The present invention relates to the use of polyolefin waxes synthesized using metallocene catalysts as an additive in powdercoating materials and also to a process for producing pigmented powdercoating materials.
The preparation of powdercoating materials by extrusion in co-rotating twin-screw extruders or single-screw kneading apparatus is general knowledge. Powdercoating materials are composed of
In the preparation of powdercoating materials in accordance with the known state of the art the additives used include waxes, in order to achieve the following effects:
In the preparation of the powdercoating material all of the constituents are first premixed in a mixer, then homogenized in an extruder or kneading apparatus at from 80 to 130° C. and finally brought to the ultimate particle size by grinding and classifying. In the preparation of pigmented systems it is particularly important to break down pigment agglomerates into very fine particles and to achieve maximum homogeneity in the dispersion of pigment aggregates, in order to give optimum color strength. At present this is done by introducing mechanical energy via the screw configuration of the extruders or kneading apparatus employed, without using a dispersing assistant.
The wax additives, which are used in a concentration of 0.01-10% by weight, based on the powdercoating material mass, are commonly polyolefin waxes, PTFE waxes, amide waxes, FT paraffins, montan waxes, natural waxes, macrocrystalline and microcrystalline paraffins, sorbitan esters and metallocene waxes.
Suitable polyolefin waxes are primarily polyethylene and polypropylene waxes. They can be prepared by thermal degradation of high-polymer polyolefins or by direct polymerization of corresponding monomers. Suitable polymerization techniques include high-pressure technologies, in which, for example, ethylene is reacted free-radically under high pressures and temperatures to form waxes, and also low-pressure or Ziegler techniques, where the olefin is polymerized using organometallic catalysts at comparatively low pressures and temperatures. The low-pressure technique permits not only the preparation of homopolymer waxes of uniform construction but also the synthesis of copolymers by joint polymerization of two or more olefins.
A variant of the low-pressure technique which has been disclosed more recently is a procedure in which metallocene compounds are used as organometallic catalysts. These metallocene compounds contain titanium, zirconium or hafnium atoms as active species and are generally employed in combination with cocatalysts, examples being organoaluminum compounds or boron compounds, preferably aluminoxane compounds. Polymerization takes place where necessary in the presence of hydrogen as a molar mass regulator. A feature of metallocene processes is that in comparison to the older Ziegler technology it is possible to obtain waxes having a narrower molar mass distribution, more uniform incorporation of comonomer, lower melting points and higher catalyst yields. Polymerization processes of this kind which operate with metallocene catalysts for the preparation of polyolefin waxes are described for example in EP-A-0 571 882.
EP-A-0 890 619 describes the use of metallocene polyolefin waxes in printing inks and paints. Not addressed therein are powdercoating materials, with their specific requirements concerning the addition of wax additives.
The invention was based on the object of improving the performance properties of powdercoating materials through use of a suitable dispersant.
It has now been found that polyolefin waxes prepared using metallocene catalysts are suitable with particular advantage for use as additives in powdercoating materials. Metallocene polyolefin waxes in particular display improved activity in respect of extrusion properties, flatting effect, lubricity, film hardness, abrasion resistance and dispersion harshness.
The invention accordingly provides for the use of polyolefin waxes synthesized using metallocene catalysts as an additive in powdercoating materials.
The polyolefin wax is preferably derived from olefins having 3 to 6 carbon atoms or from styrene.
Polyolefin waxes suitable in principle include homopolymers of ethylene and of propylene, copolymers of ethylene and propylene, or copolymers of ethylene or of propylene with one or more 1-olefins. 1-Olefins used are linear or branched olefins having 3-18 carbon atoms, preferably 3-6 carbon atoms. The 1-olefins may also carry an aromatic substitution.
Examples of suitable 1-olefins besides ethylene and propylene are 1-butene, 1-hexene, 1-octene or 1-octadecene, and also styrene. Particular preference is given to homopolymers of ethylene or propylene or to copolymers of ethylene with propylene or 1-butene. In the case of copolymers the ethylene content thereof is preferably 70-99.9%, in particular 80-99% by weight.
The polyolefin waxes used in accordance with the invention can be prepared either by direct polymerization with metallocene catalysts or by thermal degradation of polyolefin polymers, with the above composition, prepared using metallocene catalysts.
Used with particular preference are polyolefin waxes having a dropping point of between 70 and 165° C., in particular between 100 and 160° C., a melt viscosity at 140° C. (polyethylene waxes) or at 170° C. (polypropylene waxes) of between 10 and 10 000 mPas, in particular between 50 and 5000 mPas, and a density at 20° C. of between 0.85 and 0.98 g/cm3. Preferred polyolefin waxes have a molecular weight distribution Mw/Mn<5.
Metallocene catalysts for preparing polyolefin waxes or for preparing polyolefin polymers used for thermal degradation are chiral or nonchiral transition metal compounds of the formula M1Lx. The transition metal compound M1Lx contains at least one central metal atom M1 attached to which there is at least one π ligand, e.g., a cyclopentadienyl ligand. Additionally it is possible for substituents, such as halogen, alkyl, alkoxy or aryl groups, to be attached to the central metal atom M1. M1 is preferably an element from main group III, IV, V or VI of the Periodic Table of the Elements, such as Ti, Zr or Hf. By cyclopentadienyl ligand are meant unsubstituted cyclopentadienyl radicals and substituted cyclopentadienyl radicals such as methylcyclopentadienyl, indenyl, 2-methylindenyl, 2-methyl-4-phenylindenyl, tetrahydroindenyl or octahydrofluorenyl radicals. The π ligands can be bridged or unbridged, and both single and multiple bridging—including bridging via ring systems—are possible. The term “metallocene” also embraces compounds containing more than one metallocene fragment, referred to as polynucleometallocenes. These may have any desired substitution pattern and bridging variants. The individual metallocene fragments of such polynucleometallocenes may be either identical or different from one another (EP-A-0 632 063).
General structure formulae of metallocenes and also their use for preparing polyolefin waxes are given for example in EP-A-0 571 882.
The polyolefin waxes used in accordance with the invention may be employed either as they are or in a polar-modified form. Polar modification can be achieved, for example, by oxidation with air or oxygen-containing gases or by graft attachment of, for example, unsaturated carboxylic acids such as, for instance, maleic acid. Examples of oxidative modification can be found in EP-A-0 890 583, examples of modification with unsaturated carboxylic acids in EP-A-0 941 257.
The polyolefin waxes of the invention can be used both in pure form and also in a blend with further wax components, not prepared using metallocene catalysts, in a fraction of 1-50% by weight. Blending may take place in the melt or by mixing the components in solid form. The following blend components are suitable:
Additive a) comprises polyethylene glycol, molecular weight range preferably 10 to 50 000 daltons, in particular 20 to 35 000 daltons. The polyethylene glycol can be admixed in amounts of preferably up to 5% by weight to the composition comprising metallocene wax.
Additive b) comprises in preferred embodiments polyethylene homopolymer and copolymer waxes which have not been prepared by metallocene catalysis and which have a number-average molecular weight of from 700 to 10 000 g/mol with a dropping point of between 80 and 140° C.
Additive c) comprises in preferred embodiments polytetrafluoroethylene having a molecular weight of between 30 000 and 2 000 000 g/mol, in particular between 100 000 and 1 000 000 g/mol.
Additive d) comprises in preferred embodiments polypropylene homopolymer and copolymer waxes which have not been prepared by metallocene catalysis and which have a number-average molecular weight of from 700 to 10 000 g/mol with a dropping point of between 80 and 160° C.
Additive e) comprises in preferred embodiments amide waxes preparable by reacting ammonia or ethylenediamine with saturated and/or unsaturated fatty acids. The fatty acids comprise, for example, stearic acid, tallow fatty acid, palmitic acid or erucic acid.
Additive f) comprises in preferred embodiments FT paraffins having a number-average molecular weight of from 400 to 800 g/mol with a dropping point of from 80 to 125° C.
Additive g) preferably comprises montan waxes, including acid waxes and ester waxes, with a carboxylic acid carbon chain length of C22 to C36.
The ester waxes preferably comprise reaction products of the montanic acids with monohydric or polyhydric alcohols having 2 to 6 carbon atoms, such as ethanediol, butane-1,3-diol or propane-1,2,3-triol, for example.
Additive h) comprises in one preferred embodiment carnauba wax or candelilla wax.
Additive i) comprises paraffins and microcrystalline waxes which are obtained in the course of petroleum refining. The dropping points of such paraffins are preferably between 45 and 65° C., those of such microcrystalline waxes preferably between 73 and 100° C.
Additive j) comprises in preferred embodiments polar polyolefin waxes preparable by oxidizing ethylene or propylene homopolymer and copolymer waxes or by grafting them with maleic anhydride. Particular preference is given for this purpose to starting from polyolefin waxes having a dropping point of between 90 and 165° C., in particular between 100 and 160° C., a melt viscosity at 140° C. (polyethylene waxes) or at 170° C. (polypropylene waxes) of between 10 and 10 000 mPas, in particular between 50 and 5000 mPas, and a density at 20° C. of between 0.85 and 0.96 g/cm3.
Additive k) comprises in preferred embodiments reaction products of sorbitol with saturated and/or unsaturated fatty acids and/or montan acids. The fatty acids comprise for example stearic acid, tallow fatty acid, palmitic acid or erucic acid.
Additive l) comprises preferably ground polyamides, examples being nylon-6, nylon-6,6 or nylon-12. The particle size of the polyamides is preferably in the regrion of 5-200 μm, in particular 10-100 μm. Additive m) comprises polyolefins, in other words, for example, polypropylene, polyethylene or copolymers of propylene and ethylene of high or low density, with molar weights of preferably from 10 000 to 1 000 000 D, in particular from 15 000 to 500 000 D, as the numerical average of the molecular weight, whose particle size as a result of grinding is in the region of preferably 5-200 μm, in particular 10-100 μm.
Additive n) comprises thermoplastic PTFE having a molar weight of preferably 500 000-10 000 000 D, in particular 500 000-2 000 000 D, as numerical average, whose particle size as a result of grinding is in the region of preferably 5-200 μm, in particular 10-100 μm.
Additive o) comprises amphiphilic compounds which generally lower the surface tension of liquids. The wetting agents comprise, for example, alkyl ethoxylates, fatty alcohol ethoxylates, alkylbenzenesulfonates or betaines.
Additive p) comprises silicates which are not used as a filler or pigment in the formulas. Preference is given to using silicas or talc.
The mixing ratio of ingredient a) to ingredients b) to p) can be varied in the range from 1 to 50% by weight of a) to from 1 to 50% by weight of b) to p). If a mixture of two or more of ingredients b) to p) is used then the amount specified is valid for the sum of the amounts of those ingredients.
In one preferred embodiment the waxes are used in micronized form for the purpose according to the invention. Particular preference is given to using polyolefin wax and, if desired, admixed auxiliaries and additives in the form of an ultrafine powder having a particle size distribution d90<40 μm.
The invention further provides a process for preparing powdercoating materials from binders, pigments and fillers and also customary auxiliaries, which comprises adding an additive as per the present invention.
1) Preparation in accordance with EP-A-0 571 882
2) Preparation in accordance with EP-A-0 890 584
3) Preparation in accordance with EP-A-0 890 583
*Ring & ball softening point
M = inventive example
V = comparative example
All specimens were micronized to a DV50 of approximately 8 μm.
In all of examples 2 to 37 the inventive specimens (M1-M12) exhibit better results in each case than the comparatives (V1-V12).
In all of examples 38 to 56 the inventive specimens (M3, M4, M11) exhibit better results in each case (lower sliding friction) than the comparatives (V3, V4, V11).
In all of examples 57 to 69 it was possible to achieve a higher pencil hardness in each case with the inventive specimens than with the comparatives.
In all of examples 70 to 82 the inventive specimens exhibit better results (lower abrasion) in each case than the comparatives.
In all of examples 83 to 95 the inventive specimens exhibit better results (greater dispersion harshness) in each case than the comparatives.
In all of examples 96 to 120 the inventive specimens exhibit better results in each case (higher throughput) than the comparatives.
Number | Date | Country | Kind |
---|---|---|---|
102 16 118.6 | Apr 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP03/03518 | 4/4/2003 | WO |