. | Apr 1997 | A |
5634199 | Gerlach et al. | May 1997 | A |
5642348 | Barzegar et al. | Jun 1997 | A |
5642377 | Chung et al. | Jun 1997 | A |
5652764 | Kanzaki et al. | Jul 1997 | A |
5655001 | Cline et al. | Aug 1997 | A |
5657326 | Burns et al. | Aug 1997 | A |
5657358 | Panech et al. | Aug 1997 | A |
5663958 | Ward | Sep 1997 | A |
5663990 | Bolgiano et al. | Sep 1997 | A |
5673259 | Quick, Jr. | Sep 1997 | A |
5680142 | Smith et al. | Oct 1997 | A |
5684794 | Lopez et al. | Nov 1997 | A |
5687194 | Paneth et al. | Nov 1997 | A |
5689502 | Scott | Nov 1997 | A |
5697059 | Carney | Dec 1997 | A |
5699364 | Sato et al. | Dec 1997 | A |
5708656 | Noneman et al. | Jan 1998 | A |
5712869 | Lee et al. | Jan 1998 | A |
5715236 | Gilhousen et al. | Feb 1998 | A |
5726981 | Ylitervo et al. | Mar 1998 | A |
5734646 | I et al. | Mar 1998 | A |
5739784 | Jan et al. | Apr 1998 | A |
5742592 | Scholefield et al. | Apr 1998 | A |
5745484 | Scott | Apr 1998 | A |
5758288 | Dunn et al. | May 1998 | A |
5764648 | Yamane et al. | Jun 1998 | A |
5767807 | Pritchett | Jun 1998 | A |
5781542 | Tanaka et al. | Jul 1998 | A |
5781543 | Ault et al. | Jul 1998 | A |
5784406 | DeJaco et al. | Jul 1998 | A |
5790549 | Dent | Aug 1998 | A |
5790551 | Chan | Aug 1998 | A |
5793744 | Kanerva et al. | Aug 1998 | A |
5802046 | Scott | Sep 1998 | A |
5802465 | Hamalainen et al. | Sep 1998 | A |
5805994 | Perreault et al. | Sep 1998 | A |
5812131 | Bertram | Sep 1998 | A |
5825807 | Kumar | Oct 1998 | A |
5828659 | Teder et al. | Oct 1998 | A |
5828662 | Jalali et al. | Oct 1998 | A |
5838720 | Morelli | Nov 1998 | A |
5841768 | Ozluturk et al. | Nov 1998 | A |
5844894 | Dent | Dec 1998 | A |
5845211 | Roach | Dec 1998 | A |
5854786 | Henderson et al. | Dec 1998 | A |
5856971 | Gitlin et al. | Jan 1999 | A |
5859840 | Tiedemann, Jr. et al. | Jan 1999 | A |
5859879 | Bolgiano et al. | Jan 1999 | A |
5862476 | Hasegawa | Jan 1999 | A |
5867527 | Ziv et al. | Feb 1999 | A |
5872786 | Shobatake | Feb 1999 | A |
5873043 | Comer | Feb 1999 | A |
5875182 | Hatzipapafotiou | Feb 1999 | A |
5881060 | Morrow et al. | Mar 1999 | A |
5881368 | Grob et al. | Mar 1999 | A |
5884196 | Lekven et al. | Mar 1999 | A |
5892774 | Zehavi et al. | Apr 1999 | A |
5892793 | Gibson | Apr 1999 | A |
5893035 | Chen | Apr 1999 | A |
5894473 | Dent | Apr 1999 | A |
5896374 | Okumura et al. | Apr 1999 | A |
5896376 | Alperovich et al. | Apr 1999 | A |
5898929 | Haartsen | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5905473 | Taenzer | May 1999 | A |
5910944 | Callicotte et al. | Jun 1999 | A |
5910945 | Garrison et al. | Jun 1999 | A |
5914950 | Tiedemann, Jr. et al. | Jun 1999 | A |
5915216 | Lysejko | Jun 1999 | A |
5918157 | Wiedeman et al. | Jun 1999 | A |
5918170 | Oksanen et al. | Jun 1999 | A |
5923650 | Chen et al. | Jul 1999 | A |
5926500 | Odenwalder | Jul 1999 | A |
5930230 | Odenwalder et al. | Jul 1999 | A |
5933781 | Willenegger et al. | Aug 1999 | A |
5943362 | Saito | Aug 1999 | A |
5946356 | Felix et al. | Aug 1999 | A |
5949814 | Odenwalder et al. | Sep 1999 | A |
5950131 | Vilmur | Sep 1999 | A |
5956332 | Rasanen et al. | Sep 1999 | A |
5959980 | Scott | Sep 1999 | A |
5960361 | Chen | Sep 1999 | A |
5963559 | Ohki | Oct 1999 | A |
5966374 | Rasanen | Oct 1999 | A |
5974036 | Acharya et al. | Oct 1999 | A |
5982760 | Chen | Nov 1999 | A |
5990806 | Mock et al. | Nov 1999 | A |
5991279 | Haugli et al. | Nov 1999 | A |
5991284 | Willenegger et al. | Nov 1999 | A |
5991618 | Hall | Nov 1999 | A |
6001800 | Mehta et al. | Dec 1999 | A |
6002690 | Takayama et al. | Dec 1999 | A |
6005852 | Kokko et al. | Dec 1999 | A |
6005855 | Zehavi et al. | Dec 1999 | A |
6009106 | Rustad et al. | Dec 1999 | A |
6011800 | Nadgauda et al. | Jan 2000 | A |
6016312 | Storn et al. | Jan 2000 | A |
6028868 | Yeung et al. | Feb 2000 | A |
6031827 | Rikkinen et al. | Feb 2000 | A |
6031832 | Turina | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6037905 | Koscica et al. | Mar 2000 | A |
6038450 | Brink et al. | Mar 2000 | A |
6049535 | Ozluturk | Apr 2000 | A |
6049538 | Scott | Apr 2000 | A |
6052385 | Kanerva et al. | Apr 2000 | A |
6058338 | Agashe et al. | May 2000 | A |
6064678 | Sindhushayana et al. | May 2000 | A |
6069880 | Owen et al. | May 2000 | A |
6069883 | Ejzak et al. | May 2000 | A |
6070071 | Chavez et al. | May 2000 | A |
6075974 | Saints et al. | Jun 2000 | A |
6078572 | Tanno et al. | Jun 2000 | A |
6081536 | Gorsuch et al. | Jun 2000 | A |
6088324 | Sato | Jul 2000 | A |
6088335 | I et al. | Jul 2000 | A |
6094421 | Scott | Jul 2000 | A |
6094576 | Hakkinen et al. | Jul 2000 | A |
6097707 | Hodzic et al. | Aug 2000 | A |
6097733 | Basu et al. | Aug 2000 | A |
6097972 | Saints et al. | Aug 2000 | A |
6100843 | Proctor, Jr. et al. | Aug 2000 | A |
6101176 | Honkasalo et al. | Aug 2000 | A |
6101179 | Soliman | Aug 2000 | A |
6104708 | Bergamo | Aug 2000 | A |
6111863 | Rostoker et al. | Aug 2000 | A |
6112092 | Benveniste | Aug 2000 | A |
6115370 | Struhsaker et al. | Sep 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6125148 | Frodigh et al. | Sep 2000 | A |
6134233 | Kay | Oct 2000 | A |
6151332 | Gorsuch et al. | Nov 2000 | A |
6157616 | Whitehead | Dec 2000 | A |
6157619 | Ozluturk et al. | Dec 2000 | A |
6161013 | Anderson et al. | Dec 2000 | A |
6163707 | Miller | Dec 2000 | A |
6169731 | Stewart et al. | Jan 2001 | B1 |
6169759 | Kanterakis et al. | Jan 2001 | B1 |
6185184 | Mattaway et al. | Feb 2001 | B1 |
6185266 | Kuchi et al. | Feb 2001 | B1 |
6188678 | Prescott | Feb 2001 | B1 |
6188903 | Gardner et al. | Feb 2001 | B1 |
6195362 | Darcie et al. | Feb 2001 | B1 |
6198723 | Parruck et al. | Mar 2001 | B1 |
6201966 | Rinne et al. | Mar 2001 | B1 |
6208871 | Hall et al. | Mar 2001 | B1 |
6212175 | Harsch | Apr 2001 | B1 |
6212220 | Proctor, Jr. | Apr 2001 | B1 |
6214342 | Alberici et al. | Apr 2001 | B1 |
6215798 | Carneheim et al. | Apr 2001 | B1 |
6219342 | Rege | Apr 2001 | B1 |
6222828 | Ohlson et al. | Apr 2001 | B1 |
6222832 | Proctor | Apr 2001 | B1 |
6222873 | Bang et al. | Apr 2001 | B1 |
6226279 | Hansson et al. | May 2001 | B1 |
6226527 | Dalsgaard et al. | May 2001 | B1 |
6233439 | Jalali | May 2001 | B1 |
6236646 | Beming et al. | May 2001 | B1 |
6236647 | Amalfitano | May 2001 | B1 |
6236674 | Morelli et al. | May 2001 | B1 |
6243372 | Petch et al. | Jun 2001 | B1 |
6246673 | Tiedemann, Jr. et al. | Jun 2001 | B1 |
6246715 | Park et al. | Jun 2001 | B1 |
RE37301 | Lo | Jul 2001 | E |
6256509 | Tanaka et al. | Jul 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6262980 | Leung et al. | Jul 2001 | B1 |
6263013 | Hendrickson | Jul 2001 | B1 |
6269075 | Tran | Jul 2001 | B1 |
6269088 | Masui et al. | Jul 2001 | B1 |
6272168 | Lomp et al. | Aug 2001 | B1 |
6272354 | Saario | Aug 2001 | B1 |
6275478 | Tiedemann, Jr. | Aug 2001 | B1 |
6278701 | Ayyagari et al. | Aug 2001 | B1 |
6285665 | Chuah | Sep 2001 | B1 |
6292474 | Ali et al. | Sep 2001 | B1 |
6301286 | Kanterakis et al. | Oct 2001 | B1 |
6301291 | Rouphael et al. | Oct 2001 | B1 |
6304215 | Proctor, Jr. et al. | Oct 2001 | B1 |
6307840 | Wheatley, III et al. | Oct 2001 | B1 |
6310859 | Morita et al. | Oct 2001 | B1 |
6314300 | Nakashima et al. | Nov 2001 | B1 |
6317092 | De Schweinitz et al. | Nov 2001 | B1 |
6320851 | Kim et al. | Nov 2001 | B1 |
6332008 | Giallorenzi et al. | Dec 2001 | B1 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339612 | Stewart et al. | Jan 2002 | B1 |
6353412 | Soliman | Mar 2002 | B1 |
6353645 | Solve et al. | Mar 2002 | B1 |
6356538 | Li | Mar 2002 | B1 |
6356555 | Rakib | Mar 2002 | B1 |
6366570 | Bhagalia | Apr 2002 | B1 |
6366786 | Norman et al. | Apr 2002 | B1 |
6370117 | Koraitim et al. | Apr 2002 | B1 |
6373830 | Ozluturk | Apr 2002 | B1 |
6373834 | Lundh et al. | Apr 2002 | B1 |
6377548 | Chuah | Apr 2002 | B1 |
6377809 | Rezaiifar et al. | Apr 2002 | B1 |
6388997 | Scott | May 2002 | B1 |
6388999 | Gorsuch et al. | May 2002 | B1 |
6389000 | Jou | May 2002 | B1 |
6396804 | Odenwalder | May 2002 | B2 |
6396823 | Park et al. | May 2002 | B1 |
6414947 | Legg et al. | Jul 2002 | B1 |
6418148 | Kumar et al. | Jul 2002 | B1 |
6424645 | Kawabata et al. | Jul 2002 | B1 |
6426960 | Antonio | Jul 2002 | B2 |
6452911 | Seo | Sep 2002 | B1 |
6452913 | Proctor, Jr. | Sep 2002 | B1 |
6453176 | Lopes et al. | Sep 2002 | B1 |
6456608 | Lomp | Sep 2002 | B1 |
6466800 | Sydon et al. | Oct 2002 | B1 |
6469991 | Chuah | Oct 2002 | B1 |
6473623 | Benveniste | Oct 2002 | B1 |
6483816 | Tsunehara et al. | Nov 2002 | B2 |
6490461 | Muller | Dec 2002 | B1 |
6498785 | Derryberry et al. | Dec 2002 | B1 |
6498790 | Shaheen et al. | Dec 2002 | B1 |
6498939 | Thomas | Dec 2002 | B1 |
6501787 | Odenwalder et al. | Dec 2002 | B1 |
6504830 | Östberg et al. | Jan 2003 | B1 |
6512751 | Struhsaker et al. | Jan 2003 | B1 |
6512931 | Kim et al. | Jan 2003 | B1 |
6519452 | Agostino et al. | Feb 2003 | B1 |
6519651 | Dillon | Feb 2003 | B1 |
6522639 | Kitade et al. | Feb 2003 | B1 |
6526039 | Dahlman et al. | Feb 2003 | B1 |
6526064 | Bousquet | Feb 2003 | B1 |
6526281 | Gorsuch et al. | Feb 2003 | B1 |
6532225 | Chang et al. | Mar 2003 | B1 |
6532226 | Lehtinent et al. | Mar 2003 | B1 |
6532365 | Anderson et al. | Mar 2003 | B1 |
6535545 | Ben-Bassat et al. | Mar 2003 | B1 |
6535547 | Lyckegard et al. | Mar 2003 | B1 |
6542481 | Foore et al. | Apr 2003 | B2 |
6545986 | Stellakis | Apr 2003 | B1 |
6545994 | Nelson, Jr. et al. | Apr 2003 | B2 |
6546252 | Jetzek et al. | Apr 2003 | B1 |
6563808 | Cox et al. | May 2003 | B1 |
6567389 | Honkasalo et al. | May 2003 | B1 |
6567391 | Moon | May 2003 | B1 |
6567416 | Chuah | May 2003 | B1 |
6567670 | Petersson | May 2003 | B1 |
6570865 | Masui et al. | May 2003 | B2 |
6571296 | Dillon | May 2003 | B1 |
6574211 | Padovani et al. | Jun 2003 | B2 |
6587446 | Sarkar et al. | Jul 2003 | B2 |
6597913 | Natarajan | Jul 2003 | B2 |
6611231 | Crilly et al. | Aug 2003 | B2 |
6611514 | Moulsley | Aug 2003 | B1 |
6621807 | Jung et al. | Sep 2003 | B1 |
6621808 | Sadri | Sep 2003 | B1 |
6621809 | Lee et al. | Sep 2003 | B1 |
6628945 | Koorapaty et al. | Sep 2003 | B1 |
6633554 | Dalal | Oct 2003 | B1 |
6647000 | Persson et al. | Nov 2003 | B1 |
6674739 | Lee et al. | Jan 2004 | B1 |
6687509 | Schmutz et al. | Feb 2004 | B2 |
6690652 | Sadri | Feb 2004 | B1 |
6690938 | Chin | Feb 2004 | B1 |
6697642 | Thomas | Feb 2004 | B1 |
6707804 | Proctor, Jr. | Mar 2004 | B2 |
6707806 | Kato | Mar 2004 | B1 |
6717916 | Ahn et al. | Apr 2004 | B1 |
6718180 | Lundh et al. | Apr 2004 | B1 |
6724740 | Choi et al. | Apr 2004 | B1 |
6724743 | Pigeonnat | Apr 2004 | B1 |
6731614 | Ohlson et al. | May 2004 | B1 |
6731954 | Katz | May 2004 | B1 |
6735188 | Becker et al. | May 2004 | B1 |
6760596 | Fiorini et al. | Jul 2004 | B1 |
6768727 | Sourour et al. | Jul 2004 | B1 |
6775558 | Ranta et al. | Aug 2004 | B1 |
6782277 | Chen et al. | Aug 2004 | B1 |
6785247 | Lee | Aug 2004 | B1 |
6788661 | Ylitalo et al. | Sep 2004 | B1 |
6795416 | Han et al. | Sep 2004 | B1 |
6804219 | Koo et al. | Oct 2004 | B2 |
6807160 | Laroia et al. | Oct 2004 | B1 |
6807221 | Kim et al. | Oct 2004 | B1 |
6826169 | Nagatani et al. | Nov 2004 | B1 |
6831910 | Moon et al. | Dec 2004 | B1 |
6842482 | Hiramatsu | Jan 2005 | B1 |
6845089 | Gu et al. | Jan 2005 | B1 |
6868075 | Narvinger et al. | Mar 2005 | B1 |
6904279 | Lilja et al. | Jun 2005 | B1 |
6925057 | Cheng et al. | Aug 2005 | B2 |
6925068 | Stanwood et al. | Aug 2005 | B1 |
6931252 | Aroudaki | Aug 2005 | B1 |
6934319 | Subramanian | Aug 2005 | B2 |
6940845 | Benveniste | Sep 2005 | B2 |
6954444 | Ji et al. | Oct 2005 | B2 |
6956840 | Proctor, Jr. | Oct 2005 | B1 |
6963540 | Choi et al. | Nov 2005 | B2 |
6977910 | Hosur et al. | Dec 2005 | B1 |
6999425 | Cheng et al. | Feb 2006 | B2 |
6999471 | Frazer et al. | Feb 2006 | B1 |
7027420 | Hamalainen | Apr 2006 | B2 |
7039029 | Lee et al. | May 2006 | B2 |
7046717 | Kanterakis et al. | May 2006 | B2 |
7079507 | Toskala et al. | Jul 2006 | B2 |
7079523 | Nelson, Jr. et al. | Jul 2006 | B2 |
7099629 | Bender | Aug 2006 | B1 |
7136377 | Tweedly et al. | Nov 2006 | B1 |
7158504 | Kadaba et al. | Jan 2007 | B2 |
7218623 | Proctor, Jr. | May 2007 | B1 |
7221664 | Proctor, Jr. | May 2007 | B2 |
7224683 | Marque-Pucheu et al. | May 2007 | B1 |
7236467 | Kono | Jun 2007 | B2 |
7239621 | Eriksson | Jul 2007 | B2 |
7266107 | Choi et al. | Sep 2007 | B2 |
7340256 | Speight | Mar 2008 | B2 |
20010030990 | Rouphael et al. | Oct 2001 | A1 |
20010033558 | Matsuki | Oct 2001 | A1 |
20010036200 | Nelson et al. | Nov 2001 | A1 |
20010038674 | Trans | Nov 2001 | A1 |
20010039191 | Maierhofer | Nov 2001 | A1 |
20020009061 | Willenegger | Jan 2002 | A1 |
20020012332 | Tiedmann et al. | Jan 2002 | A1 |
20020045441 | Ralston et al. | Apr 2002 | A1 |
20020068567 | Johansson | Jun 2002 | A1 |
20020080024 | Nelson et al. | Jun 2002 | A1 |
20020097700 | Alastalo et al. | Jul 2002 | A1 |
20020141478 | Ozluturk et al. | Oct 2002 | A1 |
20030060224 | Nelson et al. | Mar 2003 | A1 |
20030095517 | Proctor, Jr. | May 2003 | A1 |
20030123401 | Dean | Jul 2003 | A1 |
20040005078 | Tillotson | Jan 2004 | A1 |
20040009785 | Nelson et al. | Jan 2004 | A1 |
20040047328 | Proctor et al. | Mar 2004 | A1 |
20040073803 | Keramane | Apr 2004 | A1 |
20040160910 | Gorsuch et al. | Aug 2004 | A1 |
20040180696 | Foore et al. | Sep 2004 | A1 |
20050202823 | Shaheen et al. | Sep 2005 | A1 |
20050208961 | Willenegger | Sep 2005 | A1 |
20080225766 | Roy et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
2812575 | Sep 1979 | DE |
0 443 061 | Aug 1991 | EP |
0 526 106 | Feb 1993 | EP |
0 682 423 | Nov 1995 | EP |
0 682 426 | Nov 1995 | EP |
0 719 062 | Jun 1996 | EP |
0 720 309 | Jul 1996 | EP |
0 475 698 | Mar 1997 | EP |
0 760 564 | Mar 1997 | EP |
0 773 636 | May 1997 | EP |
0 808 074 | Nov 1997 | EP |
0 907 262 | Apr 1999 | EP |
0 910 176 | Apr 1999 | EP |
0 959 851 | Nov 1999 | EP |
1 018 809 | Dec 2000 | EP |
1 102 512 | May 2001 | EP |
2 326 564 | Dec 1998 | GB |
59-050603 | Mar 1984 | JP |
02-177643 | Jul 1990 | JP |
03-049324 | Mar 1991 | JP |
04-284033 | Oct 1992 | JP |
05-030006 | Feb 1993 | JP |
07-067164 | Mar 1995 | JP |
07-095151 | Apr 1995 | JP |
07-131398 | Oct 1995 | JP |
07-264098 | Oct 1995 | JP |
08-065273 | Mar 1996 | JP |
08-242482 | Sep 1996 | JP |
09-023203 | Jan 1997 | JP |
09-046270 | Feb 1997 | JP |
09-055693 | Feb 1997 | JP |
2000-013867 | Jan 2000 | JP |
2000-188597 | Jul 2000 | JP |
566045 | Dec 2003 | TW |
200536325 | Nov 2005 | TW |
9315573 | Aug 1993 | WO |
9508900 | Mar 1995 | WO |
9608934 | Mar 1996 | WO |
9619050 | Jun 1996 | WO |
9637081 | Nov 1996 | WO |
9627994 | Dec 1996 | WO |
9746041 | Apr 1997 | WO |
9723073 | Jun 1997 | WO |
9726726 | Jul 1997 | WO |
9732412 | Sep 1997 | WO |
9746044 | Dec 1997 | WO |
9809455 | Mar 1998 | WO |
9914869 | Mar 1999 | WO |
9925125 | May 1999 | WO |
9931811 | Jun 1999 | WO |
9949596 | Sep 1999 | WO |
9952306 | Oct 1999 | WO |
9963682 | Dec 1999 | WO |
0057663 | Sep 2000 | WO |
0062449 | Oct 2000 | WO |
0072464 | Nov 2000 | WO |
Entry |
---|
Notice of Allowance for U.S. Appl. No. 13/306,547 mailed Sep. 16, 2013, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 09/775,305 mailed Jul. 13, 2004, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 09/775,305 mailed Apr. 1, 2005, 9 pages. |
Final Office Action for U.S. Appl. No. 09/775,305 mailed Oct. 4, 2005, 10 pages. |
Notice of Allowance for U.S. Appl. No. 09/775,305 mailed Feb. 28, 2006, 6 pages. |
Ex Parte Quayle Action for U.S. Appl. No. 13/306,547 mailed Jun. 4, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/488,798 mailed Aug. 5, 2010, 6 pages. |
Final Office Action for U.S. Appl. No. 12/488,798 mailed Jan. 31, 2011, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/488,798 mailed Aug. 29, 2011, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 10/119,522 mailed Dec. 13, 2005, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 10/119,522 mailed Jul. 13, 2006, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 10/119,522 mailed Aug. 21, 2007, 15 pages. |
Final Office Action for U.S. Appl. No. 10/119,522 mailed Mar. 18, 2008, 15 pages. |
Notice of Allowance for U.S. Appl. No. 10/119,522 mailed Oct. 30, 2008, 10 pages. |
Notice of Allowance for U.S. Appl. No. 10/119,522 mailed Feb. 18, 2009, 10 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 09/775,305 mailed Apr. 7, 2006, 4 pages. |
Supplemental Notice of Allowability for U.S. Appl. No. 09/775,305 mailed Apr. 12, 2006, 4 pages. |
Attachment 2, High Speed Data RLP Lucent Technologies, Version 0.1, Jan. 18, 1997. |
Azad et al., Multirate Spread Spectrum Direct Sequence CDMA Techniques, 1994, The Institute of Electrical Engineers. |
Bell Labs Technical Journal, Lucent Technologies, vol. 2, No. 3, Summer 1997. |
Budka et al., Cellular Digital Packet Data Networks, Bell Labs Technical Journal, Summer 1997, pp. 164-181. |
Cellular Digital Packet Data, System Specification, Release 1.1, Jan. 19, 1995. |
Chelouah, A., et al., “Angular Diversity Based on Beam Switching of Circular Arrays for Hiperlan Terminals,” Electronics Letters, vol. 36, No. 5, pp. 387-388, (Mar. 2, 2000). |
Chih-Lin I et al., IS-95 Enhancements for Multimedia Services, Bell Labs Technical Journal, pp. 60-87, Autumn 1996. |
Chih-Lin I et al., Load and Interference Based Demand Assignment (LIDA) for Integrated Services in CDMA Wireless Systems, Nov. 18, 1996, pp. 235-241. |
Chih-Lin I et al., Multi-Code CDMA Wireless Personal Communications Networks, Jun. 18, 1005. |
Chih-Lin I et al., Performance of Multi-Code CDMA Wireless Personal Communications Networks, Jul. 25, 1995. |
Chih-Lin I et al., Variable Spreading Gain CDMA with Adaptive Control for True Packet Switching Wireless Network, 1995, pp. 725-730. |
Chung, Packet Synchronization and Identification for Incremental Redundancy Transmission in FH-CDMA Systems, 1992, IEEE, pp. 292-295. |
Data Service Options for Wideband Spread Spectrum Systems. TIA/EIA Interim Standard. TIA/EIA/IS-707-A Apr. 1999. |
Data Service Options for Wideband Spread Spectrum Systems: Introduction, PN-3676. 1 (to be published as TIA/EIA/IS-707.1), Mar. 20, 1997 (Content Revision 1). |
Data Services Option Standard for Wideband Spread Spectrum Digital Cellular System. TIA/EIA/IS-99. TIA/EIA Interim Standard. Jul. 1995. |
Data Services Options Standard for Wideband Spread Spectrum Systems: Packet Data Services. PN-3676.5 (to be published as TIA/EIA/IS-707.5) Ballot Version, May 30, 1997. |
Data Standard, Packet Data Section, PN-3676.5 (to be published as TIA/EIA/IS-DATA.5), Dec. 8, 1996, Version 02 (Content Revision 03). |
Draft Text for “*95C” Physical Layer (Revision 4), Part 1, Document #531-981-20814-95C, Part 1 on 3GPP2 website (ftp://ftp.3gpp2.org/tsgc/working/1998/1298—Maui/WG3-TG1/531-98120814-95c,%20part%201.pdf). |
Draft Text for “95C” Physical Layer (Revision 4), Part 2, Document #531-981-20814-95C, part 2 on 3GGP2 website (ftp://ftp.3gpp2.org/tsgc/working/1998/1298—Maui/WG3-TG1/531-98120814-95c,%20part%202.pdf, 1998). |
Durnan, G.J., et al. “Optimization of Microwave Parabolic Antenna Systems Using Switched Parasitic Feed Structures,” URSI National Science Meeting, Boulder, CO. p. 323, (Jan. 4-8, 2000). |
Durnan, G.J., et al., “Switched Parasitic Feeds for Parabolic Antenna Angle Diversity,” Microwave and Optical Tech. Letters, vol. 23, No. 4, pp. 200-2003(Nov. 20, 1999). |
Ejzak et al., Lucent Technologies Air Interface Proposal for CDMA High Speed Data Service, Revision 0.1, May 5, 1997. |
Ejzak et al., Lucent Technologies Air interface Proposal for CDMA High Speed Data Service, Apr. 14, 1997. |
Ejzak, et al. Proposal for High Speed Packet Data Service, Version 0.1, Lucent Technologies, Jan. 16, 1997. |
Elhakeem, Congestion Control in Signalling Free Hybrid ATM/CDMA Satellite Network, IEEE, 1995, pp. 783-787. |
Giger, A.J., Low-Angle Microwave Propagation: Physics and Modeling, Norwood, MA, Artech House, (1991). |
Hall et al., Design and Analysis of Turbo Codes on Rayleigh Fading Channels, IEEE Journal on Selected Areas in Communications, vol. 16, No. 2, Feb. 1998, pp. 160-174. |
Harrington, R.F., “Reactively Controlled Antenna Arrays,” IEEE APS International Symposium Digest, Amherst, MA . pp. 62-65, (Oct. 1976). |
Harrington, R.F., “Reactively Controlled Directive Arrays,” IEEE Trans. Antennas and Propagation, vol. AP-26, No. 3, pp. 390-395, (May 1978). |
Heine, Gunnar, “The Air-Interface of GSM,” GSM Networks: Protocols, Terminology and Implementation, (MA: Artech House, Inc.), 1999, Chapter 7, pp. 89-100. |
High Data Rate (HDR) Solution, Qualcomm, Dec. 1998. |
High Data Rate (HDR), cdmaOne optimized for high speed, high capacity data, Wireless Infrastructure, Qualcomm, Sep. 1998. |
Hindelang et al., Using Powerful “Turbo” Codes for 14.4 Kbit/s Data Service in GSM or PCS Systems, IEEE Global Communications Conference, Phoenix, Arizona, USA, Nov. 3-8, 1997, vol. II, pp. 649-653. |
Honkasalo, Harri. High Speed Data Air Interface. 1996. |
Introduction to cdma2000 Spread Spectrum System, Release C. TIA/EIA Interim Standard. TIA/EIA/IS-2000.1-C. May 2002. |
James , J.R. et al., “Electrically Short Monopole Antennas with Dielectric or Ferrite Coatings,” Proc. IEEE, vol. 125, pp. 793-803, (Sep. 1978). |
James, J.R., et al., “Reduction of Antenna Dimensions with Dielectric Loading,” Electronics Letters, vol. 10, No. 13, pp. 283-265, (May 1974). |
Kaiser et al., Multi-Carrier CDMA with Iterative Decoding and Soft-Interference Cancellation, Proceedings of Globecom 1997, vol. 1, pp. 523-529. |
King, R.W.P., “The Many Faces of the Insulated Antenna,” Proc. IEEE, vol. 64, No. 2, pp, 228-238, (Feb. 1976). |
Kingsley, S.P., et al., “Beam Steering and Monopulse Processing of Probe-Fed Dielectric Resonator Antennas,” IEEE Proc.-Radar, Sonar Navigation, vol. 146, No. 3, pp. 121-125. (Jun. 1999). |
Knight, P., “Low-Frequency Behavior of the Beverage Aerial,” Electronics Letter, vol. 13, No. 1, pp. 21-22, (Jan. 1977). |
Knisely, Douglas, N. Telecommunications Industry Association Subcommittee TR-45.5—Wideband Spread Spectrum Digital Technologies Standards. Banff, Alberta. Feb. 24, 1997 (TR45.5/97.02.24)21. |
Knisely, Douglas, N. Telecommunications Industry Association Subcommittee TR-45.5-Wideband Spread Spectrum Digital Technologies Standards, Working Group III-Physical Layer, Banff, Alberta, Feb. 24, 1997 (TR45.5/97.02.24)22. |
Knisely, Lucent Technologies Air Interface Proposal for CDMA High Speed Data Service, Jan. 16, 1997. |
Krzymien et al., Rapid Acquisition Algorithms for Synchronization of Bursty Transmissions in CDMA Microcellular and Personal Wireless Systems, IEEE Journal on Selected Areas in Communications, vol. 14, No. 3, Apr. 1996, pp. 570-579. |
Kumar et al, An Access Scheme for High Speed Packet Data Service on IS-95 based CDMA, Feb. 11, 1997. |
Lau et al., A Channel-State-Dependent Bandwidth Allocation scheme for Integrated Isochronous and Bursty Media Data in a Cellular Mobile Information System, IEEE, 2000, pp. 524-528. |
Lee et al., “A Novel Hybrid CDMA/TDMA Protocol with a Reservation Request Slot for Wireless ATM Networks,” IEICE Transactions on Communications, vol. E82-B, No. 7, pp. 1073-1076 (Jul. 25, 1999). |
Liu et al., Channel Access and Interference Issues in Multi-Code DS-CDMA Wireless Packet (ATM) Networks, Wireless Networks 2, pp. 173-196, 1996. |
Long, S.A., et al., “The Resonant Cylindrical Dielectric Cavity Antenna,” IEEE Trans. Antennas and Propagation, vol. AP-31, No. 3. pp. 406-412, (May 1983). |
Lu, J., et al., “Multi-beam Switched Parasitic Antenna Embedded in Dielectric for Wireless Communications Systems.” Electronics Letters, vol. 37, No. 14, pp. 871-872, (Jul. 5, 2001). |
Lucent Technologies Presentation First Slide Titled, Summary of Multi-Channel Signaling Protocol, Apr. 6, 1997. |
Lucent Technologies Presentation First Slide Titled, Why Support Symmetric HSD (Phase 1C), Feb. 21, 1997. |
Luzwick, J., et al., “A Reactively Loaded Aperture Antenna Array,” IEEE Trans Antennas and Propagation, vol. AP-26, No. 4, pp. 543-547, (Jul. 1978). |
McCallister, M.W. et al., “Resonant Hemispherical Dielectric Antenna,” Electronics Letters, vol. 20, No. 16, pp. 657-659, (Aug. 1984). |
McCallister, M.W., et al., “Rectangular Dielectric Resonator Antenna,” Electronics Letter, vol. 19, No. 6, pp. 218-219, (Mar. 1983). |
Melanchuk et al. CDPD and Emerging Digital Cellular Systems, Digest of Papers of COMPCN, Computer Society Conference 1996, Santa Clara, CA, No. CONF. 41, Feb. 25, 1996, pp. 2-8, XP000628458. |
Milne, R.M.T., “A Small Adaptive Array Antenna for Mobile Communications,” IEEE APS International Symposium Digest, pp. 797-800, (1985). |
Mobile Station-Base Station Compatibility Standard for Wideband Spread Spectrum Cellular Systems, TIA/EIA Standard, TIA/EIA-95-B (Upgrade and Revision of TIA/EIA-95-A), Mar. 1999. |
Motorola, Version 1.0. Motorola High Speed Data Air interface Proposal Comparisions and Recommendations. Jan. 27, 1997. |
MSC-BS Interface (A-Interface) for Public 808 MHz. TIA/EIA/IS-634-A. TIA/EIA Interim Standard (Revision of TIA/EIA/IS-634) Jul. 1998. |
MSC-BS Interface for Public 800 MHz.TIA/EIA/IS-634. TIA/EIA Interim Standard, Dec. 1995. |
Network Wireless Systems Offer Business Unit (NWS OBU), Feature Definition Document for Code Division Multiple Access (CDMA) Packet Mode Data Services, FDD-1444, Nov. 28, 1996. |
Ott, David TR45.5, CDMA WBSS Technical Standards Meeting Summary. Feb. 24-28, 1997 Banff, Alberta. |
Ovesjö, Fredrik. “UTRA Physical Layer Description FDD Parts,” European Telecommunication Standard, SMG2 UMTS Physical Layer Expert Group, XP002141421, v 0.4, Jun. 25, 1998, pp. 1-41. |
Packet Data Service Option Standard for Wideband Spread Spectrum Systems, TIA/EIA Interim Standard, TIA/EIA/IS-657, Jul. 1996. |
Physical Layer Standard for cdma2000 Spread Spectrum Systems, Release C. TIA/EIA Interim Standard. TIA/EIA/IS-2000.2C. May 2002. |
Preston, S., et al., “Direction Finding Using a Switched Parasitic Antenna Array,” IEEE APS International Symposium Digest, Montreal, Canada, pp. 1024-1027, (1997). |
Preston, S.L., et al., “A Multibeam Antenna Using Switched Parasitic and Switched Active Elements for Space-Division Multiple Access Applications,” IEICE Trans. Electron., vol. E82-C, No. 7, pp. 1202-1210, (Jul. 1999). |
Preston, S.L., et al., “Base-Station Tracking in Mobile Communications using a Switched Parasitic Antenna Array,” IEEE Trans. Antennas and Propagation, vol. 46, No. 6, pp. 841-844, (Jun. 1998). |
Preston, S.L., et al., “Electronic Beam Steering Using Switched Parasitic Patch Elements,” Electronics Letters, vol. 33, No. 1, pp. 7-8, (Jan. 2, 1997). |
Preston, S.L., et al., “Size Reduction of Switched Parasitic Directional Antennas Using Genetic Algorithm Optimization Techniques,” Asia Pacific Microwave Conference Proceedings, Yokohama, Japan, pp. 1401-1404, (1998). |
Preston, S.L., et al., “Systematic Approach to the Design of Directional Antennas Using Switched Parasitic and Switched Active Elements,” Asia Pacific Microwave Conference Proceedings, Yokohama, Japan. pp. 531-534, (1998). |
Puleston, PPP Protocol Spoofing Control Protocol, Global Village Communication (UK) Ltd., Feb. 1996. |
Reed et al., Iterative Multiuser Detection for CDMA with FEC: Near-Single-User Performance, IEEE Transactions on Communications, vol. 46, No. 12, Dec. 1998, pp. 1693-1699. |
Ruze, J., “Lateral-Feed Displacement in a Paraboloid,” IEEE Trans. Antennas and Propagation, vol. 13, pp. 660-665, (1965). |
Scott, N.L., et al., “Diversity Gain from a Single-Port Adaptive Antenna Using Switched Parasitic Elements Illustrated with a Wire and Monopole Prototype,” IEEE Trans. Antennas and Propagation, vol. 47, No. 6, pp. 1066-1070, (Jun. 1999). |
Shacham, et al., “A Selective-Repeat-ARQ Protocol for Parallel Channels and Its Resequencing Analysis,” IEEE Transactions on Communications, XP000297814, 40 (4): 773-782 (Apr. 1997). |
Sibille, A., et al., “Circular Switched Monopole Arrays for beam Steering Wireless Communications,” Electronics Letters, vol. 33, No. 7, pp. 551-552, (Mar. 1997). |
Simpson, W. (Editor). “RFC 1661—The Point-to-Point Protocol (PPP).” Network Working Group, Jul. 1994, pp. 1-35. http://www.faqs.org/rfcs/rfc1661.html. |
Simpson, W. (Editor). “RFC 1662—PPP in HDLC-Like Framing.” Network Working Group, Jul. 1994, pp. 1-17. http://www.faqs.org/rfcs/rfc1662.html. |
Skinner et al., Performance of Reverse-Link Packet Transmission in Mobile Cellular CDMA Networks, IEEE, 2001, pp. 1019-1023. |
Stage 1 Service Description for Data Services—High Speed Data Services (Version 0.10) CDG RF 38. Dec. 3, 1996. |
Support for 14.4 kbps Data Rate and PCS Interaction for Wideband Spread Spectrum Cellular Systems. TSB74, Dec. 1995. TIA/EIA Telecommunications Systems Bulletin. |
Telecommunications industry Association Meeting Summary. Task Group I, Working Group III, Subcommittee TR45.5. Feb. 24-27, 1997. Banff, Alberta. |
Telecommunications Industry Association Meeting Summary. Task Group I, Working Group III, Subcommittee TR45.5. Jan. 6-8, 1997, Newport Beach, California. |
Third Generation Partnership Project 2, “cdma2000 High Rate Packet Data Air Interference Specification,” 3GPP2 C.S0024 Version 2.0 (Oct. 27, 2000). |
Third Generation Partnership Project 2, “Physical Layer Standard for cdma2000 Spread Spectrum Systems,” 3GPP2 C.0002-0 Version 1.0 (Jul. 1999). |
Third Generation Partnership Project, “3rd Generation Partnership Project (3GPP): Technical Specification Group (TSG) RAN WG4; Requirements for Support of Radio Resource Management (FDD),” 3G TS 25.133 V3.0.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 1999).” 3GPP TS 25.214 v3.5 0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 1999),” 3GPP TS 25.214 v3.10.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 1999),” 3GPP TS 25.224 V3.10.0 (Mar. 2002). |
Third Generation Partnership Project. “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 1999),” 3GPP TS 25.224 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 1999),” 3GPP TS 25.223 V3.8.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 1999),” 3GPP TS 25.223 V3.4.0 (Sep. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 4),” 3GPP TS 25.214 v4.4.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 5),” 3GPP TS 25.214 v5.0.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 4),” 3GPP TS 25.224 V4.4.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 5),” 3GPP TS 25.224 V5.0.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 4),” 3GPP TS 25.223 V4.3.0 (Dec. 2001). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 5),” 3GPP TS 25.223 V5.0.0 (Mar. 2002). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Networks; Requirements for Support of Radio Resource Management (FDD) (Release 1999),” 3GPP TS 25.133 V3.3.0 (Sep. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Radio Resource Management Strategies (3G TR 25.922 version 3.0.0),” 3G TR 25.922 V3.0.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Radio Resource Management Strategies (Release 1999),” 3G TR 25.922 V3.4.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; MAC protocol specification (3G TS 25.321 version 3.2.0).” 3G TS 25.321 V3.2.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; MAC protocol spedfication (Release 1999).” 3G TS 25.321 V3.6.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Services provided by the physical layer (Release 1999),” 3GPP TS 25.302 V3.7.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Services provided by the physical layer (Release 1999),” 3GPP TS 25.302 V3.2.0 (Dec. 1999). |
Third Generation Partnership Project. “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (TDD) (3G TS 25.221 version 3.1.0),” 3G TS 25.221 V3.1.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (TDD) (Release 1999),” 3G TS 25.221 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; RRC Protocol Specification (3G TS 25.331 version 3.1.0 Release 1999),” 3G TS 25.331 V3.1.0 (Jan. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; RRC Protocol Specification (Release 1999),” 3GPP TS 25.331 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network, Synchronisation in UTRAN Stage 2 (Release 1999),” 3GPP TS 25.402 V3.4.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network, Synchronisation in UTRAN Stage 2 (3G TS 25.402 version 3.0.0 Release 1999),” 3GPP TS 25.402 V3.4.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode (3G TS 25.304 version 3.1.0),” 3G TS 25.304 V3.1.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode (Release 1999),” 30 TS 25.304 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD) (3G TS 25.211 version 3.1.0).” 3G TS 25.211 V3.1.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (FDD) (Release 1999),” 3GPP TS 25.211 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Multiplexing and channel coding (FDD) (Release 1999),” 3GPP TS 25.212 V3.5.0 (Dec. 2000). |
Third Generation Partnership Project, “Technical Specification Group Group Radio Access Network; Multiplexing and channel coding (FDD) (3G TS 25.212 version 3.1 0),” 3G TS 25.212 V3.1.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group (TSG) RAN W04 UE Radio transmission and Reception (FDD),” TS 25.101 V3.1.0 (Dec. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer—General description (3G TS 25.201 version 3.0.0),” 3G TS 25.201 V3.0.0 (Oct. 1999). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer—General description (Release 1999),” 3G TS 25.201 V3.1.0 (Jun. 2000). |
Third Generation Partnership Project, “Technical Specification Group Radio Access Networks; UE Radio Transmission and Reception (FDD) (Release 1999),” 3GPP TS 25.101 V3.5.0 (Dec. 2000). |
TIA/EIA Interim Standard, “Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” TIA/EIA/IS-95-A (May 1995). |
TIA/EIA Interim Standard, Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System. TIA/EIA/IS-95 (Jul. 1993). |
Tsui et al., “Sensitivity of EW Receivers,” Microwave Journal, vol. 25, pp. 115-117, 120 (Nov. 1982). |
Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems, Release C. TIA/EIA Interim Standard. TIA/EIA/IS-2000.5-C. May 2002. |
Vaughn, R., “Switched Parasitic Elements for Antenna Diversity,” IEEE Trans. Antennas and Propagation, vol. 47, No. 2, pp. 399-406, (Feb. 1999). |
Viterbi, The Path to Next Generation Services with CDMA, Qualcomm Incorporated, 1998 CDMA Americas Congress, Los Angeles, California, Nov. 19, 1998. |
Wang et al., The Performance of Turbo-Codes in Asynchronous DS-CDMA, IEEE Global Communications Conference, Phoenix, Arizona, USA, Nov. 3-8, 1007, Gol. III, pp. 1548-1551. |
www.cdg.org/news/press/1997.asp CDA Press Release Archive, 1997. |
Yang, Samuel C., “Principies of Code Division Multiple Access,” In CDMA RF System Engineering, (MA: Artech House, Inc.). 1998, Chapter 4, pp. 75-103. |
Number | Date | Country | |
---|---|---|---|
20140177608 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60282936 | Apr 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13306547 | Nov 2011 | US |
Child | 14137099 | US | |
Parent | 12488798 | Jun 2009 | US |
Child | 13306547 | US | |
Parent | 10119522 | Apr 2002 | US |
Child | 12488798 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09775305 | Feb 2001 | US |
Child | 10119522 | US |