Haimovici et al., “Localization of Benzoporphyrin Derivative Monoacid in the Rabbit Eye,” Investigative Opthalmology and Visual Science, (1993) 34:1303 Abstracts 2955. |
Lin et al., “Measurement of BPD Photosensitizer Kinetics in Retinal and Choroidal Vessels by Fluorescence Imaging,” Investigative Opthalmology and Visual Science (1993) vol. 34, p. 1168, Abstract No. 2293. |
Lin et al., “Photodynamic Closure of Choroidal Vessels Using Benzoporphyrin Derivatives,” Investigative Opthalmology and Visual Science (1993) 34:1303 Abstract 2953. |
Moulton et al., “Response of Retinal and Choroidal Vessels to Photodynamic Therapy Using Benzoporphyrin Derivative Monoacid,” Investigative Opthalmology and Visual Science (1993) 34:1169 Abstract 2294. |
Pandey et al., “Efficient Synthesis of New Classes of Regiochemically Pure Benzoporphyrin Derivatives,” Bioorganic & Medicinal Chemistry Letters (3) 12:2615-2618 (1993). |
Schmidt-Erfuth et al., “Photothrombosis of Ocular Neovascularization Using Benzoporphyrin (BPD),” Investigative Opthalmology and Visual Science (1993) 34:1303 Abstracts 2956. |
Schmidt-Erfurth et al., “Photodynamic Therapy of Experimental Melanoma Using Lipoprotein-Delivered Benzoporphyrin,” Opthalmology (1994) 101(1):89-99. |
Schmidt et al., “Photosensitizing Potency of Benzoporphyrin Derivative (BPD) Associated with Human Low Density Lipoprotein (LDL),” Investigative Opthalmology and Visual Science (1992) 33:1253 Abstract 2802. |
Walsh et al., “Photodynamic Therapy of Experimental Choroidal Neovascularization Using Benzoporphyrin Derivative Monoacid,” Investigative Opthalmology and Visual Science (1993) 34:1303 Abstracts 2954. |
Richter et al., “Characterization of Benzoporphyrin Derivative, A New Photosensitizer,” SPIE 97 (Advances in Photochemotherapy), 132-138 (1988). |
Kessel, D., “Photosensitization With a Benzoporphyrin Derivative,” Photochemistry and Photobiology (1989) 49(5):579-582. |
Richter et al., “In Vitro Evaluation of Phototoxic Properties of Four Structurally Related Benzoporphyrin Derivatives,” Photochemistry and Photobiology, (1990) 52(3):495-500. |
Allison et al., “The Effect of Low Density Lipoprotein Association With Benzoporphyrin Derivative on Photodynamic Therapy,” Photochemistry and Photobiology, (1991) 53(Suppl), 95S. |
Howard et al., “Photodynamic Therapy (PDT) or Pigmented Choroidal Melonama Using Liposomal Preparation of Benzoporphyrin Derivative (BPD),” Investigative Opthalmology and Visual Science (1994) 35(4): 1722. |
Kramer et al., “Photodynamic Therapy (PDT) of Experimental Choroidal Neovascularization (CNV) Using Liposomal Benzoporphyrin Derivative Monoacid (BPD-MA): Refinement of Dosimetry,” Investigative Opthalmology and Visual Science (1994) 35(4):1503. |
Lui et al., “Photodynamic Therapy of Malignant Skin Tumors in Humans With Benzoporphyrin Derivative and 690 NM Laser Light,” J. of Invest. Dermatol. (1994) 102(4):569. |
Schmidt-Erfurth et al., “Vascular Targeting in Photodynamic Occlusion of Subretinal Vessels,” Opthalmology (1994) 101:1953-1961. |
Gomer et al., “Hematoporphyrin Derivative Photoradiation Therapy for the Treatment of Intraocular Tumors: Examination of Acute Normal Ocular Tissue Toxicity,” Cancer Research (1983) 43:721-727. |
Bruce, “Photoradiation for Choroidal Malignant Melanoma,” Porphyrins in Tumor Phototherapy (1984) ed. by Andreoni and Cubbeddu, Plenum Press, New York, NY, pp. 455-461. |
Liu et al., “Photodynamic Therapy Induced Choroidal Vessel Destruction for the Treatment of Ocular Melanoma,” Investigative Opthalmology and Visual Science (1987) 28 (3, Supp.). |
Murphee et al., “The Evolution of Photodynamic Therapy Techniques in the Treatment of Intraocular Tumors,” Photochemistry and Photobiology (1987) 46(5):919-923. |
Fish et al., “Photodynamic Therapy of Conjunctival Melanoma in Rabbits: Toxicity and Dose Response,” Investigative Opthalmology and Visual Science (1988) 29(Abstr. Issue):341. |
Ben Hur et al., “Photodynamic Therapy of Age-Related Macular Degeneration and Atherosclerosis,” Ber. Bunsenges:: Phys. Chem. (1989) 93:284-286. |
Gomer, “Photodynamic Therapy in the Treatment of Malignancies,” Semin. Hematol. (1989) 26(1):2734. |
Kliman et al., “Angiography and Photodynamic Therapy of Experimental Choroidal Neovascularization using Phthalocyanin Dye,” Investigative Opthalmology and Visual Science (1989) 30(3,Supp) 371. |
Lingua et al., “Photodynamic Therapy for Ocular Tumors,” J. Photochem. Photobiol. B. (1991) 9(1):199-122. |
Ozler et al., “Photodynamic Therapy of Experimental Subchoroidal Melanoma Using Chloroaluminum Sulfonated Phthalocyanine,” Arch Opthalmol. (1992) 100:555-561. |
Hisazumi et al., “Photodynamic Therapy of Superficial Tumors and Carcinomas In Situ of the Bladder,” Gan No Rinsho (1985) 31 (6, Suppl.), Abstract. |
Masaki et al., “Photodynamic Therapy of Superficial Bladder Tumors,” Hinyokika Kiyo (1986) 32(12):1941-1948. |
Bachor et al., “Comparison of Intravenous and Intravesical Administration of Chloro-Aluminum Sulfonated Phthalocyanine for Photodynamic Treatment in a Rat Bladder Cancer Model,” J. of Urology (1992) 147:1404-1410. |
Morgan et al., “Second Generation Photosensitizers for Photodynamic Therapy,” Photochem. Photobiol. (1991) 53(Suppl.) 103S. |
Morgan et al., “Diels-Alder Adducts of Vinyl Porphyrins: Synthesis and In vivo Photodynamic Effect Against a Rat Bladder Tumor,” J. Med. Chem. (1990) 33:1258-1262. |
Richter et al., “Photosensitizing Potency of Structural Analogues of Benzoporphyrin Derivative (BPD) in a Mouse Tumour Model,” Br. J. Cancer (1991) 63:87-93. |
McCaughan, Jr., “Overview of Experiences With Photodynamic Therapy for Malignancy in 192 Patients,” Photochemistry and Photobiology (1987) 46(5):903-909. |
Ferrario et al., “Systemic Toxicity in Mice Induced by Localized Porphyrin in Photodynamic Therapy,” Cancer Research (1990) 50:539-543. |
Friedman et al., “The Retinal Pigment Epithelium,” Arch. Ophthal. (1968) 80:265-279. |
Thomas et al., “Closure of Experimental Subretinal Neovascular Vessels with Dihematoporphyrin Ether Augmented Argon Green Laser Photocoagulation,” Photocoagulation (1987) 881-886. |
Lui et al., “Photodynamic Therapy in Dermatology: Recent Developments,” Dermatologic Therapy (1993) 11:1-13. |
Moan et al., “Photochemotherapy of Cancer: Experimental Research,” Photochemistry and Photobiology (1992) 55:931-948. |
Kessel, D., “Porphyrin-Lipoprotein Association As A Factor In Porphyrin Localization,” Cancer Letters (1986) 33:183-188. |