The present invention relates to the general fields of nucleic acid analysis in human or other animal subjects, particularly the profiling of nucleic acids from a biological sample, and in particular, from microvesicles.
Cancer molecular diagnostics is becoming increasingly important with the accumulating knowledge of the molecular mechanisms underlying various types of cancers and the implications for diagnosis, treatment selection and prognosis.
Various molecular diagnostic tests like mutational analysis, methylation status of genomic DNA and gene expression analysis are currently being used to answer clinical questions. Differential gene expression analysis of cancer cells has so far primarily been done on cancer cells derived from surgically removed tumor tissue or from tissue obtained by biopsy. However, the ability to profile gene expression using a blood sample from a cancer patient rather than a tissue sample is desirable because a non-invasive approach such as this has wide ranging implications in terms of patient welfare, the ability to conduct longitudinal disease monitoring, and the ability to obtain expression profiles even when tissue cells are not easily accessible, e.g., in ovarian or brain cancer patients.
So far, gene expression profiling using a blood sample is confined to analyzing RNA extracted from Peripheral Blood Mononuclear Cells (PBMC) (Hakonarson et al., 2005) or Circulating Tumor Cells (CTC) (Cristofanilli and Mendelsohn, 2006). This invention discloses a novel method of profiling gene expressions and provides novel gene expression signatures associated with diseases by analyzing nucleic acids extracted from microvesicles from a bodily fluid, e.g., a blood sample.
The present invention provides genetic profiles associated with biological conditions and methods of applying these profiles in evaluating the biological conditions. As such, in one aspect, the present invention is directed to a profile of one or more RNA transcripts obtained from microvesicles. The one or more RNA transcripts are selected from those listed in Tables 1-20. In one embodiment, the microvesicles from which the profile is obtained are isolated from a bodily fluid from a subject. The bodily fluid may be blood, serum, plasma or urine. In a further embodiment, the subject is a human subject. In an even further embodiment, the human subject is a brain cancer patient such as a glioblastoma patient.
In another embodiment, the profile is obtained through analyzing RNA transcripts obtained from microvesicles. The analysis of RNA transcripts is performed by a method such as microarray analysis, Reverse Transcription PCR, Quantitative PCR or a combination of these above methods. In a further embodiment, the analysis includes an additional step of data analysis. The data analysis can be accomplished with Clustering Analysis, Principle Component Analysis, Linear Discriminant Analysis, Receiver Operating Characteristic Curve Analysis, Binary Analysis, Cox Proportional Hazards Analysis, Support Vector Machines and Recursive Feature Elimination (SVM-RFE), Classification to Nearest Centroid, Evidence-based Analysis, or a combination of the above methods. In yet another embodiment, the profile obtained from microvesicles is a profile of the one or more RNA transcripts selected from any one of the Tables 1-20. In yet another embodiment, the profile from microvesicles is a profile of each of the RNA transcripts listed in any one of the Tables 1-20.
In another aspect, the present invention refers to a method of aiding diagnosis, prognosis or therapy treatment planning for a subject, comprising the steps of: a) isolating microvesicles from a subject; b) measuring the expression level of one or more RNA transcripts extracted from the isolated microvesicles; c) determining a profile of the one or more RNA transcripts based on the expression level; and d) comparing the profile to a reference profile to aid diagnosis, prognosis or therapy treatment planning for the subject. In one embodiment, the microvesicles used in the method are isolated from a bodily fluid from the subject. The bodily fluid may be blood, serum, plasma or urine. In a further embodiment, the subject is a human subject. In an even further embodiment, the human subject is a brain cancer patient such as a glioblastoma patient. The step (b) in the method is accomplished with a microarray analysis, Reverse Transcription PCR, Quantitative PCR or a combination of the above methods. In a further embodiment, the step (c) in the method includes an additional step of data analysis. The data analysis can be accomplished with Clustering Analysis, Principle Component Analysis, Linear Discriminant Analysis, Receiver Operating Characteristic Curve Analysis, Binary Analysis, Cox Proportional Hazards Analysis, Support Vector Machines and Recursive Feature Elimination (SVM-RFE), Classification to Nearest Centroid, Evidence-based Analysis, or a combination of the above methods. The RNA transcripts whose profiles are determined in are one or more RNA transcripts selected from those listed in Tables 1-20. In yet another embodiment, the RNA transcripts whose profiles are determined include one or more RNA transcripts selected from any one of the Tables 1-20. In a further embodiment, the RNA transcripts are all of the transcripts listed in any one of Tables 1-20.
In yet another aspect, the present invention refers to a method of preparing a personalized genetic profile report for a subject, comprising the steps of: (a) isolating microvesicles from a subject; (b) detecting or measuring one or more genetic aberrations within the isolated microvesicles; (c) determining one or more genetic profiles from the data obtained from steps (a) and (b); (d) optionally comparing the one or more genetic profiles to one or more reference profiles; and (e) creating a report summarizing the data obtained from steps (a) through (d) and optionally including diagnostic, prognostic or therapeutic treatment information. In one embodiment of the method, step (b) comprises the quantitative measurement of one or more nucleic acids within the isolated microvesicles and step (c) comprises the determination of one or more quantitative nucleic acid profiles. In another embodiment of the method, the one or more nucleic acids are RNA transcripts selected from Tables 1-20. In a further embodiment of the method, the one or more nucleic acids are RNA transcripts selected from any one of Tables 1-20. In another further embodiment of the method, one or more nucleic acids comprise each of the RNA transcripts in any one of the Tables 1-20.
In yet another aspect, the present invention is a kit for genetic analysis of an exosome preparation from a body fluid sample from a subject, comprising, in a suitable container, one or more reagents suitable for hybridizing to or amplifying one or more of the RNA transcripts selected from Tables 1-20. In one embodiment, the kit includes one or more reagents suitable for hybridizing to or amplifying one or more of the RNA transcripts selected from any one of Tables 1-20. In another embodiment, the kit includes one or more reagents suitable for hybridizing to or amplifying each of the RNA transcripts in any one of Tables 1-20.
In yet another aspect, the present invention is a custom-designed oligonucleotide microarray for genetic analysis of an exosome preparation from a body fluid sample from a subject, wherein the oligos on the array exclusively hybridize to one or more transcripts selected from any one of Tables 1-20.
In yet another aspect, the present invention is a method of identifying at least one potential biomarker for a disease or other medical condition, the method comprising: (a) isolating microvesicles from subjects having a disease or other medical condition of interest and from subjects who do not have the disease or other medical condition of interest; (b) measuring the expression level of a target RNA transcript extracted from the isolated microvesicles from each of the subjects; (c) comparing the measured levels of the target RNA transcript from each of the subjects; and (d) determining whether there is a statistically significant difference in the measured levels; wherein a determination resulting from step (d) of a statistically significant difference in the measured levels identifies the target RNA transcript and its corresponding gene as potential biomarkers for the disease or other medical condition. Preferably, the target RNA transcript is selected from Tables 1-20.
In yet another aspect, the present invention is a method of profiling genetic aberrations in a subject, comprising the steps of: (a) isolating microvesicles from a subject; (b) detecting or measuring one or more genetic aberrations within the isolated microvesicles; and (c) determining one or more genetic profiles from the data obtained from steps (a) and (b). In one embodiment of the method, step (b) comprises the quantitative measurement of one or more nucleic acids within the isolated microvesicles and step (c) comprises the determination of one or more quantitative nucleic acid profiles. In a further embodiment of the method, the one or more nucleic acids are RNA transcripts selected from Tables 1-20. In another embodiment, the one or more nucleic acids are RNA transcripts selected from any one of Tables 1-20. In yet another further embodiment, the one or more nucleic acids comprise each of the RNA transcripts in any one of Tables 1-20. In any of the inventive methods, a step of enriching the isolated microvesicles for microvesicles originating from a specific cell type may be optionally included.
The present invention may be as defined in any one of the following numbered paragraphs.
Microvesicles are shed by eukaryotic cells, or budded off of the plasma membrane, to the exterior of the cell. These membrane vesicles are heterogeneous in size with diameters ranging from about 10 nm to about 5000 nm. The small microvesicles (approximately 10 to 1000 nm, and more often approximately 30 to 200 nm in diameter) that are released by exocytosis of intracellular multivesicular bodies or by double inward budding of multivesicular bodies are referred to in the art as “exosomes.” The compositions, methods and uses described herein are equally applicable to microvesicles of all sizes; preferably 30 to 800 nm; and more preferably 30 to 200 nm.
In some of the literature, the term “exosome” also refers to protein complexes containing exoribonucleases which are involved in mRNA degradation and the processing of small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNA) (Liu et al., 2006; van Dijk et al., 2007). Such protein complexes do not have membranes and are not “microvesicles” or “exosomes” as those terms are used here in.
Certain aspects of the present invention are based on the surprising finding that glioblastoma derived microvesicles can be isolated from the serum of glioblastoma patients (Skog et al., 2008). This is the first discovery of microvesicles derived from cells in the brain, present in a bodily fluid of a subject. Prior to this discovery it was not known whether glioblastoma cells produced microvesicles or whether such microvesicles could cross the blood brain bather into the rest of the body. These microvesicles were found to contain mutant mRNA associated with tumor cells (Skog et al., 2008). The microvesicles also contained microRNAs (miRNAs) which were found to be abundant in glioblastomas (Skog et al., 2008). Glioblastoma-derived microvesicles were also found to potently promote angiogenic features in primary human brain microvascular endothelial cells (HBMVEC) in culture. This angiogenic effect was mediated at least in part through angiogenic proteins present in the microvesicles (Skog et al., 2008). The nucleic acids found within these microvesicles, as well as other contents of the microvesicles such as angiogenic proteins, can be used as valuable biomarkers for tumor diagnosis, characterization and prognosis by providing a genetic profile. Contents within these microvesicles can also be used to monitor tumor progression over time by analyzing if other mutations are acquired during tumor progression as well as if the levels of certain mutations or gene expression increase or decrease over time or over a course of treatment.
Certain aspects of the present invention are based on another finding that most of the extracellular RNA in bodily fluid from a subject is contained within microvesicles and thus protected from degradation by ribonucleases (Skog et al., 2008). More than 90% of extracellular RNA in total serum can be recovered in microvesicles (Skog et al., 2008).
One aspect of the present invention relates to methods for detecting, diagnosing, monitoring, treating or evaluating a disease or other medical condition in a subject comprising the steps of, isolating exosomes from a bodily fluid of a subject, and analyzing one or more nucleic acids contained within the exosomes. The nucleic acids are analyzed qualitatively and/or quantitatively, and the results are compared to results expected or obtained for one or more other subjects who have or do not have the disease or other medical condition. The presence of a difference in microvesicular nucleic acid content of the subject, as compared to that of one or more other individuals, can indicate the presence or absence of, the progression of (e.g., changes of tumor size and tumor malignancy), or the susceptibility to a disease or other medical condition in the subject.
The isolation methods and techniques described herein provide the following heretofore unrealized advantages: 1) the opportunity to selectively analyze disease- or tumor-specific nucleic acids, which may be realized by isolating disease- or tumor-specific microvesicles apart from other microvesicles within the fluid sample; 2) significantly higher yield of nucleic acid species with higher sequence integrity as compared to the yield/integrity obtained by extracting nucleic acids directly from the fluid sample; 3) scalability, e.g. to detect nucleic acids expressed at low levels, the sensitivity can be increased by isolating more microvesicles from a larger volume of serum; 4) purer nucleic acids in that protein and lipids, debris from dead cells, and other potential contaminants and PCR inhibitors are excluded from the microvesicle preparation before the nucleic acid extraction step; and 5) more choices in nucleic acid extraction methods as microvesicle preparations are of much smaller volume than that of the starting serum, making it possible to extract nucleic acids from the microvesicle preparations using small volume column filters.
The microvesicles are preferably isolated from a bodily fluid from a subject. As used herein, a “bodily fluid” refers to a sample of fluid isolated from anywhere in the body of the subject, preferably a peripheral location, including but not limited to, for example, blood, plasma, serum, urine, sputum, spinal fluid, pleural fluid, nipple aspirates, lymph fluid, fluid of the respiratory, intestinal, and genitourinary tracts, tear fluid, saliva, breast milk, fluid from the lymphatic system, semen, cerebrospinal fluid, intra-organ system fluid, ascitic fluid, tumor cyst fluid, amniotic fluid and combinations thereof.
The term “subject” is intended to include all animals shown to or expected to have microvesicles. In particular embodiments, the subject is a mammal, a human or nonhuman primate, a dog, a cat, a horse, a cow, other farm animals, or a rodent (e.g. mice, rats, guinea pig etc.). The term “subject” and “individual” are used interchangeably herein.
Methods of isolating microvesicles from a biological sample are known in the art. For example, a method of differential centrifugation is described in a paper by Raposo et al. (Raposo et al., 1996) and a paper by Skog et. al. (Skog et al., 2008). Methods of anion exchange and/or gel permeation chromatography are described in U.S. Pat. Nos. 6,899,863 and 6,812,023. Methods of sucrose density gradients or organelle electrophoresis are described in U.S. Pat. No. 7,198,923. A method of magnetic activated cell sorting (MACS) is described in (Taylor and Gercel-Taylor, 2008). A method of nanomembrane ultrafiltration is described in (Cheruvanky et al., 2007). Additionally, microvesicles can be identified and isolated from bodily fluid of a subject by a recently developed microchip technology that uses a microfluidic platform to separate tumor-derived microvesicles. This technology, as described in a paper by Nagrath et al. (Nagrath et al., 2007), can be adapted to identify and separate microvesicles using similar principles of capture and separation as taught in the paper. Further, a method of isolating microvesicles from urine samples is described in a paper by Miranda et. al. (Miranda et al., 2010) and in PCT/US2010/042365 by Russo et. al., filed Jul. 16, 2010 (expected to publish in 2011). Each of the foregoing references is incorporated by reference herein for its teaching of these methods.
In one embodiment, the microvesicles isolated from a bodily fluid are enriched for those originating from a specific cell type, for example, lung, pancreas, stomach, intestine, bladder, kidney, ovary, testis, skin, colorectal, breast, prostate, brain, esophagus, liver, placenta, fetus cells. Because the microvesicles often carry surface molecules such as antigens from their donor cells, surface molecules may be used to identify, isolate and/or enrich for microvesicles from a specific donor cell type (Al-Nedawi et al., 2008; Taylor and Gercel-Taylor, 2008). In this way, microvesicles originating from distinct cell populations can be analyzed for their nucleic acid content. For example, tumor (malignant and non-malignant) microvesicles carry tumor-associated surface antigens and may be detected, isolated and/or enriched via these specific tumor-associated surface antigens. In one example, the surface antigen is epithelial-cell-adhesion-molecule (EpCAM), which is specific to microvesicles from carcinomas of lung, colorectal, breast, prostate, head and neck, and hepatic origin, but not of hematological cell origin (Balzar et al., 1999; Went et al., 2004). In another example, the surface antigen is CD24, which is a glycoprotein specific to urine microvesicles (Keller et al., 2007). In yet another example, the surface antigen is selected from a group of molecules including CD70, carcinoembryonic antigen (CEA), EGFR, EGFRvIII and other variants, Fas ligand, TRAIL, tranferrin receptor, p38.5, p97 and HSP72. Additionally, tumor-specific microvesicles may be characterized by the lack of surface markers, such as CD80 and CD86.
The isolation of microvesicles from specific cell types can be accomplished, for example, by using antibodies, aptamers, aptamer analogs or molecularly imprinted polymers specific for a desired surface antigen. In one embodiment, the surface antigen is specific for a cancer type. In another embodiment, the surface antigen is specific for a cell type which is not necessarily cancerous. One example of a method of microvesicle separation based on cell surface antigen is provided in U.S. Pat. No. 7,198,923. As described in, e.g., U.S. Pat. Nos. 5,840,867 and 5,582,981, WO/2003/050290 and a publication by Johnson et al. (Johnson et al., 2008), aptamers and their analogs specifically bind surface molecules and can be used as a separation tool for retrieving cell type-specific microvesicles. Molecularly imprinted polymers also specifically recognize surface molecules as described in, e.g., U.S. Pat. Nos. 6,525,154, 7,332,553 and 7,384,589 and a publication by Bossi et al. (Bossi et al., 2007) and are a tool for retrieving and isolating cell type-specific microvesicles. Each of the foregoing reference is incorporated herein for its teaching of these methods.
It may be beneficial or otherwise desirable to extract the nucleic acid from the exosomes prior to the analysis. Nucleic acid molecules can be extracted from a microvesicle using any number of procedures, which are well-known in the art, the particular extraction procedure chosen being appropriate for the particular biological sample. In some instances, with some techniques, it may also be possible to analyze the nucleic acid without extraction from the microvesicle.
In one embodiment, the extracted nucleic acids, including DNA and/or RNA, are analyzed directly without an amplification step. Direct analysis may be performed with different methods including, but not limited to, nanostring technology. NanoString technology enables identification and quantification of individual target molecules in a biological sample by attaching a color-coded fluorescent reporter to each target molecule. This approach is similar to the concept of measuring inventory by scanning barcodes. Reporters can be made with hundreds or even thousands of different codes allowing for highly multiplexed analysis. The technology is described in a publication by Geiss et al. (Geiss et al., 2008) and is incorporated herein by reference for this teaching.
In another embodiment, it may be beneficial or otherwise desirable to amplify the nucleic acid of the microvesicle prior to analyzing it. Methods of nucleic acid amplification are commonly used and generally known in the art, many examples of which are described herein. If desired, the amplification can be performed such that it is quantitative. Quantitative amplification will allow quantitative determination of relative amounts of the various nucleic acids, to generate a profile as described below.
In one embodiment, the extracted nucleic acid is RNA. Preferably, the RNA is reverse-transcribed into complementary DNA before further amplification. Such reverse transcription may be performed alone or in combination with an amplification step. One example of a method combining reverse transcription and amplification steps is reverse transcription polymerase chain reaction (RT-PCR), which may be further modified to be quantitative, e.g., quantitative RT-PCR as described in U.S. Pat. No. 5,639,606, which is incorporated herein by reference for this teaching.
Nucleic acid amplification methods include, without limitation, polymerase chain reaction (PCR) (U.S. Pat. No. 5,219,727) and its variants such as in situ polymerase chain reaction (U.S. Pat. No. 5,538,871), quantitative polymerase chain reaction (U.S. Pat. No. 5,219,727), nested polymerase chain reaction (U.S. Pat. No. 5,556,773), self-sustained sequence replication and its variants (Guatelli et al., 1990), transcriptional amplification system and its variants (Kwoh et al., 1989), Qb Replicase and its variants (Miele et al., 1983), cold-PCR (Li et al., 2008) or any other known nucleic acid amplification methods, followed by the detection of the amplified molecules using techniques known to those of skill in the art. Especially useful are those detection schemes designed for the detection of nucleic acid molecules if such molecules are present in very low numbers. The foregoing references are incorporated herein for their teachings of these methods.
The analysis of nucleic acids present in the microvesicles is quantitative and/or qualitative. For quantitative analysis, the amounts (e.g., expression levels), either relative or absolute, of all or specific nucleic acids of interest within the microvesicles are measured with methods known in the art (described below). For qualitative analysis, all or specific species of nucleic acids of interest within the microvesicles, whether wild-type or variants, are identified with methods known in the art (described below).
A “profile” is used herein to refer to the result of a quantitative analysis, a qualitative analysis, or a combination of both. The analysis may be an analysis of the nucleic acids as well as other contents extracted from a biological sample, e.g., a microvesicle. In one embodiment, a profile of genes refers to one or more genetic aberrations of the genes. Similarly, a profile of genes also refers to a signature of genes herein.
A “genetic aberration” is used herein to refer to a nucleic acid amount as well as a nucleic acid variant within a biological sample, e.g., a microvesicle. Specifically, genetic aberrations include, without limitation, over-expression of a gene (e.g., oncogenes) or a panel of genes, under-expression of a gene (e.g., tumor suppressor genes such as p53 or RB) or a panel of genes, alternative production of splice variants of a gene or a panel of genes, gene copy number variants (CNV) (e.g. DNA double minutes) (Hahn, 1993), nucleic acid modifications (e.g., methylation, acetylation and phosphorylations), single nucleotide polymorphisms (SNPs), chromosomal rearrangements (e.g., inversions, deletions and duplications), and mutations (insertions, deletions, duplications, missense, nonsense, synonymous or any other nucleotide changes) of a gene or a panel of genes, which mutations, in many cases, ultimately affect the activity and function of the gene products, lead to alternative transcriptional splicing variants and/or changes of gene expression level.
The determination of such genetic aberrations can be performed by a variety of techniques known to the skilled practitioner. For example, expression levels of nucleic acids, alternative splicing variants, chromosome rearrangement and gene copy numbers can be determined by microarray analysis (U.S. Pat. Nos. 6,913,879, 7,364,848, 7,378,245, 6,893,837 and 6,004,755) and quantitative PCR. Particularly, copy number changes may be detected with the Illumina Infinium II whole genome genotyping assay or Agilent Human Genome CGH Microarray (Steemers et al., 2006). Nucleic acid modifications can be assayed by methods described in, e.g., U.S. Pat. No. 7,186,512 and patent publication WO 2003/023065. Particularly, methylation profiles may be determined by Illumina DNA Methylation OMA003 Cancer Panel. SNPs and mutations can be detected by hybridization with allele-specific probes, enzymatic mutation detection, chemical cleavage of mismatched heteroduplex (Cotton et al., 1988), ribonuclease cleavage of mismatched bases (Myers et al., 1985), mass spectrometry (U.S. Pat. Nos. 6,994,960, 7,074,563, and 7,198,893), nucleic acid sequencing, single strand conformation polymorphism (SSCP) (Orita et al., 1989), denaturing gradient gel electrophoresis (DGGE)(Fischer and Lerman, 1979a; Fischer and Lerman, 1979b), temperature gradient gel electrophoresis (TGGE) (Fischer and Lerman, 1979a; Fischer and Lerman, 1979b), restriction fragment length polymorphisms (RFLP) (Kan and Dozy, 1978a; Kan and Dozy, 1978b), oligonucleotide ligation assay (OLA), allele-specific PCR (ASPCR) (U.S. Pat. No. 5,639,611), ligation chain reaction (LCR) and its variants (Abravaya et al., 1995; Landegren et al., 1988; Nakazawa et al., 1994), flow-cytometric heteroduplex analysis (WO/2006/113590) and combinations or modifications of any of the foregoing. Notably, gene expression levels may be determined by the serial analysis of gene expression (SAGE) technique (Velculescu et al., 1995). In general, the methods for analyzing genetic aberrations are reported in numerous publications, not limited to those cited herein, and are available to skilled practitioners. The appropriate method of analysis will depend upon the specific goals of the analysis, the condition and/or history of the patient, and the specific cancer(s), diseases or other medical conditions to be detected, monitored or treated. The forgoing references are incorporated herein for their teachings of these methods.
In one embodiment, the analysis is of a profile of the amounts (levels) of all or specific nucleic acids present in the microvesicle, herein referred to as a “quantitative nucleic acid profile” of the microvesicles. In another embodiment, the analysis is of a profile of the species of all or specific nucleic acids present in the microvesicles (both wild type as well as variants), herein referred to as a “nucleic acid species profile.” A term used herein to refer to a combination of these types of profiles is “genetic profile” which refers to the determination of the presence or absence of nucleotide species, variants and also increases or decreases in nucleic acid levels.
Once generated, these genetic profiles of the microvesicles are compared to those expected in, or otherwise derived from a healthy normal individual. A profile can be a genome-wide profile (representing all possible expressed genes or DNA sequences). It can be narrower as well, such as a cancer-wide profile (representing all possible genes or nucleic acids derived from or associated with cancer). Where a specific cancer is suspected or known to exist, the profile can be specific to that cancer (e.g., representing all possible genes or nucleic acids derived from or associated with the cancer or various clinically distinct subtypes of that cancer or known drug-resistant or sensitive forms of the cancer).
The methods of nucleic acid isolation, amplification and analysis are routine for one skilled in the art and examples of protocols can be found, for example, in Molecular Cloning: A Laboratory Manual (3-Volume Set) Ed. Joseph Sambrook, David W. Russel, and Joe Sambrook, Cold Spring Harbor Laboratory, 3rd edition (Jan. 15, 2001), ISBN: 0879695773. A particular useful protocol source for methods used in PCR amplification is PCR Basics: From Background to Bench by Springer Verlag; 1st edition (Oct. 15, 2000), ISBN: 0387916008.
Many methods of diagnosis performed on a tumor biopsy sample can be performed with microvesicles since tumor cells are known to shed microvesicles into bodily fluid and the genetic aberrations within these microvesicles are reflective of those within the tumor cells themselves (Skog et al., 2008). Furthermore, methods of diagnosis using microvesicles have characteristics that are absent in methods of diagnosis performed directly on a tumor biopsy sample. For example, one particular advantage of the analysis of microvesicular nucleic acids, as opposed to other forms of sampling of tumor/cancer nucleic acid, is the availability for analysis of tumor/cancer nucleic acids derived from all foci of a tumor or genetically heterogeneous tumors present in an individual. Biopsy samples are limited in that they provide information only about the specific focus of the tumor from which the biopsy is obtained. Different tumorous/cancerous foci found within the body, or even within a single tumor often have different genetic profiles, all of which are not analyzed in a standard biopsy. However, analysis of the microvesicular nucleic acids from an individual has the potential to provide a sampling of all foci within an individual. This provides valuable information with respect to recommended treatments, treatment effectiveness, disease prognosis, and analysis of disease recurrence, which cannot be provided by a simple biopsy.
Aspects of the present invention relate to a method for monitoring disease (e.g. cancer) progression in a subject, and also to a method for monitoring disease recurrence in an individual. These methods comprise the steps of isolating microvesicles from a bodily fluid of an individual, as discussed herein, and analyzing nucleic acid within the microvesicles as discussed herein (e.g. to create a genetic profile of the microvesicles). The presence or absence of a certain genetic aberration or profile is used to indicate the presence or absence of the disease (e.g., cancer) in the subject as discussed herein. The process is performed periodically over time, and the results reviewed, to monitor the progression or regression of the disease, or to determine recurrence of the disease. Put another way, a change in the microvesicular genetic profile indicates a change in the disease state in the subject. The period of time to elapse between sampling of microvesicles from the subject, for performance of the isolation and analysis of the microvesicles, will depend upon the circumstances of the subject, and is to be determined by the skilled practitioner. Such a method would be extremely beneficial when analyzing nucleic acid from a gene that is associated with the therapy undergone by the subject. For example, a gene which is targeted by the therapy can be monitored for the development of mutations which make it resistant to the therapy, upon which time the therapy can be modified accordingly. The monitored gene may also be one which indicates specific responsiveness to a specific therapy.
Aspects of the present invention also relate to the fact that a variety of non-cancer diseases and/or medical conditions also have genetic links and/or causes, and such diseases and/or medical conditions can likewise be diagnosed and/or monitored by the methods described herein. Many such diseases are metabolic, infectious or degenerative in nature. One such disease is diabetes (e.g. diabetes insipidus) in which the vasopressin type 2 receptor (V2R) is modified. Another such disease is kidney fibrosis in which genetic profiles for the genes of collagens, fibronectin and TGF-β are changed. Changes in genetic profiles due to substance abuse, viral and/or bacterial infection, and hereditary disease states can likewise be detected by the methods described herein.
Diseases or other medical conditions for which the inventions described herein are applicable include, but are not limited to, nephropathy, diabetes insipidus, diabetes mellitus, diabetes type I, diabetes II, renal disease glomerulonephritis, bacterial or viral glomerulonephritides, IgA nephropathy, Henoch-Schonlein Purpura, membranoproliferative glomerulonephritis, membranous nephropathy, Sjogren's syndrome, nephrotic syndrome minimal change disease, focal glomerulosclerosis and related disorders, acute renal failure, acute tubulointerstitial nephritis, pyelonephritis, GU tract inflammatory disease, Pre-clampsia, renal graft rejection, leprosy, reflux nephropathy, nephrolithiasis, genetic renal disease, medullary cystic, medullar sponge, polycystic kidney disease, autosomal dominant polycystic kidney disease, autosomal recessive polycystic kidney disease, tuberous sclerosis, von Hippel-Lindau disease, familial thin-glomerular basement membrane disease, collagen ITT glomerulopathy, fibronectin glomerulopathy, Alport's syndrome, Fabry's disease, Nail-Patella Syndrome, congenital urologic anomalies, monoclonal gammopathies, multiple myeloma, amyloidosis and related disorders, febrile illness, familial Mediterranean fever, HIV infection-AIDS, inflammatory disease, systemic vasculitides, polyarteritis nodosa, Wegener's granulomatosis, polyarteritis, necrotizing and crecentic glomerulonephritis, polymyositis-dermatomyositis, pancreatitis, rheumatoid arthritis, systemic lupus erythematosus, gout, blood disorders, sickle cell disease, thrombotic thrombocytopenia purpura, Fanconi's syndrome, transplantation, acute kidney injury, irritable bowel syndrome, hemolytic-uremic syndrome, acute corticol necrosis, renal thromboembolism, trauma and surgery, extensive injury, burns, abdominal and vascular surgery, induction of anesthesia, side effect of use of drugs or drug abuse, circulatory disease myocardial infarction, cardiac failure, peripheral vascular disease, hypertension, coronary heart disease, non-atherosclerotic cardiovascular disease, atherosclerotic cardiovascular disease, skin disease, psoriasis, systemic sclerosis, respiratory disease, COPD, obstructive sleep apnoea, hypoia at high altitude or endocrine disease, or acromegaly.
Selection of an individual from whom the microvesicles are isolated is performed by the skilled practitioner based upon analysis of one or more of a variety of factors. Such factors for consideration are whether the subject has a family history of a specific disease (e.g., a cancer), has a genetic predisposition for such a disease, has an increased risk for such a disease, or has physical symptoms which indicate a predisposition, or environmental reasons. Environmental reasons include lifestyle, exposure to agents which cause or contribute to the disease such as in the air, land, water or diet. In addition, having previously had the disease, being currently diagnosed with the disease prior to therapy or after therapy, being currently treated for the disease (undergoing therapy), being in remission or recovery from the disease, are other reasons to select an individual for performing the methods.
The cancer diagnosed, monitored or otherwise profiled, can be any kind of cancer. This includes, without limitation, epithelial cell cancers such as lung, ovarian, cervical, endometrial, breast, brain, colon and prostate cancers. Also included are gastrointestinal cancer, head and neck cancer, non-small cell lung cancer, cancer of the nervous system, kidney cancer, retina cancer, skin cancer, liver cancer, pancreatic cancer, genital-urinary cancer and bladder cancer, melanoma, and leukemia. In addition, the methods and compositions of the present invention are equally applicable to detection, diagnosis and prognosis of non-malignant tumors in an individual (e.g., neurofibromas, meningiomas and schwannomas).
In one embodiment, the cancer is brain cancer. Types of brain tumors and cancer are well known in the art. Glioma is a general name for tumors that arise from the glial (supportive) tissue of the brain. Gliomas are the most common primary brain tumors. Astrocytomas, ependymomas, oligodendrogliomas, and tumors with mixtures of two or more cell types, called mixed gliomas, are the most common gliomas. The following are other common types of brain tumors: Acoustic Neuroma (Neurilemmoma, Schwannoma. Neurinoma), Adenoma, Astracytoma, Low-Grade Astrocytoma, giant cell astrocytomas, Mid- and High-Grade Astrocytoma, Recurrent tumors, Brain Stem Glioma, Chordoma, Choroid Plexus Papilloma, CNS Lymphoma (Primary Malignant Lymphoma), Cysts, Dermoid cysts, Epidermoid cysts, Craniopharyngioma, Ependymoma Anaplastic ependymoma, Gangliocytoma (Ganglioneuroma), Ganglioglioma, Glioblastoma Multiforme (GBM), Malignant Astracytoma, Glioma, Hemangioblastoma, Inoperable Brain Tumors, Lymphoma, Medulloblastoma (MDL), Meningioma, Metastatic Brain Tumors, Mixed Glioma, Neurofibromatosis, Oligodendroglioma. Optic Nerve Glioma, Pineal Region Tumors, Pituitary Adenoma, PNET (Primitive Neuroectodermal Tumor), Spinal Tumors, Subependymoma, and Tuberous Sclerosis (Bourneville's Disease).
As an exemplary embodiment of the present invention, one aspect of the present invention is a method of analyzing RNA profiles using microvesicles isolated from brain cancer serum samples. The method comprises the steps of isolating microvesicles from brain cancer serum samples and analyzing nucleic acids extracted from the isolated microvesicles.
As an exemplary embodiment of the present invention, another aspect of the present intention is the discovery of a series of brain cancer gene expression profiles or signatures. The signatures were discovered by analyzing nucleic acids extracted from brain cancer serum samples. The signatures can be used for the diagnosis and/or prognosis of brain cancer, as well as treatment plan evaluation, selection and monitoring of brain cancer.
The exemplary embodiment of the present invention is illustrated in the following example for both method and signature aspects. In this example, gene signatures for glioblastoma cancer were obtained using methods and materials detailed below.
Blood samples from patients diagnosed with de-novo primary GBM were collected immediately prior to surgery, before opening of the dura mater, into a BD Vacutainer SST (#367985) at Massachusetts General Hospital (MGH). Blood from normal healthy controls was collected from volunteers recruited at the MGH blood bank. All samples were collected with informed consent according to the appropriate protocols approved by the Institutional Review Board at MGH. The blood was left to clot for 30 min and serum was isolated according to manufacturer's recommendations within two hours of collection. Serum was filtered by slowly passing it through a 0.8 μm syringe filter, aliquoted into 1.8 milliliter (m1) cryotubes and kept at −80° C. until used. Altogether, 9 serum samples from glioblastoma patients and 7 serum samples from non-glioblastoma human subjects were obtained for the following analysis.
Isolation of microvesicles from serum samples was performed as previously described (Skog et al., 2008). Briefly, 1 ml serum was centrifuged for 10 min at 300×g to eliminate any cell contamination. Supernatants were further centrifuged for 20 min at 16,500×g and filtered through a 0.22 μm filter. Microvesicles were then pelleted by ultracentrifugation at 110,000×g for 70 min. The microvesicle pellets were washed in 13 ml PBS, pelleted again and resuspended in cold PBS. Isolated microvesicles were measured for their total protein content using DC Protein Assay (Bio-Rad, Hercules, Calif., USA).
For the extraction of RNA from microvesicles, the pelleted microvesicles were incubated in an RNAse inhibitor solution for 5-10 minutes at room temperature. The RNase inhibitor can be from various known vendors, e.g., one inhibitor is “SUPERase” from Ambion Inc. Total RNA was extracted from the RNAse-treated microvesicles using various commercial RNA extraction kits such as the QIAamp RNA Blood Mini Kit or the miRNeasy mini kit from Qiagen, or the MirVana RNA isolation kit from Ambion Inc., according to the manufacturer's protocols. After treatment with DNAse according to the manufacturers' protocol, total RNA was eluted in 30 ul nuclease-free water. RNA quality and concentration was assessed with the Agilent Bioanalyzer RNA Pico Chip yielding typical concentrations of 0.4-0.8 ng/μL for normal controls and 0.8-2.0 ng/μL for GBM patients.
The extracted RNA was then analyzed using the Agilent 44K Whole Human Genome Oligo Microarrays (one-color), a standard gene expression analysis tool, according to standard protocols. Briefly, for the linear T7-based amplification step, from 0.07 μg up to 0.46 μg of total RNA was used, depending on the available amount of total RNA. To produce Cy3-labeled cRNA, the RNA samples were amplified and labeled using the Agilent Low RNA Input Linear Amp Kit (Agilent Technologies) following the manufacturer's protocol. Yields of cRNA and the dye incorporation rate were measured with the ND-1000 Spectrophotometer (NanoDrop Technologies). The hybridization procedure was performed according to the Agilent 60-mer oligo microarray processing protocol using the Agilent Gene Expression Hybridization Kit (Agilent Technologies). Briefly, 1.5-1.65 μg of Cy3-labeled fragmented cRNA in hybridization buffer was hybridized overnight (17 hours, 65° C.) to Agilent Whole Human Genome Oligo Microarrays 4×44K using Agilent's recommended hybridization chamber and oven. Finally, the microarrays were washed once with the Agilent Gene Expression Wash Buffer 1 for 1 min at room temperature followed by a second wash with preheated Agilent Gene Expression Wash Buffer 2 (37° C.) for 1 min. The last washing step was performed with acetonitrile. Fluorescence signals of the hybridized Agilent Microarrays were detected using Agilent's Microarray Scanner System (Agilent Technologies).
The Agilent Feature Extraction Software (FES) was used to read out and process the microarray image files. The software determines feature intensities (including background subtraction), rejects outliers and calculates statistical confidences. For the determination of differential gene expression, FES-derived output data files were further analyzed using the Rosetta Resolver gene expression data analysis system (Rosetta Biosoftware). This software offers—among other features—the ability to compare two single intensity profiles in a ratio experiment. All samples were labeled with Cy3. Here, the ratio experiments are designated as control versus (vs.) sample experiments (automated data output of the Resolver system).
The raw data from Feature Extraction was pre-processed and normalized in several different ways using R/Bioconductor and the packages limina, Agi4x44PreProcess and vsn. To ensure that the normalization procedure did not introduce unintended biases or artifacts, the data was normalized in three different ways using Quartile normalization with and without background subtraction and variance stabilized normalization (VSN), and the normalized data was compared to the raw values. Normalized data was transferred to Excel and filtered with different criteria as described below. Gene lists of interest were uploaded and analyzed with the online Gene Ontology Tool DAVID 6.7.
As a result, microvesicles (less than 0.8 μm in diameter) were isolated from serum samples from 9 GBM patients (prior to surgery) and 7 normal healthy controls. RNA from this exosomal fraction (exoRNA) was extracted, labeled and amplified by linear amplification and hybridized to Agilent 4x44K arrays. The raw data was corrected for background, normalized and submitted for deposit in the Gene Expression Omnibus database by user name/ID Mikkell Noerholm on Sep. 4, 2010 in the format of GEOarchive. The deposited file name is AgilentQuartileNorm_MeanSignal_GBMvsCTRL_GEO.zip. The deposited data are here incorporated by reference in its entirety including the array oligo sequences.
Clustering analysis, heat maps, and Principle Component Analysis of the normalized data was performed by using various softwares, e.g. GeneSifter, provided various sources, e.g., dChip A clustering analysis for genome-wide expression data from DNA microarray hybridization uses standard statistical algorithms to cluster genes according to similarity in pattern of gene expression (Eisen et al., 1998). A type of Principle Component Analysis is described previously (Alter et al., 2000).
Other data analysis tools, known in the art, may be substituted for the tools described and exemplified herein. In addition to Clustering Analysis, Principle Component Analysis, other analytic tools such as Linear Discriminant Analysis, Receiver Operating Characteristic Curve Analysis (Zweig and Campbell, 1993), Binary Analysis (U.S. Pat. No. 7,081,340), Cox Proportional Hazards Analysis (U.S. Pat. No. 7,081,340), Support Vector Machines and Recursive Feature Elimination (SVM-RFE) (U.S. Pat. No. 7,117,188), Classification to Nearest Centroid (Dabney, 2005) or combinations thereof may be used to analyze the expression data including microarray data.
We conducted a t-test between the two groups of samples on each gene in the full data set to identify the genes that best separate, distinguish, or discriminate between the two groups. As shown in
Based on the p values and the level of differential expression, we derived 16 different groups of genes from the above microarray data. The 16 groups of genes are listed in Tables 1-16, respectively. The criteria for inclusion of the each gene in the groups in Tables 1-16 are as follows:
Each of the 16 groups can be a gene signature for glioblastoma. We tested each group for its capability as a glioblastoma signature. For each group, two independent tests were performed. One test used Clustering Analysis. The other test used Principle Component Analysis. For each group, the results (as illustrated in
Accordingly, one embodiment of the present invention is a profile of one or more of genes selected from the genes in Tables 1-16. In another embodiment, the profiles are of one or more genes selected from a single Table, e.g., from Table 1. In a further embodiment, the profiles are of a group of genes comprising each of the genes in a single Table, e.g., Table1. One or more members in each group constitute a glioblastoma gene signature because either Clustering Analysis or Principle Component Analysis of the expression profiles of such one or more members in each group can separate the disease and control samples.
Another embodiment of the present invention is a method of applying the signatures for aiding the diagnosis, prognosis or therapy treatment for a subject. The method comprises first isolating microvesicles from the subject, measuring the expression levels of one or more RNA transcripts extracted from isolated microvesicles, determining a test profile of one or more RNA transcripts based on the measured expression level(s), and comparing the test profile to a reference profile to determine the characteristics of the test profile.
For example, as shown in Table 1, the group included 22 genes based on the inclusion criteria of p≤5×10−4 and a log-median-ratio being at least “1” or above, or p≤0.000002. The 22 genes have functionalities including as receptors, transcription factors, and enzymes. As shown in
Furthermore, an evidence-based analysis tool, optionally together with one or more of the Heuristic methods described above, may also be used for analyzing expression data. For example, a gene ontology analysis may be carried out and genes in the same biological signaling pathway group together. A signature or profile comprised of a group of genes in a relevant signaling pathway may be derived and used for the purpose of diagnosing a corresponding biological condition.
As a further analytical step, we performed a multiple testing correction analysis in which a normalized data set was subjected to an unpaired t-test. The p-values were corrected using the Benjamin and Hochberg Method (Benjamini and Hochberg, 1995) with a cut-off of corrected p<0.05 and fold change of ≥2.5. As a result of the application of this method, 275 genes were found to be down-regulated. Using the above-mentioned criteria, a Gene Ontology (GO) analysis with an enrichment score of 64.26 showed that 210 recognized genes had GO terms related to Translation elongation, Ribosome, or ribonucleoprotein. Furthermore, 24 genes were found to be upregulated. Using the above-mentioned criteria, a GO analysis with an enrichment score of 1.27 showed that 23 recognized genes had GO terms related to transcription (i.e. transcription factor activity, transcription, DNA binding, homeobox).
Based on the p values that have been corrected using the Benjamin and Hochberg Method and the level of differential expression, we derived 4 additional groups of genes from the above microarray data. The 4 groups of genes are listed in Tables 17-20, respectively. The criteria to obtain the groups in Tables 17-20 are as follows:
Each of the 4 groups can be a gene signature for glioblastoma. We tested each group for its capability as a glioblastoma signature. For each group, two independent tests were performed. One test used Clustering Analysis. The other test used Principle Component Analysis. For each group, the results (as illustrated in
For example, as shown in Table 18, the group includes 31 genes based in the inclusion criteria of p≤5×10−2 and the log-median-ratio being at least “1” or above, or being at least “−1.5” or below. The 31 genes have various functionalities including as receptors, transcription factors, and enzymes. As shown in
All patents, patent applications, and publications identified are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the particular described embodiments, but that it enjoy the full scope defined by the language of the following claims, and equivalents thereof.
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens keratin associated protein 4-10 (KRTAP4-10),
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7 homolog,
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC), transcript
Homo sapiens chromosome 17 open reading frame 74 (C17orf74), mRNA
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA [NM_203374]
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens BCL2-associated X protein (BAX), transcript variant delta,
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens keratin associated protein 4-10 (KRTAP4-10),
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7)
Homo sapiens hypothetical LOC376693, mRNA (cDNA clone
Homo sapiens cDNA clone MGC: 13162 IMAGE: 3010103,
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens chromosome 6 open reading frame 48 (C6orf48),
Homo sapiens chromosome 16 open reading frame 3 (C16orf3),
Homo sapiens hypothetical protein LOC146713 (HRNBP3),
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens chymotrypsin-like (CTRL), mRNA [NM_001907]
Homo sapiens Kruppel-like factor 14 (KLF14), mRNA
Homo sapiens forkhead box Q1 (FOXQ1), mRNA [NM_033260]
Homo sapiens chromosome 20 open reading frame 28 (C20orf28),
Homo sapiens potassium large conductance calcium-activated
Homo sapiens gamma-aminobutyric acid (GABA) A receptor,
Homo sapiens zinc finger, DHHC-type containing 8 (ZDHHC8),
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens keratin associated protein 4-10 (KRTAP4-10),
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens cDNA clone IMAGE: 3347310, containing frame-
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens chromosome 19 open reading frame 31 (C19orf31),
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens suppressor of zeste 12 homolog (Drosophila)
Homo sapiens mRNA; cDNA DKFZp779J0122 (from clone
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4
Homo sapiens eukaryotic translation initiation factor 3, subunit 5
Homo sapiens complement component 1, q subcomponent binding
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ribosomal protein L41 (RPL41), transcript variant 1,
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens cytochrome c oxidase subunit IV isoform 1 (COX4I1),
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA clone
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens similar to RPL23AP7 protein (MGC70863), transcript
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed in,
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens killer cell lectin-like receptor subfamily B, member 1
Homo sapiens ribosomal protein S20 (RPS20), mRNA
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7) on
Homo sapiens proteasome (prosome, macropain) activator subunit 2
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L5 (RPL5), mRNA [NM_000969]
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein S15 (RPS15), mRNA
Homo sapiens SAPK substrate protein 1 (LOC51035), mRNA
Homo sapiens ribosomal protein L7 (RPL7), mRNA [NM_000971]
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens gap junction protein, chi 1, 31.9 kDa (GJC1), mRNA
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7)
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens hypothetical LOC376693, mRNA (cDNA clone
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens eukaryotic translation initiation factor 3, subunit 5
Homo sapiens complement component 1, q subcomponent binding
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ribosomal protein L41 (RPL41), transcript variant 1,
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens cytochrome c oxidase subunit IV isoform 1
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L10 (RPL 10), mRNA
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7)
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens hypothetical LOC376693, mRNA (cDNA clone
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens complement component 1, q subcomponent binding
Homo sapiens eukaryotic translation initiation factor 3, subunit 5
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens chromosome 6 open reading frame 48 (C6orf48),
Homo sapiens cDNA clone MGC: 13162 IMAGE: 3010103,
Homo sapiens hypothetical protein LOC146713 (HRNBP3), mRNA
Homo sapiens suppressor of zeste 12 homolog (Drosophila) (SUZ12),
Homo sapiens chromosome 19 open reading frame 31 (C19orf31), mRNA
Homo sapiens potassium large conductance calcium-activated channel,
Homo sapiens mRNA; cDNA DKFZp779J0122 (from clone
Homo sapiens gamma-aminobutyric acid (GABA) A receptor, gamma 2
Homo sapiens chymotrypsin-like (CTRL), mRNA [NM_001907]
Homo sapiens chromosome 20 open reading frame 28 (C20orf28), mRNA
Homo sapiens cDNA clone IMAGE: 3347310, containing frame-shift errors.
Homo sapiens zinc finger, DHHC-type containing 8 (ZDHHC8), mRNA
Homo sapiens Kruppel-like factor 14 (KLF14), mRNA [NM_138693]
Homo sapiens keratin associated protein 4-10 (KRTAP4-10), mRNA
Homo sapiens forkhead box Q1 (FOXQ1), mRNA [NM_033260]
Homo sapiens chromosome 16 open reading frame 3 (C16orf3), mRNA
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens pyrroline-5-carboxylate reductase family, member 2
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
sapiens (human) [CR594528]
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens coiled-coil domain containing 15 (CCDC15), mRNA
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens AT rich interactive domain 1B (SWI1-like)
Homo sapiens limb bud and heart development homolog (mouse)
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens mRNA; cDNA DKFZp686M08106 (from clone
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens similar to RPL23AP7 protein (MGC70863), transcript
Homo sapiens coiled-coil domain containing 108 (CCDC108),
Homo sapiens zinc finger protein 775 (ZNF775), mRNA
Homo sapiens chromosome 2 open reading frame 28 (C2orf28),
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7) on
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 8,
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens chromosome 16 open reading frame 30 (C16orf30),
Homo sapiens hypothetical LOC376693, mRNA (cDNA clone
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens cDNA clone MGC: 13162 IMAGE: 3010103, complete
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens transmembrane protein 158 (TMEM158), mRNA
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens guanine nucleotide binding protein (G protein), beta
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein S15 (RPS15), mRNA
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens cortexin 1 (CTXN1), mRNA [NM_206833]
Homo sapiens translocase of outer mitochondrial membrane 20
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens apoptosis inhibitor (FKSG2), mRNA [NM_021631]
Homo sapiens similar to RPL23AP7 protein (MGC70863), transcript
Homo sapiens chromosome 6 open reading frame 48 (C6orf48),
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens chromosome 16 open reading frame 3 (C16orf3),
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens mRNA for FLJ00310 protein. [AK090412]
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens CKLF-like MARVEL transmembrane domain
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens suppression of tumorigenicity 14 (colon carcinoma)
Homo sapiens hypothetical protein LOC146713 (HRNBP3), mRNA
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens , clone IMAGE: 4941949, mRNA. [BC040156]
Homo sapiens synaptopodin (SYNPO), mRNA [NM_007286]
Homo sapiens similar to RPL23AP7 protein (MGC70863), transcript
Homo sapiens , clone IMAGE: 5750141, mRNA. [BC047708]
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens , clone IMAGE: 5221276, mRNA, partial cds.
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens ribosomal protein S20 (RPS20), mRNA
Homo sapiens lysophospholipase 3 (lysosomal phospholipase A2)
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens hypothetical protein from EUROIMAGE 384293
Homo sapiens cDNA FLJ37894 fis, clone BRTHA2004639.
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens cDNA FLJ39179 fis, clone OCBBF2004147.
Homo sapiens chymotrypsin-like (CTRL), mRNA [NM_001907]
Homo sapiens chromosome 19 open reading frame 59 (C19orf59),
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens protocadherin gamma subfamily A, 7 (PCDHGA7),
Homo sapiens dual specificity phosphatase 8 (DUSP8), mRNA
Homo sapiens copine VI (neuronal) (CPNE6), mRNA [NM_006032]
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed in
Homo sapiens cDNA FLJ23867 fis, clone LNG09729. [AK074447]
Homo sapiens Kruppel-like factor 14 (KLF14), mRNA
Homo sapiens cDNA: FLJ21777 fis, clone HEP00173. [AK025430]
Homo sapiens mRNA; cDNA DKFZp761K032 (from clone
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens glucosidase I (GCS1), mRNA [NM_006302]
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens POU domain, class 2, associating factor 1
Homo sapiens cDNA FLJ38626 fis, clone HEART2009599.
Homo sapiens chromosome 14 open reading frame 43 (C14orf43),
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens forkhead box Q1 (FOXQ1), mRNA [NM_033260]
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens chromosome 11 open reading frame 48 (C11orf48),
Homo sapiens cDNA clone MGC: 13162 IMAGE: 3010103, complete
Homo sapiens cDNA FLJ32615 fis, clone STOMA2000148.
Homo sapiens cDNA: FLJ21700 fis, clone COL09849, highly similar
Homo sapiens disrupted in renal carcinoma 1 (DIRC1), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens leucine rich repeat containing 42 (LRRC42), mRNA
Homo sapiens chromosome 20 open reading frame 28 (C20orf28),
Homo sapiens claudin 15 (CLDN15), transcript variant 1, mRNA
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens ATPase family, AAA domain containing 1 (ATAD1),
Homo sapiens gastric inhibitory polypeptide receptor (GIPR), mRNA
Homo sapiens cDNA clone IMAGE: 4329532, partial cds.
Homo sapiens cyclin-dependent kinase 2 (CDK2), transcript variant
Homo sapiens peptidylprolyl isomerase A (cyclophilin A) (PPIA),
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens WD repeat domain 68 (WDR68), mRNA
Homo sapiens potassium large conductance calcium-activated
Homo sapiens glutamic-pyruvate transaminase (alanine
Homo sapiens gamma-aminobutyric acid (GABA) A receptor,
Homo sapiens zinc finger, DHHC-type containing 8 (ZDHHC8),
Homo sapiens family with sequence similarity 110, member C
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens matrix metallopeptidase 17 (membrane-inserted)
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens cysteine-rich with EGF-like domains 2 (CRELD2),
Homo sapiens Fc receptor-like B, mRNA (cDNA clone MGC: 71141
Homo sapiens metastasis associated 1 (MTA1), mRNA
Homo sapiens low density lipoprotein receptor-related protein 3
Homo sapiens ribosomal protein L41 (RPL41), transcript variant 1,
Homo sapiens mRNA; cDNA DKFZp761H0317 (from clone
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA clone
Homo sapiens cDNA FLJ39459 fis, clone PROST2011439.
Homo sapiens transcription factor 1, hepatic; LF-B1, hepatic nuclear
Homo sapiens killer cell lectin-like receptor subfamily B, member 1
Homo sapiens family with sequence similarity 57, member B
Homo sapiens ribosomal protein L7 (RPL7), mRNA [NM_000971]
Homo sapiens hypothetical protein LOC255783 (LOC255783) on
Homo sapiens KIAA0467 (KIAA0467), mRNA [NM_015284]
Homo sapiens keratin associated protein 4-10 (KRTAP4-10), mRNA
Homo sapiens cDNA FLJ35852 fis, clone TESTI2007074.
Homo sapiens GDNF family receptor alpha 4 (GFRA4), transcript
Homo sapiens gap junction protein, chi 1, 31.9 kDa (GJC1), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens endothelial differentiation, lysophosphatidic acid G-
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens GTPase, IMAP family member 1 (GIMAP1), mRNA
Homo sapiens cDNA clone IMAGE: 3347310, containing frame-shift
Homo sapiens peroxisomal proliferator-activated receptor A
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens methyltransferase 5 domain containing 1 (METT5D1),
Homo sapiens zinc finger protein 385 (ZNF385), mRNA
Homo sapiens ribosomal protein S18/S6-like mRNA, complete
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens methionine adenosyltransferase II, beta (MAT2B),
Homo sapiens proteasome (prosome, macropain) activator subunit 2
Homo sapiens chromatin modifying protein 4B (CHMP4B), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens chromosome 19 open reading frame 31 (C19orf31),
Homo sapiens hypothetical protein LOC339229 (LOC339229),
Homo sapiens ribosomal protein L13a (RPL13A), mRNA
Homo sapiens acyl-Coenzyme A dehydrogenase family, member 10
Homo sapiens basal cell adhesion molecule (Lutheran blood group)
Homo sapiens cDNA: FLJ22016 fis, clone HEP07422. [AK025669]
Homo sapiens ubiquitin specific peptidase 51 (USP51), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens polymerase (DNA-directed), delta 4 (POLD4), mRNA
Homo sapiens carbohydrate (chondroitin 4) sulfotransferase 13
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens zinc finger CCCH-type, antiviral 1-like (ZC3HAV1L),
Homo sapiens family with sequence similarity 102, member A
Homo sapiens polymerase (DNA directed), mu (POLM), mRNA
Homo sapiens chromosome 12 open reading frame 57 (C12orf57),
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens hypothetical protein BC009233, mRNA (cDNA clone
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens SAPS domain family, member 1 (SAPS1), mRNA
Homo sapiens cDNA FLJ11895 fis, clone HEMBA1007301, weakly
Homo sapiens tumor necrosis factor, alpha-induced protein 2
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit
Homo sapiens Ly6/neurotoxin 1 (LYNX1), transcript variant
Homo sapiens neurexin 2 (NRXN2), transcript variant alpha-2,
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens sterol regulatory element binding transcription factor 1
Homo sapiens ecotropic viral integration site 5-like (EVI5L), mRNA
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens PML-RARA regulated adaptor molecule 1 (PRAM1),
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens amyotrophic lateral sclerosis 2 (juvenile) chromosome
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens histone cluster 2, H2ab (HIST2H2AB), mRNA
Homo sapiens suppressor of zeste 12 homolog (Drosophila)
Homo sapiens mRNA; cDNA DKFZp779J0122 (from clone
Homo sapiens ribosomal protein L5 (RPL5), mRNA [NM_000969]
Homo sapiens keratin associated protein 2-4 (KRTAP2-4), mRNA
Homo sapiens 5-hydroxytryptamine (serotonin) receptor 5A
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens phosphatidylinositol glycan anchor biosynthesis, class
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein L29 pseudogene 2 (RPL29P2) on
Homo sapiens CKLF-like MARVEL transmembrane domain
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens pyrroline-5-carboxylate reductase-like (PYCRL),
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens GTPase, IMAP family member 4 (GIMAP4), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens hypothetical protein FLJ35390, mRNA (cDNA clone
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens protein tyrosine phosphatase type IVA, member 3
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ATPase family, AAA domain containing 3C
Homo sapiens eukaryotic translation initiation factor 4A, isoform 2
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens cytochrome c oxidase subunit IV isoform 1 (COX4I1),
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4
Homo sapiens ependymin related protein 1 (zebrafish) (EPDR1),
Homo sapiens eukaryotic translation initiation factor 3, subunit 5
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens MFNG O-fucosylpeptide 3-beta-N-
Homo sapiens small proline-rich protein 2B (SPRR2B), mRNA
Homo sapiens SAPK substrate protein 1 (LOC51035), mRNA
Homo sapiens urotensin 2 receptor (UTS2R), mRNA [NM_018949]
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens fibrinogen-like 2 (FGL2), mRNA [NM_006682]
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens complement component 1, q subcomponent binding
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed in,
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens carcinoembryonic antigen-related cell adhesion
Homo sapiens eukaryotic translation initiation factor 3, subunit 2
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens peptidylprolyl isomerase A (cyclophilin A) (PPIA),
Homo sapiens protein tyrosine phosphatase, non-receptor type 14
Homo sapiens Kruppel-like factor 16 (KLF16), mRNA
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha
Homo sapiens mRNA; cDNA DKFZp586A0722 (from clone
Homo sapiens monocyte to macrophage differentiation-associated
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens MYC associated factor X (MAX), transcript variant 3,
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myosin regulatory light chain MRCL3 (MRCL3),
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens GNAS complex locus (GNAS), transcript variant 2,
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens Parkinson disease (autosomal recessive, early onset) 7
Homo sapiens ribosomal protein S8 (RPS8), mRNA [NM_001012]
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens ribosomal protein L4 (RPL4), mRNA [NM_000968]
Homo sapiens serum deprivation response (phosphatidylserine
Homo sapiens replication protein A1, 70 kDa (RPA1), mRNA
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ribosomal protein L41 (RPL41), transcript variant 1,
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens mitochondrial hinge protein precursor, mRNA,
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 3
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens cDNA clone MGC:59872 IMAGE:6301163, complete
Homo sapiens ribosomal protein S23 (RPS23), mRNA
sapiens cDNA clone IMAGE:6730153 5′, mRNA sequence
Homo sapiens cDNA FLJ14409 fis, clone HEMBA1004408,
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens fibrillarin (FBL), mRNA [NM_001436]
Homo sapiens ribosomal protein L11 (RPL11), mRNA
Homo sapiens myosin regulatory light chain MRLC2 (MRLC2),
Homo sapiens protein tyrosine phosphatase type IVA, member 2
Homo sapiens glioma tumor suppressor candidate region gene 2
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens prefoldin subunit 5 (PFDN5), transcript variant 1,
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens proteasome (prosome, macropain) activator subunit 1
Homo sapiens lymphotoxin beta (TNF superfamily, member 3)
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens major histocompatibility complex, class II, DP beta 1
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein L28 (RPL28), mRNA
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens cytochrome c oxidase subunit VIIc (COX7C), nuclear
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens cDNA clone MGC:87657 IMAGE:5271409, complete
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens poly(A) binding protein interacting protein 2 (PAIP2),
Homo sapiens ribosomal protein L27 (RPL27), mRNA
sapiens cDNA 5′, mRNA sequence [CD174733]
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 7
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S15a, mRNA (cDNA clone
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens ribosomal protein S19 (RPS19), mRNA
Homo sapiens ribosomal protein L32 (RPL32), transcript variant 3,
Homo sapiens cytochrome c oxidase subunit IV isoform 1 (COX4I1),
Homo sapiens dynein, light chain, LC8-type 1 (DYNLL1), transcript
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ornithine decarboxylase 1 (ODC1), mRNA
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens signal sequence receptor, beta (translocon-associated
Homo sapiens defender against cell death 1 (DAD1), mRNA
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myotrophin (MTPN), mRNA [NM_145808]
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens ribosomal protein S12 (RPS12), mRNA
Homo sapiens RAB37, member RAS oncogene family (RAB37),
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens coactosin-like 1 (Dictyostelium) (COTL1), mRNA
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens lymphoid enhancer-binding factor 1 (LEF1), mRNA
Homo sapiens pleckstrin homology domain containing, family O
Homo sapiens ubiquinol-cytochrome c reductase, 6.4 kDa subunit
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens full length insert cDNA clone YP59C02. [AF147412]
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA clone
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein S6 (RPS6), mRNA [NM_001010]
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens ribosomal protein S18 (RPS18), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens cDNA, mRNA sequence [DW451363]
Homo sapiens ribosomal protein L6 (RPL6), transcript variant 2,
Homo sapiens similar to RPL23AP7 protein (MGC70863), transcript
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens ribosomal protein S9 (RPS9), mRNA [NM_001013]
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens COMM domain containing 6 (COMMD6), transcript
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed in,
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens PCI domain containing 1 (herpesvirus entry mediator)
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens poly(A) binding protein, cytoplasmic 1 (PABPC1),
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens mRNA; cDNA DKFZp434A0326 (from clone
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens platelet factor 4 (chemokine (C-X-C motif) ligand 4)
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens thymosin-like 3 (TMSL3), mRNA [NM_183049]
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens guanine nucleotide binding protein (G protein),
Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA
Homo sapiens pro-platelet basic protein (chemokine (C-X-C motif)
Homo sapiens thymosin-like 3 (TMSL3), mRNA [NM_183049]
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens regulator of G-protein signalling 10 (RGS10),
Homo sapiens glutathione peroxidase 1 (GPX1), transcript variant
Homo sapiens neurogranin (protein kinase C substrate, RC3)
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens regulator of G-protein signalling 18 (RGS18),
Homo sapiens G0/G1switch 2 (G0S2), mRNA [NM_015714]
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha
Homo sapiens mRNA; cDNA DKFZp586A0722 (from clone
Homo sapiens SH3 domain binding glutamic acid-rich protein like
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens thymosin, beta 4, X-linked (TMSB4X), mRNA
Homo sapiens glycoprotein Ib (platelet), beta polypeptide
Homo sapiens cDNA clone IMAGE:3457769, partial cds.
Homo sapiens monocyte to macrophage differentiation-associated
Homo sapiens cDNA:FLJ21627 fis, clone COL08058.
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens platelet factor 4 variant 1 (PF4V1), mRNA
Homo sapiens acrosin binding protein (ACRBP), mRNA
Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens guanine nucleotide binding protein (G protein), alpha
Homo sapiens clusterin (CLU), transcript variant 2, mRNA
Homo sapiens RAB GTPase activating protein 1-like
Homo sapiens ornithine decarboxylase antizyme 1 (OAZ1), mRNA
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens MYC associated factor X (MAX), transcript variant
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myosin regulatory light chain MRCL3 (MRCL3),
Homo sapiens nerve growth factor receptor (TNFRSF16) associated
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens Humanin (HN1) mRNA, complete cds. [AY029066]
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens GNAS complex locus (GNAS), transcript variant 2,
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens ring finger protein 11 (RNF11), mRNA
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens Parkinson disease (autosomal recessive, early onset)
Homo sapiens ribosomal protein S8 (RPS8), mRNA [NM_001012]
Homo sapiens tubulin, alpha 4a (TUBA4A), mRNA [NM_006000]
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens 5′-nucleotidase, cytosolic III (NT5C3), transcript
Homo sapiens cyclin-dependent kinase inhibitor 2D (p19, inhibits
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens ribosomal protein L4 (RPL4), mRNA [NM_000968]
Homo sapiens serum deprivation response (phosphatidylserine
Homo sapiens ferritin, heavy polypeptide 1 (FTH1), mRNA
Homo sapiens ferritin, heavy polypeptide 1 (FTH1), mRNA
Homo sapiens membrane protein, palmitoylated 1, 55 kDa (MPP1),
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens chromosome 20 open reading frame 149
Homo sapiens replication protein A1, 70 kDa (RPA1), mRNA
Homo sapiens ferritin, heavy polypeptide 1 (FTH1), mRNA
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens H3 histone, family 3A (H3F3A), mRNA
Homo sapiens ribosomal protein S3 (RPS3), mRNA [NM_001005]
Homo sapiens ribosomal protein L41 (RPL41), transcript variant 1,
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens chromosome 7 open reading frame 41 (C7orf41),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens mitochondrial hinge protein precursor, mRNA,
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens secreted protein, acidic, cysteine-rich (osteonectin)
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens coagulation factor XIII, A1 polypeptide (F13A1),
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 3
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens H3 histone, family 3A (H3F3A), mRNA
Homo sapiens transmembrane protein 111 (TMEM111), mRNA
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens early growth response 1 (EGR1), mRNA
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens cDNA clone MGC:59872 IMAGE:6301163,
Homo sapiens ribosomal protein S23 (RPS23), mRNA
sapiens cDNA clone IMAGE:6730153 5′, mRNA sequence
Homo sapiens cDNA FLJ14409 fis, clone HEMBA1004408,
Homo sapiens Finkel-Biskis-Reilly murine sarcoma virus (FBR-
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens GABA(A) receptor-associated protein-like 2
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens fibrillarin (FBL), mRNA [NM_001436]
Homo sapiens ribosomal protein L11 (RPL11), mRNA
Homo sapiens myosin regulatory light chain MRLC2 (MRLC2),
Homo sapiens small nucleolar RNA host gene (non-protein coding)
Homo sapiens zinc finger protein 36, C3H type, homolog (mouse)
Homo sapiens stannin (SNN), mRNA [NM_003498]
Homo sapiens protein tyrosine phosphatase type IVA, member 2
Homo sapiens chromosome 21 open reading frame 7 (C21orf7),
Homo sapiens solute carrier family 25 (mitochondrial carrier;
Homo sapiens troponin C type 2 (fast) (TNNC2), mRNA
Homo sapiens glioma tumor suppressor candidate region gene 2
Homo sapiens ferritin, heavy polypeptide-like 12 (FTHL12) on
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens Humanin (HN1) mRNA, complete cds. [AY029066]
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens histone cluster 1, H3a (HIST1H3A), mRNA
Homo sapiens prefoldin subunit 5 (PFDN5), transcript variant 1,
Homo sapiens eukaryotic translation initiation factor 1 (EIF1),
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens histone cluster 1, H3e (HIST1H3E), mRNA
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens proteasome (prosome, macropain) activator subunit 1
Homo sapiens lymphotoxin beta (TNF superfamily, member 3)
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens 6-phosphofructo-2-kinase/fructose-2,6-
Homo sapiens major histocompatibility complex, class II, DP beta 1
Homo sapiens leukocyte specific transcript 1 (LST1), transcript
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens H3 histone, family 3A (H3F3A), mRNA
Homo sapiens ribosomal protein L28 (RPL28), mRNA
Homo sapiens ubiquitin A-52 residue ribosomal protein fusion
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens ribosomal protein S2 (RPS2), mRNA [NM_002952]
Homo sapiens iron-sulfur cluster scaffold homolog (E. coli)
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens cytochrome c oxidase subunit VIIc (COX7C),
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens cDNA clone MGC:87657 IMAGE:5271409,
Homo sapiens small EDRK-rich factor 2 (SERF2), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens poly(A) binding protein interacting protein 2
Homo sapiens ribosomal protein L27 (RPL27), mRNA
Homo sapiens ubiquitin C (UBC), mRNA [NM_021009]
Homo sapiens myosin, light chain 6, alkali, smooth muscle and
sapiens cDNA 5′, mRNA sequence [CD174733]
Homo sapiens calmodulin 2 (phosphorylase kinase, delta)
Homo sapiens eukaryotic translation initiation factor 1 (EIF1),
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens dynein, light chain, LC8-type 1 (DYNLL1),
Homo sapiens eukaryotic translation initiation factor 3, subunit 7
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S15a, mRNA (cDNA clone
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens ribosomal protein S19 (RPS19), mRNA
Homo sapiens ribosomal protein L32 (RPL32), transcript variant 3,
Homo sapiens cytochrome c oxidase subunit IV isoform 1
Homo sapiens ubiquinol-cytochrome c reductase hinge protein
Homo sapiens S-phase kinase-associated protein 1A (p19A)
Homo sapiens ubiquitin C (UBC), mRNA [NM_021009]
Homo sapiens dynein, light chain, LC8-type 1 (DYNLL1),
Homo sapiens defender against cell death 1 (DAD1), mRNA
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ornithine decarboxylase 1 (ODC1), mRNA
Homo sapiens ubiquitin-conjugating enzyme E2E 3 (UBC4/5
Homo sapiens ribosomal protein L27a (RPL27A), mRNA
Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens ubiquitin C (UBC), mRNA [NM_021009]
Homo sapiens signal sequence receptor, beta (translocon-associated
Homo sapiens peroxiredoxin 6 (PRDX6), mRNA [NM_004905]
Homo sapiens proteasome (prosome, macropain) subunit, beta type,
Homo sapiens defender against cell death 1 (DAD1), mRNA
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myosin, light chain 6, alkali, smooth muscle and
Homo sapiens myotrophin (MTPN), mRNA [NM_145808]
Homo sapiens claudin 5 (transmembrane protein deleted in
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens ribosomal protein S12 (RPS12), mRNA
Homo sapiens RAB37, member RAS oncogene family (RAB37),
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens coactosin-like 1 (Dictyostelium) (COTL1), mRNA
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens lymphoid enhancer-binding factor 1 (LEF1), mRNA
Homo sapiens pleckstrin homology domain containing, family O
Homo sapiens ubiquinol-cytochrome c reductase, 6.4 kDa subunit
Homo sapiens GNAS complex locus (GNAS), transcript variant 2,
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens ornithine decarboxylase antizyme 1 (OAZ1), mRNA
Homo sapiens full length insert cDNA clone YP59C02.
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens ADP-ribosylation factor 1 (ARF1), transcript variant
Homo sapiens ubiquitin A-52 residue ribosomal protein fusion
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA
Homo sapiens actin, beta (ACTB), mRNA [NM_001101]
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein S6 (RPS6), mRNA [NM_001010]
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens ribosomal protein S18 (RPS18), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
Homo sapiens histone cluster 3, H3 (HIST3H3), mRNA
Homo sapiens cDNA clone MGC:105145 IMAGE:30563285,
Homo sapiens calmodulin 3 (phosphorylase kinase, delta)
Homo sapiens superoxide dismutase 2, mitochondrial (SOD2),
Homo sapiens ornithine decarboxylase antizyme 1 (OAZ1), mRNA
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens major histocompatibility complex, class II, DP beta 1
Homo sapiens H3 histone, family 3A (H3F3A), mRNA
Homo sapiens cDNA, mRNA sequence [DW451363]
Homo sapiens ribosomal protein L6 (RPL6), transcript variant 2,
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens glutathione S-transferase omega 1 (GSTO1), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens lymphocyte cytosolic protein 1 (L-plastin) (LCP1),
Homo sapiens ribosomal protein S9 (RPS9), mRNA [NM_001013]
Homo sapiens v-fos FBJ murine osteosarcoma viral oncogene
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens major facilitator superfamily domain containing 1
Homo sapiens COMM domain containing 6 (COMMD6), transcript
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens serologically defined colon cancer antigen 1
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed
Homo sapiens Fc fragment of IgG, low affinity IIIa, receptor
Homo sapiens synuclein, alpha (non A4 component of amyloid
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens chromosome 14 open reading frame 166
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens CD99 molecule (CD99), mRNA [NM_002414]
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ribosomal protein L5 (RPL5), mRNA [NM_000969]
Homo sapiens protein tyrosine phosphatase, non-receptor type 18
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens PCI domain containing 1 (herpesvirus entry
Homo sapiens tubulin, alpha 8 (TUBA8), mRNA [NM_018943]
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens placenta immunoregulatory factor PLIF mRNA,
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens nuclear receptor coactivator 4 (NCOA4), mRNA
Homo sapiens spermine oxidase (SMOX), transcript variant 1,
Homo sapiens poly(A) binding protein, cytoplasmic 1 (PABPC1),
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 8,
Homo sapiens coiled-coil domain containing 72 (CCDC72), mRNA
Homo sapiens NADH dehydrogenase (ubiquinone) 1 beta
Homo sapiens chromosome 9 open reading frame 89 (C9orf89),
Homo sapiens mRNA; cDNA DKFZp434A0326 (from clone
Homo sapiens ferritin, heavy polypeptide 1 (FTH1), mRNA
Homo sapiens actin, beta (ACTB), mRNA [NM_001101]
Homo sapiens cDNA clone MGC:105145 IMAGE:30563285,
Homo sapiens cytochrome c oxidase subunit VIIa polypeptide 2
Homo sapiens histone cluster 1, H1c (HIST1H1C), mRNA
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens ubiquitin C (UBC), mRNA [NM_021009]
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens skeletal muscle and kidney enriched inositol
Homo sapiens peroxisome biogenesis factor 10 (PEX10), transcript
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens spermatogenesis associated 2-like (SPATA2L),
Homo sapiens trinucleotide repeat containing 4 (TNRC4), mRNA
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type
Homo sapiens homeobox A4 (HOXA4), mRNA [NM_002141]
Homo sapiens chemokine (C-C motif) receptor 3 (CCR3), transcript
Homo sapiens E74-like factor 2 (ets domain transcription factor)
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens rhodopsin (opsin 2, rod pigment) (retinitis
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens Rho guanine nucleotide exchange factor (GEF) 15
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens SLIT and NTRK-like family, member 4 (SLITRK4),
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens rabaptin, RAB GTPase binding effector protein 1
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens chordin-like 1 (CHRDL1), mRNA [NM_145234]
Homo sapiens mannosidase, alpha, class 1B, member 1 (MAN1B1),
Homo sapiens mesoderm posterior 1 homolog (mouse) (MESP1),
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens Bardet-Biedl syndrome 5 (BBS5), mRNA
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA sequence
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens cDNA clone IMAGE:4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens WD repeat domain 21C (WDR21C), mRNA
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens acid phosphatase 5, tartrate resistant (ACP5), mRNA
Homo sapiens zinc finger, DHHC-type containing 22 (ZDHHC22),
Homo sapiens testis-specific transcript, Y-linked 14 (TTTY14) on
Homo sapiens growth differentiation factor 15 (GDF15), mRNA
Homo sapiens sidekick homolog 2 (chicken) (SDK2), mRNA
Homo sapiens DIRAS family, GTP-binding RAS-like 1 (DIRAS1),
Homo sapiens regulator of telomere elongation helicase 1 (RTEL1),
Homo sapiens cardiotrophin-like cytokine factor 1 (CLCF1),
Homo sapiens proline rich membrane anchor 1 (PRIMA1), mRNA
Homo sapiens cDNA FLJ34036 fis, clone FCBBF2005069.
Homo sapiens late cornified envelope 2A (LCE2A), mRNA
Homo sapiens leukocyte immunoglobulin-like receptor, subfamily
Homo sapiens cDNA FLJ32605 fis, clone STOMA1000175.
Homo sapiens aldehyde dehydrogenase 4 family, member A1
Homo sapiens CYP3A5 mRNA, allele CYP3A5*3, exon 4B and
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens transforming, acidic coiled-coil containing protein 1
Homo sapiens coiled-coil domain containing 15 (CCDC15), mRNA
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens SHC (Src homology 2 domain containing)
Homo sapiens PRO2133 mRNA, complete cds. [AF116688]
Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit
Homo sapiens ubiquitin related modifier 1 homolog (S. cerevisiae)
Homo sapiens trafficking protein particle complex 3 (TRAPPC3),
Homo sapiens Sjogren syndrome antigen B (autoantigen La) (SSB),
Homo sapiens Kruppel-like factor 16 (KLF16), mRNA
Homo sapiens growth differentiation factor 1 (GDF1), mRNA
Homo sapiens pyrroline-5-carboxylate reductase 1 (PYCR1),
Homo sapiens fibroblast growth factor receptor substrate 3 (FRS3),
Homo sapiens mRNA; cDNA DKFZp434B104 (from clone
Homo sapiens GDNF family receptor alpha 4 (GFRA4), transcript
Homo sapiens cDNA FLJ23867 fis, clone LNG09729. [AK074447]
Homo sapiens tripartite motif-containing 2 (TRIM2), mRNA
Homo sapiens otoferlin (OTOF), transcript variant 1, mRNA
Homo sapiens solute carrier family 2, (facilitated glucose
Homo sapiens basic helix-loop-helix domain containing, class B, 4
Homo sapiens mitochondrial ribosomal protein L38 (MRPL38),
Homo sapiens zinc finger protein 385 (ZNF385), mRNA
Homo sapiens envoplakin (EVPL), mRNA [NM_001988]
Homo sapiens cDNA FLJ40092 fis, clone TESTI2003756.
Homo sapiens hypothetical protein FLJ35390, mRNA (cDNA clone
Homo sapiens matrilin 4 (MATN4), transcript variant 1, mRNA
Homo sapiens chromosome 20 open reading frame 144
Homo sapiens HSPC079 mRNA, partial cds. [AF161342]
Homo sapiens galanin receptor 3 (GALR3), mRNA [NM_003614]
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens transcription factor 15 (basic helix-loop-helix)
Homo sapiens HSPC088 mRNA, partial cds. [AF161351]
Homo sapiens related RAS viral (r-ras) oncogene homolog
Homo sapiens SHANK-associated RH domain interactor
Homo sapiens late cornified envelope 2D (LCE2D), mRNA
Homo sapiens cDNA FLJ39355 fis, clone PEBLM2003426.
Homo sapiens poly (ADP-ribose) polymerase family, member 10
Homo sapiens SRY (sex determining region Y)-box 3 (SOX3),
Homo sapiens ATPase, H+ transporting, lysosomal 56/58 kDa, V1
Homo sapiens acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl
Homo sapiens cDNA FLJ31398 fis, clone NT2NE1000175.
Homo sapiens PRO1051 mRNA, complete cds. [AF116619]
Homo sapiens tyrosine kinase, non-receptor, 2 (TNK2), transcript
Homo sapiens SARDH mRNA, alternatively spliced, complete cds.
Homo sapiens CCAAT/enhancer binding protein (C/EBP), alpha
Homo sapiens F-box protein 24 (FBXO24), transcript variant 1,
Homo sapiens cDNA:FLJ23558 fis, clone LNG09703.
Homo sapiens FLJ45445 protein (FLJ45445), mRNA
Homo sapiens Pig11 (PIG11) mRNA, complete cds. [AF010315]
Homo sapiens G protein-coupled receptor, family C, group 5,
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens guanine nucleotide binding protein-like 3
Homo sapiens transmembrane, prostate androgen induced RNA
Homo sapiens wingless-type MMTV integration site family,
Homo sapiens hypothetical LOC389634, mRNA (cDNA clone
Homo sapiens RNA terminal phosphate cyclase-like 1 (RCL1),
Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 7,
Homo sapiens cDNA clone NHTBC_cn10d09 random, mRNA
Homo sapiens methyltransferase 5 domain containing 1
Homo sapiens AT-binding transcription factor 1 (ATBF1), mRNA
Homo sapiens SUMO1/sentrin specific peptidase 7 (SENP7),
Homo sapiens SH3 and multiple ankyrin repeat domains 1
Homo sapiens DKFZp434A0131 protein (DKFZP434A0131),
Homo sapiens cytochrome P450, family 1, subfamily A,
Homo sapiens chromosome 6 open reading frame 128 (C6orf128),
Homo sapiens small EDRK-rich factor 1B (centromeric)
Homo sapiens transmembrane protein 35 (TMEM35), mRNA
Homo sapiens basal cell adhesion molecule (Lutheran blood group)
Homo sapiens PRO2667 mRNA, complete cds. [AF119889]
Homo sapiens amino acid transporter (FLJ10815), mRNA
Homo sapiens zinc finger and BTB domain containing 45
Homo sapiens , clone IMAGE:3894105, mRNA. [BC047032]
Homo sapiens , clone IMAGE:6018828, mRNA. [BC040051]
Homo sapiens ADAM metallopeptidase with thrombospondin type
Homo sapiens chromosome 16 open reading frame 73 (C16orf73),
Homo sapiens transmembrane protein 158 (TMEM158), mRNA
Homo sapiens hairy and enhancer of split 4 (Drosophila) (HES4),
Homo sapiens cDNA clone IMAGE:4794059, partial cds.
Homo sapiens aldolase A, fructose-bisphosphate (ALDOA),
Homo sapiens late cornified envelope 1F (LCE1F), mRNA
Homo sapiens CASK interacting protein 1 (CASKIN1), mRNA
Homo sapiens loricrin (LOR), mRNA [NM_000427]
Homo sapiens family with sequence similarity 108, member A1
Homo sapiens tripartite motif-containing 10 (TRIM10), transcript
Homo sapiens KIAA1509 (KIAA1509), mRNA [NM_001080414]
H.
sapiens HPX-2 mRNA. [X74861]
Homo sapiens vacuolar protein sorting 18 homolog (S. cerevisiae)
Homo sapiens dual specificity phosphatase 9 (DUSP9), mRNA
Homo sapiens armadillo repeat containing 5 (ARMC5), mRNA
Homo sapiens SIN3 homolog B, transcription regulator (yeast),
Homo sapiens elastin (supravalvular aortic stenosis, Williams-
Homo sapiens TMEM9 domain family, member B (TMEM9B),
Homo sapiens small nuclear protein PRAC (PRAC), mRNA
Homo sapiens keratin associated protein 2-4 (KRTAP2-4), mRNA
Homo sapiens cDNA FLJ42103 fis, clone TESOP2007041.
Homo sapiens BCL2 binding component 3 (BBC3), mRNA
Homo sapiens keratin associated protein 1-3 (KRTAP1-3), mRNA
Homo sapiens , clone IMAGE:4693260, mRNA. [BC017972]
Homo sapiens mucin (MUC-3) mRNA, partial cds. [M55405]
Homo sapiens SMEK homolog 1, suppressor of mek1
Homo sapiens variable charge, X-linked 2 (VCX2), mRNA
Homo sapiens Yip1 domain family, member 2 (YIPF2), mRNA
Homo sapiens similar to hypothetical protein LOC153561, mRNA
Homo sapiens cDNA clone MGC:99790 IMAGE:6304510,
Homo sapiens neurocan (NCAN), mRNA [NM_004386]
Homo sapiens SET binding protein 1 (SETBP1), mRNA
Homo sapiens mRNA for FLJ00030 protein, partial cds.
Homo sapiens hairy and enhancer of split 6 (Drosophila) (HES6),
Homo sapiens stearoyl-CoA desaturase 5 (SCD5), transcript variant
Homo sapiens intersex-like (Drosophila) (IXL), mRNA
Homo sapiens apoptosis-associated tyrosine kinase (AATK),
Homo sapiens netrin G2 (NTNG2), mRNA [NM_032536]
sapiens cDNA clone IMAGE:277235 5′, mRNA sequence
Homo sapiens PALM2-AKAP2 protein (PALM2-AKAP2),
Homo sapiens mRNA for KIAA0702 protein, partial cds.
Homo sapiens progestin and adipoQ receptor family member VI
Homo sapiens keratin associated protein 10-10 (KRTAP10-10),
Homo sapiens chorionic gonadotropin, beta polypeptide 1 (CGB1),
Homo sapiens two transmembrane domain family member A
Homo sapiens solute carrier family 9 (sodium/hydrogen exchanger),
Homo sapiens splicing factor, arginine/serine-rich 16 (SFRS16),
Homo sapiens double homeobox, 3 (DUX3), mRNA [NM_012148]
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens cDNA FLJ38936 fis, clone NT2NE2015275.
Homo sapiens cDNA FLJ25506 fis, clone CBR05185. [AK098372]
Homo sapiens adrenergic, alpha-2C-, receptor (ADRA2C), mRNA
Homo sapiens cDNA FLJ45662 fis, clone CTONG2027150.
Homo sapiens cold shock domain containing C2, RNA binding
Homo sapiens RAS-like, family 10, member B (RASL10B), mRNA
Homo sapiens solute carrier family 16, member 8 (monocarboxylic
Homo sapiens gap junction protein, chi 1, 31.9 kDa (GJC1), mRNA
Homo sapiens variable charge, X-linked (VCX), mRNA
Homo sapiens N-acetyltransferase 9 (NAT9), mRNA
Homo sapiens RAB36, member RAS oncogene family (RAB36),
Homo sapiens thyroid hormone receptor associated protein 2
Homo sapiens double homeobox, 2 (DUX2), mRNA [NM_012147]
Homo sapiens complement component 7 (C7), mRNA
Homo sapiens cDNA FLJ46080 fis, clone TESTI2004971.
Homo sapiens ubiquitin-conjugating enzyme E2S (UBE2S), mRNA
sapiens cDNA clone IMAGE:6252524 5′, mRNA sequence
Homo sapiens choline kinase alpha (CHKA), transcript variant 1,
sapiens cDNA clone IMAGE:5823701 3′, mRNA sequence
Homo sapiens cDNA FLJ33014 fis, clone THYMU1000382.
Homo sapiens opsin 1 (cone pigments), long-wave-sensitive (color
Homo sapiens cDNA FLJ46751 fis, clone TRACH3022960, weakly
Homo sapiens CD86 molecule (CD86), transcript variant 2, mRNA
Homo sapiens non-SMC condensin I complex, subunit H
Homo sapiens cDNA FLJ35556 fis, clone SPLEN2004844.
Homo sapiens lipase, hormone-sensitive (LIPE), mRNA
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens alpha-2-macroglobulin-like 1 (A2ML1), mRNA
Homo sapiens cDNA FLJ26472 fis, clone KDN04506. [AK129982]
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens glycophorin E (GYPE), transcript variant 1, mRNA
Homo sapiens similar to solute carrier family 16 (monocarboxylic
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens opposite strand transcription unit to STAG3 (GATS),
Homo sapiens Rho guanine nucleotide exchange factor (GEF) 10-
Homo sapiens variable charge, X-linked 3A (VCX3A), mRNA
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens keratin associated protein 4-14 (KRTAP4-14),
Homo sapiens zinc finger protein 219 (ZNF219), mRNA
Homo sapiens PRO2900 mRNA, complete cds. [AF116718]
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens mRNA; cDNA DKFZp761B039 (from clone
Homo sapiens cDNA FLJ31887 fis, clone NT2RP7003050.
Homo sapiens cysteine conjugate-beta lyase 2 (CCBL2), transcript
Homo sapiens melanoma antigen family E, 1 (MAGEE1), mRNA
Homo sapiens interleukin 26 (IL26), mRNA [NM_018402]
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens skeletal muscle and kidney enriched inositol
Homo sapiens peroxisome biogenesis factor 10 (PEX10), transcript
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens spermatogenesis associated 2-like (SPATA2L),
Homo sapiens trinucleotide repeat containing 4 (TNRC4), mRNA
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type
Homo sapiens homeobox A4 (HOXA4), mRNA [NM_002141]
Homo sapiens chemokine (C-C motif) receptor 3 (CCR3), transcript
Homo sapiens E74-like factor 2 (ets domain transcription factor)
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens rhodopsin (opsin 2, rod pigment) (retinitis
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens Rho guanine nucleotide exchange factor (GEF) 15
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens SLIT and NTRK-like family, member 4 (SLITRK4),
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens rabaptin, RAB GTPase binding effector protein 1
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens chordin-like 1 (CHRDL1), mRNA [NM_145234]
Homo sapiens mannosidase, alpha, class 1B, member 1 (MAN1B1),
Homo sapiens mesoderm posterior 1 homolog (mouse) (MESP1),
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens Bardet-Biedl syndrome 5 (BBS5), mRNA
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA sequence
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens cDNA clone IMAGE:4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens WD repeat domain 21C (WDR21C), mRNA
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens acid phosphatase 5, tartrate resistant (ACP5), mRNA
Homo sapiens zinc finger, DHHC-type containing 22 (ZDHHC22),
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens skeletal muscle and kidney enriched inositol
Homo sapiens peroxisome biogenesis factor 10 (PEX10), transcript
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens spermatogenesis associated 2-like (SPATA2L),
Homo sapiens trinucleotide repeat containing 4 (TNRC4), mRNA
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type
Homo sapiens homeobox A4 (HOXA4), mRNA [NM_002141]
Homo sapiens chemokine (C-C motif) receptor 3 (CCR3), transcript
Homo sapiens E74-like factor 2 (ets domain transcription factor)
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens rhodopsin (opsin 2, rod pigment) (retinitis
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens Rho guanine nucleotide exchange factor (GEF) 15
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens SLIT and NTRK-like family, member 4 (SLITRK4),
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens rabaptin, RAB GTPase binding effector protein 1
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens chordin-like 1 (CHRDL1), mRNA [NM_145234]
Homo sapiens mannosidase, alpha, class 1B, member 1 (MAN1B1),
Homo sapiens mesoderm posterior 1 homolog (mouse) (MESP1),
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens Bardet-Biedl syndrome 5 (BBS5), mRNA
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens frizzled homolog 9 (Drosophila) (FLD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA sequence
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens cDNA clone IMAGE:4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens WD repeat domain 21C (WDR21C), mRNA
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens acid phosphatase 5, tartrate resistant (ACP5), mRNA
Homo sapiens zinc finger, DHHC-type containing 22 (ZDHHC22),
Homo sapiens euchromatic histone-lysine N-methyltransferase 2
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens ORM1-like 3 (S. cerevisiae) (ORMDL3), mRNA
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens cDNA clone IMAGE:30404477, partial cds.
Homo sapiens mucin (MUC-3) mRNA, partial cds. [M55405]
Homo sapiens prostate-specific antigen variant 2 mRNA, complete
Homo sapiens NECAP endocytosis associated 2 (NECAP2),
Homo sapiens KIAA1751 (KIAA1751), mRNA [NM_001080484]
Homo sapiens pyrroline-5-carboxylate reductase family, member 2
Homo sapiens cAMP responsive element binding protein 3-like 1
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens glutathione peroxidase 4 (phospholipid
Homo sapiens serum deprivation response (phosphatidylserine
Homo sapiens ribosomal protein L35a (RPL35A), mRNA
Homo sapiens natural killer cell group 7 sequence (NKG7), mRNA
Homo sapiens ras homolog gene family, member C (RHOC),
sapiens (human) [CR594528]
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation
Homo sapiens coiled-coil domain containing 15 (CCDC15), mRNA
Homo sapiens stathmin-like 3 (STMN3), mRNA [NM_015894]
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens aquaporin 2 (collecting duct) (AQP2), mRNA
Homo sapiens ribosomal protein L39 (RPL39), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens keratin associated protein 5-9 (KRTAP5-9), mRNA
Homo sapiens signal sequence receptor, delta (translocon-
Homo sapiens elaC homolog 2 (E. coli) (ELAC2), mRNA
Homo sapiens AT rich interactive domain 1B (SWI1-like)
Homo sapiens limb bud and heart development homolog (mouse)
Homo sapiens ribosomal protein L4 (RPL4), mRNA [NM_000968]
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens dynein, light chain, roadblock-type 1 (DYNLRB1),
Homo sapiens ribosomal protein L21, mRNA (cDNA clone
Homo sapiens trinucleotide repeat containing 6B (TNRC6B),
Homo sapiens ribosomal protein L36 (RPL36), transcript variant 2,
Homo sapiens mRNA; cDNA DKFZp686M08106 (from clone
Homo sapiens cDNA clone MGC:59872 IMAGE:6301163,
Homo sapiens copine V (CPNE5), mRNA [NM_020939]
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens mitochondrial ribosomal protein L45 (MRPL45),
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens mitochondrial ribosomal protein S6 (MRPS6),
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens coiled-coil domain containing 108 (CCDC108),
Homo sapiens zinc finger protein 775 (ZNF775), mRNA
Homo sapiens defender against cell death 1 (DAD1), mRNA
Homo sapiens chromosome 2 open reading frame 28 (C2orf28),
Homo sapiens mitochondrial ribosomal protein S21 (MRPS21),
Homo sapiens ribosomal protein L38 (RPL38), transcript variant 1,
Homo sapiens envoplakin (EVPL), mRNA [NM_001988]
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens ribosomal protein L23a pseudogene 7 (RPL23AP7)
Homo sapiens ribosomal protein L36a-like (RPL36AL), mRNA
Homo sapiens cDNA FLJ14327 fis, clone PLACE4000250.
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens ribosomal protein S15 (RPS15), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 8,
Homo sapiens tuberoinfundibular 39 residue protein precursor
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens cDNA clone IMAGE:4826808. [BC014606]
Homo sapiens heterogeneous nuclear ribonucleoprotein A1-like
Homo sapiens chromosome 16 open reading frame 30 (C16orf30),
Homo sapiens cytochrome P450, family 1, subfamily A,
Homo sapiens poly(A) binding protein, cytoplasmic 1 (PABPC1),
Homo sapiens hypothetical LOC376693, mRNA (cDNA clone
Homo sapiens CD247 molecule (CD247), transcript variant 1,
Homo sapiens GNAS complex locus (GNAS), transcript variant 2,
Homo sapiens monocyte to macrophage differentiation-associated
Homo sapiens serine/threonine kinase 24 (STE20 homolog, yeast)
Homo sapiens nucleoporin 62 kDa (NUP62), transcript variant 1,
Homo sapiens ornithine decarboxylase 1 (ODC1), mRNA
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens hypothetical protein MGC4677 (MGC4677), mRNA
Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-
Homo sapiens cytochrome b5 reductase 3 (CYB5R3), transcript
Homo sapiens RAB11 family interacting protein 4 (class II)
Homo sapiens cDNA clone MGC:13162 IMAGE:3010103,
Homo sapiens major histocompatibility complex, class II, DP beta 1
Homo sapiens olfactory receptor, family 10, subfamily H, member
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens transmembrane protein 158 (TMEM158), mRNA
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens ribosomal protein S29 (RPS29), transcript variant 1,
Homo sapiens full length insert cDNA clone YP59C02.
Homo sapiens CD3d molecule, delta (CD3-TCR complex) (CD3D),
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens thymosin, beta 10 (TMSB10), mRNA [NM_021103]
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens guanine nucleotide binding protein (G protein), beta
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens metallothionein 1G (MT1G), mRNA [NM_005950]
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens late cornified envelope 1D (LCE1D), mRNA
Homo sapiens suppression of tumorigenicity 13 (colon carcinoma)
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens ribosomal protein S15 (RPS15), mRNA
Homo sapiens poly (ADP-ribose) polymerase family, member 1
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens cortexin 1 (CTXN1), mRNA [NM_206833]
Homo sapiens COX17 cytochrome c oxidase assembly homolog (S. cerevisiae)
Homo sapiens hypothetical protein FLJ22184 (FLJ22184), mRNA
Homo sapiens mitochondrial hinge protein precursor, mRNA,
Homo sapiens ribosomal protein L32 (RPL32), transcript variant 3,
Homo sapiens Sp5 transcription factor (SP5), mRNA
Homo sapiens translocase of outer mitochondrial membrane 20
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
Homo sapiens RUN and SH3 domain containing 1 (RUSC1),
Homo sapiens mRNA for FLJ00365 protein. [AK090444]
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens dynein, light chain, LC8-type 1 (DYNLL1),
Homo sapiens LSM5 homolog, U6 small nuclear RNA associated
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens activin A receptor, type I (ACVR1), mRNA
Homo sapiens ribosomal protein S17 (RPS17), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens apoptosis inhibitor (FKSG2), mRNA [NM_021631]
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens ribosomal protein S19 (RPS19), mRNA
Homo sapiens ribosomal protein L26 (RPL26), mRNA
Homo sapiens cDNA FLJ90297 fis, clone NT2RP2000447,
Homo sapiens chromosome 6 open reading frame 48 (C6orf48),
Homo sapiens synaptic vesicle glycoprotein 2A (SV2A), mRNA
Homo sapiens mRNA; cDNA DKFZp586A0722 (from clone
Homo sapiens suppressor of variegation 3-9 homolog 2
Homo sapiens zinc finger protein 273 (ZNF273), transcript variant
Homo sapiens mitochondrial ribosomal protein L20 (MRPL20),
Homo sapiens beta-2-microglobulin (B2M), mRNA [NM_004048]
sapiens cDNA clone UI-CF-DU1-adt-k-11-0-UI 3′, mRNA
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens hypothetical protein MGC40405 (MGC40405),
Homo sapiens sodium channel, nonvoltage-gated 1, beta (Liddle
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens B-cell CLL/lymphoma 2 (BCL2), nuclear gene
Homo sapiens chromosome 16 open reading frame 3 (C16orf3),
Homo sapiens clone FLB0708 mRNA sequence. [AF113008]
Homo sapiens nephrosis 2, idiopathic, steroid-resistant (podocin)
Homo sapiens adducin 1 (alpha) (ADD1), transcript variant 2,
Homo sapiens cDNA FLJ35429 fis, clone SMINT2002126.
Homo sapiens keratin associated protein 5-8 (KRTAP5-8), mRNA
Homo sapiens family with sequence similarity 124A (FAM124A),
Homo sapiens chromosome 22 open reading frame 32 (C22orf32),
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha
Homo sapiens mRNA for FLJ00310 protein. [AK090412]
Homo sapiens cDNA FLJ42956 fis, clone BRSTN2009899.
Homo sapiens cytochrome c oxidase subunit IV isoform 1
Homo sapiens family with sequence similarity 110, member A
Homo sapiens chromosome 11 open reading frame 76 (C11orf76),
Homo sapiens BCL2 binding component 3 (BBC3), mRNA
Homo sapiens ribosomal protein S8 (RPS8), mRNA [NM_001012]
Homo sapiens cyclin Y (CCNY), transcript variant 2, mRNA
Homo sapiens mRNA; cDNA DKFZp434A0326 (from clone
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens interferon induced transmembrane protein 5
Homo sapiens chromosome 12 open reading frame 10 (C12orf10),
Homo sapiens chromosome 19 open reading frame 48 (C19orf48),
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens late cornified envelope 2A (LCE2A), mRNA
Homo sapiens CKLF-like MARVEL transmembrane domain
Homo sapiens amino-terminal enhancer of split (AES), transcript
Homo sapiens hypothetical protein HSPC152 (HSPC152), mRNA
Homo sapiens suppression of tumorigenicity 14 (colon carcinoma)
Homo sapiens hypothetical protein LOC146713 (HRNBP3),
Homo sapiens ribosomal protein S15a (RPS15A), transcript variant
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens WAP four-disulfide core domain 3 (WFDC3),
Homo sapiens even-skipped homeobox 1 (EVX1), mRNA
Homo sapiens cDNA clone IMAGE:4184613, partial cds.
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens FAD1 flavin adenine dinucleotide synthetase
Homo sapiens X (inactive)-specific transcript (XIST) on
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens similar to 40S ribosomal protein SA (P40) (34/67 kDa
Homo sapiens, clone IMAGE:4941949, mRNA. [BC040156]
Homo sapiens malonyl CoA:ACP acyltransferase (mitochondrial)
Homo sapiens DnaJ (Hsp40) homolog, subfamily B, member 5
Homo sapiens arylalkylamine N-acetyltransferase (AANAT),
Homo sapiens ribosomal protein L18a (RPL18A), mRNA
Homo sapiens mRNA; cDNA DKFZp779C0742 (from clone
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens secretoglobin, family 3A, member 2 (SCGB3A2),
Homo sapiens family with sequence similarity 127, member A
Homo sapiens SPC24, NDC80 kinetochore complex component,
Homo sapiens NADH dehydrogenase (ubiquinone) Fe—S protein 7,
Homo sapiens, clone IMAGE:4179482, mRNA. [BC009038]
Homo sapiens synaptopodin (SYNPO), mRNA [NM_007286]
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens protease, serine, 36 (PRSS36), mRNA [NM_173502]
Homo sapiens glomulin, FKBP associated protein (GLMN), mRNA
Homo sapiens COMM domain containing 6 (COMMD6), transcript
Homo sapiens , clone IMAGE:5750141, mRNA. [BC047708]
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens ATP synthase, H+ transporting, mitochondrial F0
Homo sapiens otoferlin (OTOF), transcript variant 1, mRNA
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens surfactant protein A mRNA, complete cds. [L10123]
Homo sapiens, clone IMAGE:5221276, mRNA, partial cds.
Homo sapiens translocator protein (18 kDa) (TSPO), transcript
Homo sapiens ribosomal protein S16 (RPS16), mRNA
Homo sapiens breast cancer anti-estrogen resistance 1 (BCAR1),
Homo sapiens ADAM metallopeptidase with thrombospondin type
Homo sapiens RAB37, member RAS oncogene family (RAB37),
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens ATPase, H+ transporting, lysosomal 56/58 kDa, VI
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens similar to C367G8.3 (novel protein similar to
Homo sapiens chromosome 11 open reading frame 9 (C11orf9),
Homo sapiens similar to hypothetical protein LOC153561, mRNA
Homo sapiens ribosomal protein L18a (RPL18A), mRNA
Homo sapiens cDNA clone IMAGE:5302136. [BC041959]
Homo sapiens nuclear casein kinase and cyclin-dependent kinase
Homo sapiens ribosomal protein S20 (RPS20), mRNA
Homo sapiens lysophospholipase 3 (lysosomal phospholipase A2)
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA
Homo sapiens cDNA FLJ34612 fis, clone KIDNE2014170, highly
Homo sapiens hypothetical protein MGC16291, mRNA (cDNA
Homo sapiens ribosomal protein L14 (RPL14), transcript variant 2,
Homo sapiens sema domain, transmembrane domain (TM), and
Homo sapiens purinergic receptor P2X, ligand-gated ion channel, 2
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens cDNA FLJ42751 fis, clone BRAWH3000491,
Homo sapiens hypothetical protein from EUROIMAGE 384293
Homo sapiens paraoxonase 3 (PON3), mRNA [NM_000940]
Homo sapiens neurocan (NCAN), mRNA [NM_004386]
Homo sapiens aminoacylase 1-like 2 (ACY1L2), mRNA
Homo sapiens cDNA FLJ37894 fis, clone BRTHA2004639.
Homo sapiens ribosomal protein L17 (RPL17), transcript variant 1,
Homo sapiens cDNA clone IMAGE:4822684. [BC033528]
Homo sapiens jerky homolog (mouse) (JRK), transcript variant 1,
Homo sapiens serine/threonine kinase 11 (STK11), mRNA
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens TRAF3 interacting protein 3 (TRAF3IP3), mRNA
Homo sapiens cDNA FLJ39179 fis, clone OCBBF2004147.
Homo sapiens recombination signal binding protein for
Homo sapiens coagulation factor II (thrombin) receptor-like 3
Homo sapiens chymotrypsin-like (CTRL), mRNA [NM_001907]
Homo sapiens poly (ADP-ribose) polymerase family, member 1
Homo sapiens telomerase reverse transcriptase (TERT), transcript
Homo sapiens gamma-glutamyltransferase 6 homolog (rat)
Homo sapiens MICAL-like 2 (MICALL2), transcript variant 1,
Homo sapiens chromosome 19 open reading frame 59 (C19orf59),
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens epiregulin (EREG), mRNA [NM_001432]
Homo sapiens LIM homeobox 1 (LHX1), mRNA [NM_005568]
Homo sapiens annexin A4 (ANXA4), mRNA [NM_001153]
Homo sapiens sulfotransferase family 4A, member 1 (SULT4A1),
Homo sapiens sidekick homolog 2 (chicken) (SDK2), mRNA
Homo sapiens major facilitator superfamily domain containing 7
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens hypothetical protein LOC255783 (LOC255783) on
Homo sapiens ubiquitin-conjugating enzyme E2S (UBE2S), mRNA
Homo sapiens MAS-related GPR, member F (MRGPRF), mRNA
Homo sapiens prostaglandin E receptor 1 (subtype EP1), 42 kDa
Homo sapiens protocadherin gamma subfamily A, 7 (PCDHGA7),
Homo sapiens cDNA FLJ35420 fis, clone SMINT2001183.
Homo sapiens deformed epidermal autoregulatory factor 1
Homo sapiens dual specificity phosphatase 8 (DUSP8), mRNA
Homo sapiens small proline-rich protein 1A (SPRR1A), mRNA
Homo sapiens cDNA FLJ38922 fis, clone NT2NE2011691.
Homo sapiens RAS p21 protein activator 2 (RASA2), mRNA
Homo sapiens chromosome 5 open reading frame 16 (C5orf16),
Homo sapiens pleckstrin homology domain containing, family O
Homo sapiens cDNA FLJ20413 fis, clone KAT02170. [AK000420]
Homo sapiens ribosomal protein L37a (RPL37A), mRNA
Homo sapiens ribosomal protein L35 (RPL35), mRNA
Homo sapiens keratin associated protein 1-3 (KRTAP1-3), mRNA
Homo sapiens cDNA clone IMAGE:30318308, partial cds.
Homo sapiens cDNA clone MGC:99790 IMAGE:6304510,
Homo sapiens cDNA FLJ14300 fis, clone PLACE1011891.
Homo sapiens copine VI (neuronal) (CPNE6), mRNA
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed
Homo sapiens cDNA FLJ23867 fis, clone LNG09729. [AK074447]
Homo sapiens Kruppel-like factor 14 (KLF14), mRNA
Homo sapiens potassium channel, subfamily K, member 7
Homo sapiens PRO0529 mRNA, complete cds. [AF111848]
Homo sapiens cDNA:FLJ21777 fis, clone HEP00173. [AK025430]
Homo sapiens transmembrane protein 151 (TMEM151), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens forkhead box D3 (FOXD3), mRNA [NM_012183]
Homo sapiens mRNA; cDNA DKFZp761K032 (from clone
Homo sapiens ribosomal protein L35 (RPL35), mRNA
Homo sapiens Ras interacting protein 1 (RASIP1), mRNA
Homo sapiens cDNA FLJ16193 fis, clone BRTHA2018011, weakly
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens phospholipase A2, group VI (cytosolic, calcium-
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens SRY (sex determining region Y)-box 4 (SOX4),
Homo sapiens mRNA; cDNA DKFZp586L111 (from clone
Homo sapiens glucosidase I (GCS1), mRNA [NM_006302]
Homo sapiens junctophilin 2 (JPH2), transcript variant 1, mRNA
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens zinc finger and BTB domain containing 45
Homo sapiens POU domain, class 2, associating factor 1
Homo sapiens cDNA FLJ38626 fis, clone HEART2009599.
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens chromosome 14 open reading frame 43 (C14orf43),
Homo sapiens heparin-binding protein HBp15 mRNA, complete
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens proline rich membrane anchor 1 (PRIMA1), mRNA
Homo sapiens T-cell leukemia homeobox 3 (TLX3), mRNA
Homo sapiens forkhead box Q1 (FOXQ1), mRNA [NM_033260]
Homo sapiens chromosome 16 open reading frame 70 (C16orf70),
Homo sapiens leucine-rich repeat-containing G protein-coupled
Homo sapiens proline-rich protein BstNI subfamily 4 (PRB4),
Homo sapiens cardiolipin synthase 1 (CRLS1), mRNA
Homo sapiens growth hormone 2 (GH2), transcript variant 3,
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens melanoma antigen family E, 1 (MAGEE1), mRNA
Homo sapiens chromosome 11 open reading frame 48 (C11orf48),
Homo sapiens zinc finger protein, multitype 1 (ZFPM1), mRNA
Homo sapiens related RAS viral (r-ras) oncogene homolog
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens desert hedgehog homolog (Drosophila) (DHH),
Homo sapiens cDNA clone MGC:13162 IMAGE:3010103,
Homo sapiens WD repeat domain 31 (WDR31), transcript variant
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens G protein-coupled receptor, family C, group 5,
Homo sapiens death effector domain containing 2 (DEDD2),
Homo sapiens small optic lobes homolog (Drosophila) (SOLH),
Homo sapiens apolipoprotein E (APOE), mRNA [NM_000041]
Homo sapiens cDNA FLJ32615 fis, clone STOMA2000148.
Homo sapiens chromosome 9 open reading frame 163 (C9orf163),
Homo sapiens DENN/MADD domain containing 2D (DENND2D),
Homo sapiens ribosomal protein S17 (RPS17), mRNA
Homo sapiens G protein-coupled receptor 6 (GPR6), mRNA
Homo sapiens centaurin, gamma 3 (CENTG3), transcript variant 2,
Homo sapiens CDC42 effector protein (Rho GTPase binding) 1
Homo sapiens ribosomal protein S5 (RPS5), mRNA [NM_001009]
Homo sapiens proteasome (prosome, macropain) subunit, beta type,
Homo sapiens cDNA:FLJ21700 fis, clone COL09849, highly
Homo sapiens mRNA expressed only in placental villi, clone
Homo sapiens ATP synthase, H+ transporting, mitochondrial F0
Homo sapiens MyoD family inhibitor (MDFI), mRNA
Homo sapiens reticulon 1 (RTN1), transcript variant 1, mRNA
Homo sapiens eukaryotic translation elongation factor 1 beta 2
Homo sapiens CD320 molecule (CD320), mRNA [NM_016579]
Homo sapiens ankyrin repeat domain 53 (ANKRD53), mRNA
Homo sapiens guanylate cyclase 2F, retinal (GUCY2F), mRNA
Homo sapiens disrupted in renal carcinoma 1 (DIRC1), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens leucine rich repeat containing 42 (LRRC42), mRNA
Homo sapiens fatty acid desaturase 2 (FADS2), mRNA
Homo sapiens cDNA clone MGC:88072 IMAGE:5549882,
Homo sapiens v-myb myeloblastosis viral oncogene homolog
Homo sapiens family with sequence similarity 29, member A
Homo sapiens CD300 molecule-like family member g (CD300LG),
Homo sapiens chromosome 20 open reading frame 28 (C20orf28),
Homo sapiens mitogen-activated protein kinase kinase kinase 10
Homo sapiens ribosomal protein S19 (RPS19), mRNA
Homo sapiens alkaline phosphatase, placental (Regan isozyme)
Homo sapiens claudin 15 (CLDN15), transcript variant 1, mRNA
Homo sapiens potassium voltage-gated channel, Shaw-related
Homo sapiens cDNA FLJ90479 fis, clone NT2RP3002836, highly
Homo sapiens glypican 1 (GPC1), mRNA [NM_002081]
Homo sapiens full length insert cDNA clone ZD86H05.
Homo sapiens T-cell activation GTPase activating protein
Homo sapiens ribosomal protein L13a (RPL13A), mRNA
Homo sapiens hypothetical gene supported by AL365406;
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens GTPase, IMAP family member 7 (GIMAP7), mRNA
Homo sapiens cDNA FLJ39355 fis, clone PEBLM2003426.
Homo sapiens WD repeat domain 32 (WDR32), mRNA
Homo sapiens exosome component 6 (EXOSC6), mRNA
Homo sapiens ATPase family, AAA domain containing 1
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens matrix metallopeptidase 24 (membrane-inserted)
Homo sapiens PCI domain containing 1 (herpesvirus entry
Homo sapiens neuregulin 4 (NRG4), mRNA [NM_138573]
Homo sapiens cDNA FLJ31859 fis, clone NT2RP7001231.
Homo sapiens gastric inhibitory polypeptide receptor (GIPR),
Homo sapiens complement component 7 (C7), mRNA
Homo sapiens GLIS family zinc finger 3 (GLIS3), transcript variant
Homo sapiens chromosome 8 open reading frame 22 (C8orf22),
Homo sapiens huntingtin interacting protein 1 (HIP1), mRNA
Homo sapiens dual adaptor of phosphotyrosine and 3-
Homo sapiens amino acid transporter (FLJ10815), mRNA
Homo sapiens capping protein (actin filament), gelsolin-like
Homo sapiens cDNA clone IMAGE:4329532, partial cds.
Homo sapiens cyclin-dependent kinase 2 (CDK2), transcript variant
Homo sapiens orosomucoid 1 (ORM1), mRNA [NM_000607]
Homo sapiens peptidylprolyl isomerase A (cyclophilin A) (PPIA),
Homo sapiens ataxin 2 (ATXN2), mRNA [NM_002973]
Homo sapiens PRP40 pre-mRNA processing factor 40 homolog B
Homo sapiens zinc finger protein 205 (ZNF205), transcript variant
Homo sapiens , clone IMAGE:5204729, mRNA. [BC025734]
Homo sapiens CDC42 small effector 2 (CDC42SE2), transcript
Homo sapiens mRNA for KIAA0577 protein, partial cds.
Homo sapiens WD repeat domain 68 (WDR68), mRNA
Homo sapiens potassium large conductance calcium-activated
Homo sapiens fizzy/cell division cycle 20 related 1 (Drosophila)
Homo sapiens clone HLS_IMAGE _1699118 mRNA sequence.
Homo sapiens parathymosin (PTMS), mRNA [NM_002824]
Homo sapiens cDNA, mRNA sequence [DW451363]
Homo sapiens keratin 3 (KRT3), mRNA [NM_057088]
Homo sapiens t-complex-associated-testis-expressed 3 (TCTE3),
Homo sapiens ribosomal protein L15 (RPL15), mRNA
Homo sapiens CD44 molecule (Indian blood group) (CD44),
sapiens cDNA 5′, mRNA sequence [CD174733]
Homo sapiens lymphotoxin beta (TNF superfamily, member 3)
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens glutamic-pyruvate transaminase (alanine
Homo sapiens gamma-aminobutyric acid (GABA) A receptor,
Homo sapiens thyroid hormone receptor associated protein 2
Homo sapiens cDNA FLJ38910 fis, clone NT2NE2006813, weakly
Homo sapiens zinc finger, DHHC-type containing 8 (ZDHHC8),
Homo sapiens mevalonate kinase (mevalonic aciduria), mRNA
Homo sapiens synaptogyrin 2, mRNA (cDNA clone MGC:102914
Homo sapiens family with sequence similarity 110, member C
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens mRNA for KIAA1979 protein. [AB075859]
Homo sapiens solute carrier family 34 (sodium phosphate), member
Homo sapiens BCL2-associated X protein (BAX), transcript variant
Homo sapiens multiple EGF-like-domains 8 (MEGF8), mRNA
Homo sapiens transmembrane protein 24 (TMEM24), mRNA
Homo sapiens C1q domain containing 2 (C1QDC2), mRNA
Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-
Homo sapiens transmembrane protein 58 (TMEM58), mRNA
Homo sapiens matrix metallopeptidase 17 (membrane-inserted)
Homo sapiens glutamate receptor, ionotropic, N-methyl D-aspartate
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens ABI gene family, member 3 (ABI3), mRNA
Homo sapiens cDNA FLJ34036 fis, clone FCBBF2005069.
Homo sapiens creatine kinase, brain (CKB), mRNA [NM_001823]
Homo sapiens eukaryotic translation elongation factor 1 alpha 2
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens solute carrier family 2 (facilitated glucose
Homo sapiens SRY (sex determining region Y)-box 3 (SOX3),
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens similar to ribosomal protein L19 (LOC653314),
Homo sapiens tumor necrosis factor (ligand) superfamily, member
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens splA/ryanodine receptor domain and SOCS box
Homo sapiens cysteine-rich with EGF-like domains 2 (CRELD2),
Homo sapiens ubiquitin-conjugating enzyme E2G 2 (UBC7
Homo sapiens dual specificity phosphatase 9 (DUSP9), mRNA
Homo sapiens Fc receptor-like B, mRNA (cDNA clone
Homo sapiens metastasis associated 1 (MTA1), mRNA
Homo sapiens forkhead box L1 (FOXL1), mRNA [NM_005250]
Homo sapiens cDNA FLJ26697 fis, clone PCD00618. [AK130207]
Homo sapiens WD repeat domain 85 (WDR85), mRNA
Homo sapiens small glutamine-rich tetratricopeptide repeat (TPR)-
Homo sapiens low density lipoprotein receptor-related protein 3
Homo sapiens Finkel-Biskis-Reilly murine sarcoma virus (FBR-
Homo sapiens SAR1 gene homolog A (S. cerevisiae) (SAR1A),
Homo sapiens late cornified envelope 1F (LCE1F), mRNA
Homo sapiens basigin (Ok blood group) (BSG), transcript variant 1,
Homo sapiens armadillo repeat containing 5 (ARMC5), mRNA
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens mRNA; cDNA DKFZp761H0317 (from clone
Homo sapiens , clone IMAGE:5184855, mRNA. [BC040412]
Homo sapiens chromosome 11 open reading frame 31 (C11orf31),
Homo sapiens T cell receptor beta variable 5-4, mRNA (cDNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens FLJ45445 protein (FLJ45445), mRNA
Homo sapiens G protein-coupled receptor 156 (GPR156), mRNA
Homo sapiens tenascin XB (TNXB), transcript variant XB, mRNA
Homo sapiens cDNA:FLJ22714 fis, clone HSI13646. [AK026367]
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens centaurin, beta 5 (CENTB5), mRNA [NM_030649]
Homo sapiens agouti related protein homolog (mouse) (AGRP),
Homo sapiens ribosomal protein L28 (RPL28), mRNA
Homo sapiens zinc finger protein 219 (ZNF219), mRNA
Homo sapiens FXYD domain containing ion transport regulator 5
Homo sapiens ribosomal protein L39 (RPL39), mRNA
Homo sapiens PYD (pyrin domain) containing 1 (PYDC1), mRNA
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
sapiens cDNA clone IMAGE:280798 3′ similar to gb:M23115
Homo sapiens cell cycle exit and neuronal differentiation 1
Homo sapiens signal peptide peptidase-like 2B (SPPL2B),
Homo sapiens cDNA FLJ39459 fis, clone PROST2011439.
sapiens cDNA clone IMAGE:5823701 3′, mRNA sequence
Homo sapiens CASK interacting protein 1 (CASKIN1), mRNA
Homo sapiens chromosome 12 open reading frame 52 (C12orf52),
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens transcription factor 1, hepatic; LF-B1, hepatic
Homo sapiens killer cell lectin-like receptor subfamily B, member 1
Homo sapiens alkaline phosphatase, placental-like 2 (ALPPL2),
Homo sapiens mRNA for FLJ00388 protein. [AK090467]
Homo sapiens family with sequence similarity 57, member B
Homo sapiens IKAROS family zinc finger 4 (Eos) (IKZF4), mRNA
Homo sapiens eukaryotic translation initiation factor 4A, isoform 1
Homo sapiens ribosomal protein L7 (RPL7), mRNA [NM_000971]
Homo sapiens hypothetical protein LOC255783 (LOC255783) on
Homo sapiens family with sequence similarity 127, member B
Homo sapiens coactosin-like 1 (Dictyostelium) (COTL1), mRNA
Homo sapiens ribosomal protein L10a (RPL10A), mRNA
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens SAPK substrate protein 1 (LOC51035), mRNA
Homo sapiens HSPC088 mRNA, partial cds. [AF161351]
Homo sapiens hypothetical protein MGC46336, mRNA (cDNA
Homo sapiens septin 9 (SEPT9), mRNA [NM_006640]
Homo sapiens calpain 2, (m/II) large subunit (CAPN2), mRNA
Homo sapiens chromosome 17 open reading frame 59 (C17orf59),
Homo sapiens telomeric repeat binding factor (NIMA-interacting) 1
Homo sapiens ribosomal protein S23 (RPS23), mRNA
Homo sapiens hypothetical gene supported by BC013438, mRNA
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens KIAA0467 (KIAA0467), mRNA [NM_015284]
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens proprotein convertase subtilisin/kexin type 1
Homo sapiens F-box and leucine-rich repeat protein 18 (FBXL18),
Homo sapiens nuclear pore complex interacting protein pseudogene
Homo sapiens keratin associated protein 4-10 (KRTAP4-10),
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens nucleophosmin (nucleolar phosphoprotein B23,
sapiens cDNA clone IMAGE:786679 3′, mRNA sequence
Homo sapiens synapse defective 1, Rho GTPase, homolog 1 (C. elegans)
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens cDNA FLJ35852 fis, clone TESTI2007074.
Homo sapiens cDNA FLJ46600 fis, clone THYMU3047144.
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens hairy and enhancer of split 4 (Drosophila) (HES4),
Homo sapiens hypothetical LOC389634, mRNA (cDNA clone
Homo sapiens surfactant, pulmonary-associated protein C (SFTPC),
Homo sapiens GDNF family receptor alpha 4 (GFRA4), transcript
Homo sapiens aldo-keto reductase family 7, member A2 (aflatoxin
Homo sapiens prothymosin, alpha (gene sequence 28) (PTMA),
Homo sapiens histone deacetylase 1 (HDAC1), mRNA
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens similar to RIKEN cDNA A430101B06 gene, mRNA
Homo sapiens nuclear pore complex interacting protein (NPIP),
Homo sapiens fatty acid desaturase domain family, member 6
Homo sapiens gap junction protein, chi 1, 31.9 kDa (GJC1), mRNA
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens ribosomal protein L17 (RPL17), transcript variant 1,
Homo sapiens src kinase associated phosphoprotein 1 (SKAP1),
Homo sapiens rhomboid, veinlet-like 1 (Drosophila) (RHBDL1),
Homo sapiens cDNA FLJ31398 fis, clone NT2NE1000175.
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens cDNA FLJ14409 fis, clone HEMBA1004408,
Homo sapiens cDNA FLJ26608 fis, clone LVR00914. [AK130118]
Homo sapiens myotrophin (MTPN), mRNA [NM_145808]
Homo sapiens tumor protein, translationally-controlled 1 (TPT1),
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens WD and tetratricopeptide repeats 1 (WDTC1),
Homo sapiens hypothetical LOC400120 (LOC400120), mRNA
Homo sapiens proteasome (prosome, macropain) activator subunit 1
Homo sapiens ribosomal protein S10 (RPS10), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens fibroblast growth factor 3 (murine mammary tumor
Homo sapiens mRNA similar to protein kinase, cAMP dependent
Homo sapiens chymotrypsinogen B2 (CTRB2), mRNA
Homo sapiens solute carrier family 25 (mitochondrial carrier;
Homo sapiens growth arrest-specific 5 (GAS5) on chromosome 1
Homo sapiens endothelial differentiation, lysophosphatidic acid G-
Homo sapiens corticotropin releasing hormone receptor 1
Homo sapiens RAB4A, member RAS oncogene family (RAB4A),
Homo sapiens nuclear pore complex interacting protein (NPIP),
Homo sapiens Rho GTPase activating protein 4 (ARHGAP4),
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens, clone IMAGE:5443970, mRNA, partial cds.
Homo sapiens ubiquitin-conjugating enzyme E2S (UBE2S), mRNA
Homo sapiens zinc forger protein 579 (ZNF579), mRNA
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens cDNA FLJ20021 fis, clone ADSE01233.
Homo sapiens GTPase, IMAP family member 1 (GIMAP1), mRNA
Homo sapiens cDNA FLJ23611 fis, clone ADKA02380.
Homo sapiens Fc fragment of IgG, receptor, transporter, alpha
Homo sapiens cDNA clone IMAGE:3347310, containing frame-
Homo sapiens peroxisomal proliferator-activated receptor A
Homo sapiens chromosome 11 open reading frame 58 (C11orf58),
Homo sapiens eukaryotic translation initiation factor 3, subunit 3
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens SIN3 homolog B, transcription regulator (yeast),
Homo sapiens mannosidase, alpha, class 2A, member 2
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens ribosomal protein L22 (RPL22), mRNA
Homo sapiens chromosome 19 open reading frame 42 (C19orf42),
Homo sapiens solute carrier family 1 (glutamate/neutral amino acid
Homo sapiens stromal cell-derived factor 2 (SDF2), mRNA
Homo sapiens roundabout, axon guidance receptor, homolog 3
Homo sapiens cDNA FLJ13224 fis, clone OVARC1000008.
Homo sapiens methyltransferase 5 domain containing 1
Homo sapiens zinc finger protein 385 (ZNF385), mRNA
Homo sapiens ribosomal protein S18/S6-like mRNA, complete
Homo sapiens ATP synthase, H+ transporting, mitochondrial F1
Homo sapiens ALS2 C-terminal like (ALS2CL), transcript variant
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens chemokine (C-C motif) ligand 4 (CCL4), transcript
Homo sapiens methionine adenosyltransferase II, beta (MAT2B),
Homo sapiens solute carrier family 25 (mitochondrial carrier;
Homo sapiens ribosomal protein S18 (RPS18), mRNA
Homo sapiens cytochrome c oxidase subunit VIIc (COX7C),
Homo sapiens interleukin 28A (interferon, lambda 2) (IL28A),
Homo sapiens guanine nucleotide binding protein (G protein), beta
Homo sapiens hypothetical gene supported by AL365406;
Homo sapiens chromosome 16 open reading frame 14 (C16orf14),
Homo sapiens SIB 227C intestinal mucin (MUC3) mRNA, partial
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens ribosomal protein L6 (RPL6), transcript variant 2,
Homo sapiens proteasome (prosome, macropain) activator subunit 2
Homo sapiens ribosomal protein L29 (RPL29), mRNA
Homo sapiens mRNA for FLJ00235 protein. [AK074162]
Homo sapiens chromatin modifying protein 4B (CHMP4B), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens cell division cycle 26 homolog (S. cerevisiae)
Homo sapiens myosin, light chain kinase (MYLK), transcript
Homo sapiens proteasome (prosome, macropain) 26S subunit, non-
Homo sapiens MYC associated factor X (MAX), transcript variant
Homo sapiens ribosomal protein S12 (RPS12), mRNA
Homo sapiens CUB and Sushi multiple domains 2 (CSMD2),
Homo sapiens myotrophin (MTPN), mRNA [NM_145808]
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens neurexophilin 4 (NXPH4), mRNA [NM_007224]
Homo sapiens eukaryotic translation elongation factor 1 beta 2
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens hypothetical LOC439951, mRNA (cDNA clone
Homo sapiens sterile alpha motif domain containing 10 (SAMD10),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens splicing factor, arginine/serine-rich 4 (SFRS4),
Homo sapiens ribosomal protein L23a pseudogene 13
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens cadherin-like 22 (CDH22), mRNA [NM_021248]
Homo sapiens CD2 molecule (CD2), mRNA [NM_001767]
Homo sapiens chromosome 19 open reading frame 31 (C19orf31),
Homo sapiens hypothetical protein LOC339229 (LOC339229),
Homo sapiens ribosomal protein L13a (RPL13A), mRNA
Homo sapiens N-acetyltransferase 9 (NAT9), mRNA
Homo sapiens acyl-Coenzyme A dehydrogenase family, member 10
Homo sapiens vesicle transport through interaction with t-SNAREs
Homo sapiens general transcription factor IIIC, polypeptide 3,
Homo sapiens zinc finger protein 64 homolog (mouse) (ZFP64),
Homo sapiens mRNA; cDNA DKFZp434B061 (from clone
Homo sapiens major histocompatibility complex, class II, DP beta 2
Homo sapiens chromosome 3 open reading frame 10 (C3orf10),
Homo sapiens basal cell adhesion molecule (Lutheran blood group)
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens cDNA:FLJ22016 fis, clone HEP07422. [AK025669]
Homo sapiens PWWP domain containing 2 (PWWP2), mRNA
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens prolactin releasing hormone (PRLH), mRNA
Homo sapiens ribosomal protein L11 (RPL11), mRNA
Homo sapiens ubiquitin specific peptidase 51 (USP51), mRNA
Homo sapiens protein kinase, Y-linked (PRKY), mRNA
Homo sapiens RaP2 interacting protein 8 (RPIP8), mRNA
Homo sapiens transcriptional adaptor 3 (NGG1 homolog, yeast)-
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens mortality factor 4 like 1 (MORF4L1), transcript
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens chromosome 17 open reading frame 74 (C17orf74),
Homo sapiens keratin 8 (KRT8), mRNA [NM_002273]
Homo sapiens polymerase (DNA-directed), delta 4 (POLD4),
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens carbohydrate (chondroitin 4) sulfotransferase 13
Homo sapiens poliovirus receptor-related 1 (herpesvirus entry
Homo sapiens one cut domain, family member 2 (ONECUT2),
Homo sapiens eukaryotic translation initiation factor 3, subunit 7
Homo sapiens potassium voltage-gated channel, shaker-related
Homo sapiens ribosomal protein S13 (RPS13), mRNA
Homo sapiens metallothionein 1A (MT1A), mRNA [NM_005946]
Homo sapiens Rho guanine nucleotide exchange factor (GEF) 17
Homo sapiens ribosomal protein S3 (RPS3), mRNA [NM_001005]
Homo sapiens ribosomal protein, large, P1 (RPLP1), transcript
Homo sapiens ribosomal protein L17 (RPL17), transcript variant 1,
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens major vault protein (MVP), transcript variant 1,
Homo sapiens major histocompatibility complex, class II, DR alpha
Homo sapiens ribosomal protein L15 (RPL15), mRNA
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens tropomyosin 4 (TPM4), mRNA [NM_003290]
Homo sapiens, clone IMAGE:5171873, mRNA. [BC043547]
Homo sapiens myxovirus (influenza virus) resistance 1, interferon-
Homo sapiens KIAA1509 (KIAA1509), mRNA [NM_001080414]
Homo sapiens coiled-coil domain containing 120 (CCDC120),
Homo sapiens myosin regulatory light chain MRLC2 (MRLC2),
Homo sapiens CD33 molecule-like 3 (CD33L3), mRNA
Homo sapiens proteasome (prosome, macropain) 26S subunit, non-
Homo sapiens zinc finger CCCH-type, antiviral 1-like
Homo sapiens similar to RPL23AP7 protein (MGC70863),
Homo sapiens natriuretic peptide receptor A/guanylate cyclase A
Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 5
Homo sapiens family with sequence similarity 102, member A
Homo sapiens sema domain, immunoglobulin domain (Ig),
Homo sapiens KIAA1539 (KIAA1539), mRNA [NM_025182]
Homo sapiens ribosomal protein S14 (RPS14), transcript variant 3,
Homo sapiens glucuronidase, beta-like 2 (GUSBL2), mRNA
Homo sapiens glycerophosphodiester phosphodiesterase domain
Homo sapiens lymphoid enhancer-binding factor 1 (LEF1), mRNA
Homo sapiens KIAA1442 protein, mRNA (cDNA clone
Homo sapiens ribosomal protein L26 (RPL26), mRNA
Homo sapiens cyclin E1 (CCNE1), transcript variant 1, mRNA
Homo sapiens cDNA FLJ37158 fis, clone BRACE2026293.
Homo sapiens RNA terminal phosphate cyclase-like 1 (RCL1),
Homo sapiens polymerase (DNA directed), mu (POLM), mRNA
Homo sapiens cDNA clone IMAGE:4156795. [BC011266]
Homo sapiens chromosome 12 open reading frame 57 (C12orf57),
Homo sapiens mitochondrial ribosomal protein L10 (MRPL10),
Homo sapiens nascent-polypeptide-associated complex alpha
Homo sapiens poly(A) binding protein, cytoplasmic 1 (PABPC1),
Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type
Homo sapiens cyclin U (CCNU), mRNA [NM_021147]
Homo sapiens transmembrane protein 53 (TMEM53), mRNA
Homo sapiens cDNA FLJ25739 fis, clone TST05834. [AK098605]
Homo sapiens hypothetical LOC554250, mRNA (cDNA clone
Homo sapiens nuclear autoantigen mRNA, partial cds; alternatively
Homo sapiens acyl-CoA synthetase long-chain family member 4
Homo sapiens hypothetical protein BC009233, mRNA (cDNA
Homo sapiens ribosomal protein, large, P0 (RPLP0), transcript
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens SAPS domain family, member 1 (SAPS1), mRNA
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens glutamate dehydrogenase 1 (GLUD1), mRNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens synapsin I (SYN1), transcript variant Ib, mRNA
Homo sapiens cDNA FLJ11895 fis, clone HEMBA1007301,
Homo sapiens tumor necrosis factor, alpha-induced protein 2
Homo sapiens ribosomal protein S21 (RPS21), mRNA
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens tripartite motif-containing 49 (TRIM49), mRNA
Homo sapiens TAF2 RNA polymerase II, TATA box binding
Homo sapiens lysophospholipase-like 1 (LYPLAL1), mRNA
Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit
Homo sapiens wingless-type MMTV integration site family,
Homo sapiens transcription factor AP-2 gamma (activating
Homo sapiens ribosomal protein L36a (RPL36A), mRNA
Homo sapiens scavenger receptor class A, member 5 (putative)
Homo sapiens transmembrane protein 154 (TMEM154), mRNA
Homo sapiens chromosome 7 open reading frame 26 (C7orf26),
Homo sapiens histidine triad nucleotide binding protein 1 (HINT1),
Homo sapiens Ly6/neurotoxin 1 (LYNX1), transcript variant
Homo sapiens neurensin 2 (NRSN2), mRNA [NM_024958]
Homo sapiens SPOC domain containing 1 (SPOCD1), mRNA
Homo sapiens transmembrane and coiled-coil domain family 1
Homo sapiens chromosome 17 open reading frame 55 (C17orf55),
Homo sapiens ribosomal protein S9 (RPS9), mRNA [NM_001013]
Homo sapiens neurexin 2 (NRXN2), transcript variant alpha-2,
Homo sapiens chromosome 10 open reading frame 104
Homo sapiens chromosome 18 open reading frame 23, mRNA
Homo sapiens v-abl Abelson murine leukemia viral oncogene
Homo sapiens chromosome 1 open reading frame 78 (C1orf78),
Homo sapiens heterogeneous nuclear ribonucleoprotein A1-like
Homo sapiens ribosomal protein L10-like (RPL10L), mRNA
Homo sapiens TIMM9 (UNQ9438), mRNA [NM_207377]
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene
Homo sapiens glioma tumor suppressor candidate region gene 2
Homo sapiens eukaryotic translation initiation factor 4A, isoform 1
Homo sapiens mRNA; cDNA DKFZp686O10247 (from clone
Homo sapiens SWI/SNF related, matrix associated, actin dependent
Homo sapiens enhancer of rudimentary homolog (Drosophila)
Homo sapiens sterol regulatory element binding transcription factor
Homo sapiens 3-hydroxyisobutyryl-Coenzyme A hydrolase
Homo sapiens polymerase (RNA) III (DNA directed) polypeptide H
Homo sapiens ecotropic viral integration site 5-like (EVI5L),
Homo sapiens Enah/Vasp-like (EVL), mRNA [NM_016337]
Homo sapiens PML-RARA regulated adaptor molecule 1
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens coiled-coil-helix-coiled-coil-helix domain containing
Homo sapiens prolactin (PRL), mRNA [NM_000948]
Homo sapiens chromosome 3 open reading frame 28 (C3orf28),
Homo sapiens SPCX mRNA, complete cds. [AY168775]
Homo sapiens suppressor of IKK epsilon (SIKE), mRNA
Homo sapiens cDNA clone IMAGE:1894427 3′, mRNA sequence
Homo sapiens nucleotide binding protein 2 (MinD homolog, E. coli)
Homo sapiens chromosome 20 open reading frame 144
Homo sapiens jun B proto-oncogene (JUNB), mRNA
Homo sapiens ring finger and KH domain containing 1 (RKHD1),
Homo sapiens leucine zipper, down-regulated in cancer 1
Homo sapiens glioma tumor suppressor candidate region gene 2
Homo sapiens ribosomal protein S5 (RPS5), mRNA [NM_001009]
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens ribosomal protein L10 (RPL10), mRNA
Homo sapiens transcription factor 7 (T-cell specific, HMG-box)
Homo sapiens urocortin 2 (UCN2), mRNA [NM_033199]
Homo sapiens thrombospondin 1 (THBS1), mRNA [NM_003246]
Homo sapiens prefoldin subunit 5 (PFDN5), transcript variant 1,
Homo sapiens methionine adenosyltransferase II, alpha (MAT2A),
Homo sapiens myosin binding protein C, slow type (MYBPC1),
Homo sapiens ribosomal protein L7a (RPL7A), mRNA
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens keratin associated protein 2-4 (KRTAP2-4), mRNA
Homo sapiens RAB1B, member RAS oncogene family (RAB1B),
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens amyotrophic lateral sclerosis 2 (juvenile)
Homo sapiens ribosomal protein L9 (RPL9), transcript variant 1,
Homo sapiens poly(A) binding protein interacting protein 2
Homo sapiens cytokine receptor-like factor 1 (CRLF1), mRNA
Homo sapiens myosin regulatory light chain MRCL3 (MRCL3),
Homo sapiens ribosomal protein L34 (RPL34), transcript variant 2,
Homo sapiens eukaryotic translation elongation factor 1 delta
Homo sapiens chaperonin containing TCP1, subunit 6A (zeta 1)
Homo sapiens histone cluster 2, H2ab (HIST2H2AB), mRNA
Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation
H.
sapiens HZF3 mRNA for zinc finger protein. [X78926]
Homo sapiens muscleblind-like (Drosophila) (MBNL1), transcript
Homo sapiens suppressor of zeste 12 homolog (Drosophila)
Homo sapiens major histocompatibility complex, class II, DR beta
Homo sapiens cDNA clone IMAGE:4309177, **** WARNING:
Homo sapiens proprotein convertase subtilisin/kexin type 1
Homo sapiens hypothetical protein SB141 mRNA, complete cds.
Homo sapiens mRNA; cDNA DKFZp779J0122 (from clone
Homo sapiens cDNA:FLJ23022 fis, clone LNG01117.
Homo sapiens kelch-like 21 (Drosophila) (KLHL21), mRNA
Homo sapiens hydroxyacid oxidase (glycolate oxidase) 1 (HAO1),
Homo sapiens ribosomal protein L5 (RPL5), mRNA [NM_000969]
Homo sapiens keratin associated protein 2-4 (KRTAP2-4), mRNA
Homo sapiens 5-hydroxytryptamine (serotonin) receptor 5A
Homo sapiens Tar (HIV-1) RNA binding protein 1 (TARBP1),
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens aldolase A, fructose-bisphosphate (ALDOA),
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens phosphatidylinositol glycan anchor biosynthesis,
Homo sapiens ubiquinol-cytochrome c reductase binding protein
Homo sapiens translocase of outer mitochondrial membrane 7
Homo sapiens CD48 molecule (CD48), mRNA [NM_001778]
Homo sapiens poly (ADP-ribose) polymerase family, member 10
Homo sapiens ribosomal protein L29 pseudogene 2 (RPL29P2) on
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens CD44 molecule (Indian blood group) (CD44),
Homo sapiens inhibin, beta C (INHBC), mRNA [NM_005538]
Homo sapiens chromatin licensing and DNA replication factor 1
Homo sapiens galanin receptor 3 (GALR3), mRNA [NM_003614]
Homo sapiens Parkinson disease (autosomal recessive, early onset)
Homo sapiens A kinase (PRKA) anchor protein 13 (AKAP13),
Homo sapiens CKLF-like MARVEL transmembrane domain
Homo sapiens matrix metallopeptidase 1 (interstitial collagenase)
Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA
Homo sapiens chromosome 9 open reading frame 95 (C9orf95),
Homo sapiens latent transforming growth factor beta binding
Homo sapiens brain and acute leukemia, cytoplasmic (BAALC),
Homo sapiens poly(A) binding protein, cytoplasmic 3 (PABPC3),
Homo sapiens ribosomal protein L6 (RPL6), transcript variant 2,
Homo sapiens hypothetical gene supported by BC009626;
Homo sapiens trafficking protein, kinesin binding 1 (TRAK1),
Homo sapiens discs, large (Drosophila) homolog-associated protein
Homo sapiens cDNA clone IMAGE:4793786. [BC018095]
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
Homo sapiens solute carrier family 5 (sodium iodide symporter),
Homo sapiens RWD domain containing 1 (RWDD1), transcript
Homo sapiens nuclear localized factor 1 (NLF1), mRNA
Homo sapiens monoacylglycerol O-acyltransferase 2, mRNA
Homo sapiens leucine proline-enriched proteoglycan (leprecan) 1
Homo sapiens protein tyrosine phosphatase type IVA, member 2
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin 7)
Homo sapiens hypothetical protein MGC13057 (MGC13057),
Homo sapiens pyrroline-5-carboxylate reductase-like (PYCRL),
Homo sapiens ribosomal protein L18 (RPL18), mRNA
Homo sapiens CCR4-NOT transcription complex, subunit 7
Homo sapiens metastasis related protein (MB2) mRNA, partial cds.
Homo sapiens ring-box 1 (RBX1), mRNA [NM_014248]
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens GTPase, IMAP family member 4 (GIMAP4), mRNA
Homo sapiens eukaryotic translation initiation factor 3, subunit 12
Homo sapiens WAP four-disulfide core domain 10B (WFDC10B),
Homo sapiens hypothetical protein FLJ35390, mRNA (cDNA clone
Homo sapiens ribosomal protein L21 (RPL21), mRNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens chromosome 1 open reading frame 113 (C1orf113),
Homo sapiens testis-specific kinase 1 (TESK1), mRNA
Homo sapiens ribosomal protein L27 (RPL27), mRNA
Homo sapiens likely ortholog of rat brain-enriched guanylate
Homo sapiens protein tyrosine phosphatase type IVA, member 3
Homo sapiens cDNA clone NHTBC_cn10d09 random, mRNA
Homo sapiens FYN binding protein (FYB-120/130) (FYB),
Homo sapiens N-deacetylase/N-sulfotransferase (heparan
Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA
Homo sapiens mitochondrial ribosomal protein L48 (MRPL48),
Homo sapiens cDNA clone IMAGE:5763979. [BC064430]
Homo sapiens chromosome 15 open reading frame 5, mRNA
Homo sapiens eukaryotic translation elongation factor 1 gamma
Homo sapiens chloride channel, nucleotide-sensitive, 1A
Homo sapiens replication protein A1, 70 kDa (RPA1), mRNA
Homo sapiens ubiquinol-cytochrome c reductase, 6.4 kDa subunit
Homo sapiens pp9943 mRNA, complete cds. [AF318380]
Homo sapiens ATPase family, AAA domain containing 3C
Homo sapiens signal sequence receptor, beta (translocon-associated
Homo sapiens eukaryotic translation initiation factor 4A, isoform 2
Homo sapiens ribosomal protein S7 (RPS7), mRNA [NM_001011]
Homo sapiens ribosomal protein S4, X-linked (RPS4X), mRNA
Homo sapiens cancer/testis CT47 family, member 11 (CT47.11),
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens adipose differentiation-related protein (ADFP),
Homo sapiens sec1 family domain containing 2 (SCFD2), mRNA
Homo sapiens , clone IMAGE:3543963, mRNA. [BC004968]
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens cytochrome c oxidase subunit IV isoform 1
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4
Homo sapiens solute carrier family 1 (glutamate transporter),
Homo sapiens major histocompatibility complex, class II, DM beta
sapiens cDNA clone IMAGE:6730153 5′, mRNA sequence
Homo sapiens cDNA FLJ32599 fis, clone STOMA1000047.
Homo sapiens ependymin related protein 1 (zebrafish) (EPDR1),
Homo sapiens tripartite motif-containing 7 (TRIM7), transcript
Homo sapiens heat shock factor binding protein 1 (HSBP1), mRNA
Homo sapiens ribosomal protein S15a, mRNA (cDNA clone
Homo sapiens eukaryotic translation initiation factor 3, subunit 5
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1), mRNA
Homo sapiens MFNG O-fucosylpeptide 3-beta-N-
Homo sapiens tripartite motif-containing 8 (TRIM8), mRNA
Homo sapiens small proline-rich protein 2B (SPRR2B), mRNA
Homo sapiens SAPK substrate protein 1 (LOC51035), mRNA
Homo sapiens solute carrier family 12 (potassium/chloride
Homo sapiens fibroblast growth factor binding protein 3 (FGFBP3),
Homo sapiens urotensin 2 receptor (UTS2R), mRNA [NM_018949]
Homo sapiens MADS box transcription enhancer factor 2,
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens non-metastatic cells 1, protein (NM23A) expressed
Homo sapiens EP300 interacting inhibitor of differentiation 1
Homo sapiens full length insert cDNA clone YP90G10.
Homo sapiens G protein-coupled receptor 161 (GPR161), transcript
Homo sapiens ribosomal protein L3 (RPL3), transcript variant 1,
Homo sapiens eukaryotic translation initiation factor 3, subunit 6
Homo sapiens RAP1B, member of RAS oncogene family (RAP1B),
Homo sapiens fibrillarin (FBL), mRNA [NM_001436]
Homo sapiens lymphocyte-specific protein tyrosine kinase (LCK),
Homo sapiens v-yes-1 Yamaguchi sarcoma viral related oncogene
Homo sapiens fibrinogen-like 2 (FGL2), mRNA [NM_006682]
Homo sapiens ribosomal protein L13 (RPL13), transcript variant 2,
Homo sapiens tyrosine kinase, non-receptor, 2 (TNK2), transcript
Homo sapiens cDNA:FLJ22425 fis, clone HRC08686.
Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-
Homo sapiens ribosomal protein S10 (RPS10), mRNA
sapiens cDNA clone fg07f07 3′, mRNA sequence [CD671824]
Homo sapiens programmed cell death 6 (PDCD6), mRNA
Homo sapiens complement component 1, q subcomponent binding
Homo sapiens leukotriene B4 receptor 2 (LTB4R2), mRNA
Homo sapiens ribosomal protein S15a (RPS15A), transcript variant
Homo sapiens GRB2-related adaptor protein 2 (GRAP2), mRNA
Homo sapiens family with sequence similarity 131, member C
Homo sapiens eukaryotic translation elongation factor 2 (EEF2),
Homo sapiens adducin 3 (gamma) (ADD3), transcript variant 1,
Homo sapiens non-metastatic cells 2, protein (NM23B) expressed
Homo sapiens CTD (carboxy-terminal domain, RNA polymerase II,
Homo sapiens heat shock 70 kDa protein 8 (HSPA8), transcript
Homo sapiens carcinoembryonic antigen-related cell adhesion
Homo sapiens eukaryotic translation initiation factor 3, subunit 2
Homo sapiens eukaryotic translation elongation factor 1 alpha 1
Homo sapiens similar to Laminin receptor 1 (LOC388524), mRNA
Homo sapiens cDNA clone MGC:87657 IMAGE:5271409,
Homo sapiens peptidylprolyl isomerase A (cyclophilin A) (PPIA),
Homo sapiens FYN oncogene related to SRC, FGR, YES (FYN),
Homo sapiens protein tyrosine phosphatase, non-receptor type 14
Homo sapiens Kruppel-like factor 16 (KLF16), mRNA
Homo sapiens superoxide dismutase 1, soluble (amyotrophic lateral
Homo sapiens golgi autoantigen, golgin subfamily a-like
Homo sapiens ribosomal protein S6 (RPS6), mRNA [NM_001010]
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2),
Homo sapiens thymosin-like 3 (TMSL3), mRNA [NM_183049]
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1),
Homo sapiens guanine nucleotide binding protein (G
Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA
Homo sapiens beta-2-microglobulin (B2M), mRNA
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens regulator of G-protein signalling 10 (RGS10),
Homo sapiens glutathione peroxidase 1 (GPX1), transcript
Homo sapiens RAP1B, member of RAS oncogene family
Homo sapiens mRNA; cDNA DKFZp586A0722 (from clone
Homo sapiens SH3 domain binding glutamic acid-rich protein
Homo sapiens monocyte to macrophage differentiation-
Homo sapiens platelet factor 4 variant 1 (PF4V1), mRNA
Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens MYC associated factor X (MAX), transcript
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myosin regulatory light chain MRCL3 (MRCL3),
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens GNAS complex locus (GNAS), transcript
Homo sapiens ribosomal protein S29 (RPS29), transcript
Homo sapiens ribosomal protein S8 (RPS8), mRNA
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens ribosomal protein L41 (RPL41), transcript
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens ribosomal protein, large, P1 (RPLP1),
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S29 (RPS29), transcript
Homo sapiens transmembrane protein 111 (TMEM111),
Homo sapiens ribosomal protein, large, P1 (RPLP1),
Homo sapiens prothymosin, alpha (gene sequence 28)
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens cDNA clone MGC: 59872 IMAGE: 6301163,
Homo sapiens ribosomal protein S23 (RPS23), mRNA
sapiens cDNA clone IMAGE: 6730153 5′, mRNA sequence
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens eukaryotic translation elongation factor 1
Homo sapiens ribosomal protein L11 (RPL11), mRNA
Homo sapiens small nucleolar RNA host gene (non-protein
Homo sapiens glioma tumor suppressor candidate region
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens lymphotoxin beta (TNF superfamily, member
Homo sapiens ribosomal protein L3 (RPL3), transcript variant
Homo sapiens ribosomal protein L9 (RPL9), transcript variant
Homo sapiens ribosomal protein L28 (RPL28), mRNA
Homo sapiens ribosomal protein L9 (RPL9), transcript variant
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens cDNA clone MGC: 87657 IMAGE: 5271409,
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L27 (RPL27), mRNA
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S15a, mRNA (cDNA clone
Homo sapiens ribosomal protein L32 (RPL32), transcript
Homo sapiens ribosomal protein L14 (RPL14), transcript
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein S12 (RPS12), mRNA
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein L34 (RPL34), transcript
Homo sapiens ribosomal protein S6 (RPS6), mRNA
Homo sapiens ribosomal protein L34 (RPL34), transcript
Homo sapiens ribosomal protein S18 (RPS18), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens poly(A) binding protein, cytoplasmic 1
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript
Homo sapiens ribosomal protein S20 (RPS20), mRNA
Homo sapiens ribosomal protein L14 (RPL14), transcript
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein S21 (RPS21), mRNA
Homo sapiens ribosomal protein S17 (RPS17), mRNA
Homo sapiens prothymosin, alpha (gene sequence 28)
Homo sapiens SLIT and NTRK-like family, member 4
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens mesoderm posterior 1 homolog (mouse)
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens chromosome 17 open reading frame 74
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA
Homo sapiens cDNA clone IMAGE: 4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens ring finger and KH domain containing 1
Homo sapiens leucine-rich repeat-containing G protein-
Homo sapiens thymosin-like 3 (TMSL3), mRNA [NM_183049]
Homo sapiens guanine nucleotide binding protein (G
Homo sapiens beta-2-microglobulin (B2M), mRNA
Homo sapiens regulator of G-protein signalling 10 (RGS10),
Homo sapiens glutathione peroxidase 1 (GPX1), transcript
Homo sapiens ribosomal protein S29 (RPS29), transcript
Homo sapiens SLIT and NTRK-like family, member 4
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens mesoderm posterior 1 homolog (mouse)
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens chromosome 17 open reading frame 74
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA
Homo sapiens cDNA clone IMAGE: 4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens ring finger and KH domain containing 1
Homo sapiens leucine-rich repeat-containing G protein-
Homo sapiens SLIT and NTRK-like family, member 4
Homo sapiens lectin, galactoside-binding, soluble, 7 (galectin
Homo sapiens ral guanine nucleotide dissociation stimulator
Homo sapiens mesoderm posterior 1 homolog (mouse)
Homo sapiens symplekin (SYMPK), mRNA [NM_004819]
Homo sapiens chromosome 17 open reading frame 74
Homo sapiens frizzled homolog 9 (Drosophila) (FZD9), mRNA
sapiens cDNA clone CS0DF015YB18 3-PRIME, mRNA
Homo sapiens zinc finger protein 784 (ZNF784), mRNA
Homo sapiens forkhead box D3 (FOXD3), mRNA
Homo sapiens cDNA clone IMAGE: 4819956. [BC018035]
Homo sapiens ring finger protein 151 (RNF151), mRNA
Homo sapiens hypothetical LOC339483, mRNA (cDNA clone
Homo sapiens BCL2-associated X protein (BAX), transcript
Homo sapiens polymerase (DNA directed), delta 1, catalytic
Homo sapiens ring finger and KH domain containing 1
Homo sapiens leucine-rich repeat-containing G protein-
Homo sapiens ribosomal protein S4, Y-linked 2 (RPS4Y2),
Homo sapiens thymosin-like 3 (TMSL3), mRNA [NM_183049]
Homo sapiens ribosomal protein S4, Y-linked 1 (RPS4Y1),
Homo sapiens guanine nucleotide binding protein (G
Homo sapiens chemokine (C-C motif) ligand 5 (CCL5), mRNA
Homo sapiens beta-2-microglobulin (B2M), mRNA
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens regulator of G-protein signalling 10 (RGS10),
Homo sapiens glutathione peroxidase 1 (GPX1), transcript
Homo sapiens RAP1B, member of RAS oncogene family
Homo sapiens mRNA; cDNA DKFZp586A0722 (from clone
Homo sapiens SH3 domain binding glutamic acid-rich protein
Homo sapiens monocyte to macrophage differentiation-
Homo sapiens platelet factor 4 variant 1 (PF4V1), mRNA
Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens immediate early response 2 (IER2), mRNA
Homo sapiens CD52 molecule (CD52), mRNA [NM_001803]
Homo sapiens MYC associated factor X (MAX), transcript
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens myosin regulatory light chain MRCL3 (MRCL3),
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens GNAS complex locus (GNAS), transcript
Homo sapiens ribosomal protein S29 (RPS29), transcript
Homo sapiens ribosomal protein S8 (RPS8), mRNA
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens ribosomal protein S27 (metallopanstimulin 1)
Homo sapiens ribosomal protein L41 (RPL41), transcript
Homo sapiens ribosomal protein L19 (RPL19), mRNA
Homo sapiens lactate dehydrogenase B (LDHB), mRNA
Homo sapiens ribosomal protein S28 (RPS28), mRNA
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens ribosomal protein, large, P1 (RPLP1),
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S29 (RPS29), transcript
Homo sapiens transmembrane protein 111 (TMEM111),
Homo sapiens ribosomal protein, large, P1 (RPLP1),
Homo sapiens prothymosin, alpha (gene sequence 28)
Homo sapiens ribosomal protein L13 (RPL13), transcript
Homo sapiens ribosomal protein L31 (RPL31), mRNA
Homo sapiens cDNA clone MGC59872 IMAGE: 6301163,
Homo sapiens ribosomal protein S23 (RPS23), mRNA
sapiens cDNA clone IMAGE: 6730153 5′, mRNA sequence
Homo sapiens heat shock 70 kDa protein 8 (HSPA8),
Homo sapiens eukaryotic translation elongation factor 1
Homo sapiens ribosomal protein L11 (RPL11), mRNA
Homo sapiens small nucleolar RNA host gene (non-protein
Homo sapiens glioma tumor suppressor candidate region
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens ribosomal protein L30 (RPL30), mRNA
Homo sapiens lymphotoxin beta (TNF superfamily, member
Homo sapiens ribosomal protein L3 (RPL3), transcript variant
Homo sapiens ribosomal protein L9 (RPL9), transcript variant
Homo sapiens ribosomal protein L28 (RPL28), mRNA
Homo sapiens ribosomal protein L9 (RPL9), transcript variant
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein S21, mRNA (cDNA clone
Homo sapiens cDNA clone MGC: 87657 IMAGE: 5271409,
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein L27 (RPL27), mRNA
Homo sapiens ribosomal protein L23 (RPL23), mRNA
Homo sapiens ribosomal protein S15a, mRNA (cDNA clone
Homo sapiens ribosomal protein L32 (RPL32), transcript
Homo sapiens ribosomal protein L14 (RPL14), transcript
Homo sapiens ribosomal protein S27a (RPS27A), mRNA
Homo sapiens ribosomal protein L23a (RPL23A), mRNA
Homo sapiens ribosomal protein S12 (RPS12), mRNA
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein L34 (RPL34), transcript
Homo sapiens ribosomal protein S6 (RPS6), mRNA
Homo sapiens ribosomal protein L34 (RPL34), transcript
Homo sapiens ribosomal protein S18 (RPS18), mRNA
Homo sapiens ribosomal protein S25 (RPS25), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript
Homo sapiens tumor protein, translationally-controlled 1
Homo sapiens ribosomal protein L24 (RPL24), mRNA
Homo sapiens poly(A) binding protein, cytoplasmic 1
Homo sapiens ribosomal protein L37 (RPL37), mRNA
Homo sapiens ribosomal protein S14 (RPS14), transcript
Homo sapiens ribosomal protein S20 (RPS20), mRNA
Homo sapiens ribosomal protein L14 (RPL14), transcript
Homo sapiens ribosomal protein S3A (RPS3A), mRNA
Homo sapiens ribosomal protein S21 (RPS21), mRNA
Homo sapiens ribosomal protein S17 (RPS17), mRNA
Homo sapiens prothymosin, alpha (gene sequence 28)
This Application is a Continuation Application of U.S. Ser. No. 13/395,284, filed Oct. 26, 2012 which is a 35 U.S.C. 371 National Stage entry of International Application No. PCT/US2010/048293, filed Sep. 9, 2010, which designates the United States, and which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/241,014, filed Sep. 9, 2009, the contents of each of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5219727 | Wang | Jun 1993 | A |
5538871 | Nuovo | Jul 1996 | A |
5547859 | Goodman | Aug 1996 | A |
5556773 | Yourno | Sep 1996 | A |
5582981 | Toole | Dec 1996 | A |
5639606 | Willey | Jun 1997 | A |
5639611 | Wallace | Jun 1997 | A |
5811250 | Solum | Sep 1998 | A |
5840867 | Toole | Nov 1998 | A |
6004755 | Wang | Dec 1999 | A |
6329179 | Kopreski | Dec 2001 | B1 |
6525154 | Shea | Feb 2003 | B1 |
6607898 | Kopreski | Aug 2003 | B1 |
6759217 | Kopreski | Jul 2004 | B2 |
6794135 | Kopreski | Sep 2004 | B1 |
6812023 | Lamparaski | Nov 2004 | B1 |
6893837 | Slamon | May 2005 | B2 |
6899863 | Dhellin | May 2005 | B1 |
6913879 | Schena | Jul 2005 | B1 |
6916634 | Kopreski | Jul 2005 | B2 |
6939671 | Kopreski | Sep 2005 | B2 |
6994960 | Foote | Feb 2006 | B1 |
7074563 | Koster | Jul 2006 | B2 |
7186512 | Martienssen | Mar 2007 | B2 |
7198893 | Koster | Apr 2007 | B1 |
7198923 | Abrignani | Apr 2007 | B1 |
7332533 | Kim | Feb 2008 | B2 |
7332552 | Benicewicz | Feb 2008 | B2 |
7332553 | Sellergren | Feb 2008 | B2 |
7364848 | Van Beuningen | Apr 2008 | B2 |
7378245 | Liu | May 2008 | B2 |
7384589 | Hart | Jun 2008 | B2 |
7671010 | Arap | Mar 2010 | B2 |
7691383 | Chakrabarty | Apr 2010 | B2 |
7776523 | Garcia | Aug 2010 | B2 |
7807183 | Hong | Oct 2010 | B2 |
20020106684 | Kopreski | Aug 2002 | A1 |
20030077808 | Rosen et al. | Apr 2003 | A1 |
20050003426 | Ranum | Jan 2005 | A1 |
20050250100 | Hayashizaki | Nov 2005 | A1 |
20060081516 | Hendrickson | Apr 2006 | A1 |
20060116321 | Robbins | Jun 2006 | A1 |
20060160087 | McGrath et al. | Jul 2006 | A1 |
20060223072 | Boyes | Oct 2006 | A1 |
20070104738 | Tatischeff | May 2007 | A1 |
20070105105 | Clelland | May 2007 | A1 |
20070254351 | Abrignani | Nov 2007 | A1 |
20070298118 | Lotvall | Dec 2007 | A1 |
20080268429 | Pietrzkowski | Oct 2008 | A1 |
20080287669 | Braman | Nov 2008 | A1 |
20090169636 | O'Hagan | Jul 2009 | A1 |
20090220944 | Fais | Sep 2009 | A1 |
20090227533 | Bader | Sep 2009 | A1 |
20100008978 | Drummond | Jan 2010 | A1 |
20100075315 | Pietrzkowski | Mar 2010 | A1 |
20100184046 | Klass | Jul 2010 | A1 |
20100196426 | Skog | Aug 2010 | A1 |
20100209355 | Chakrabarty | Aug 2010 | A1 |
20100255514 | Rak | Oct 2010 | A1 |
20110081651 | Hillan | Apr 2011 | A1 |
20120142001 | Skog | Jun 2012 | A1 |
20120238467 | Taylor | Sep 2012 | A1 |
20130040833 | Noerholm | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2453198 | Jul 2005 | CA |
2676113 | Jan 2009 | CA |
2699646 | Mar 2009 | CA |
101085349 | Dec 2007 | CN |
H08509806 | Oct 1996 | JP |
2002521071 | Jul 2002 | JP |
2002535665 | Oct 2002 | JP |
2003514523 | Apr 2003 | JP |
2003531864 | Oct 2003 | JP |
2008501336 | Jan 2008 | JP |
2008035779 | Feb 2008 | JP |
2008509806 | Apr 2008 | JP |
2008541699 | May 2008 | JP |
2010534480 | Nov 2010 | JP |
2011510663 | Apr 2011 | JP |
1994011018 | May 1994 | WO |
1994022018 | Sep 1994 | WO |
2000004194 | Jan 2000 | WO |
2001036601 | May 2001 | WO |
2002099064 | Dec 2002 | WO |
2003023065 | Mar 2003 | WO |
2003050290 | Jun 2003 | WO |
2003076603 | Sep 2003 | WO |
2005000098 | Jan 2005 | WO |
2005081867 | Sep 2005 | WO |
2005081867 | Sep 2005 | WO |
2005121359 | Dec 2005 | WO |
2005121369 | Dec 2005 | WO |
2005121369 | Dec 2005 | WO |
2006020707 | Feb 2006 | WO |
2006048291 | May 2006 | WO |
2006113590 | Oct 2006 | WO |
2007015174 | Feb 2007 | WO |
2007126386 | Nov 2007 | WO |
2007127848 | Nov 2007 | WO |
2008084331 | Jul 2008 | WO |
2008104543 | Sep 2008 | WO |
2008104543 | Sep 2008 | WO |
2009015357 | Jan 2009 | WO |
2009021322 | Feb 2009 | WO |
2009030029 | Mar 2009 | WO |
2009036236 | Mar 2009 | WO |
2009092386 | Jul 2009 | WO |
2009100029 | Aug 2009 | WO |
2007103572 | Sep 2009 | WO |
2009155505 | Dec 2009 | WO |
2009155505 | Dec 2009 | WO |
2010009104 | Jan 2010 | WO |
2010028099 | Mar 2010 | WO |
2010056337 | May 2010 | WO |
2010065968 | Jun 2010 | WO |
2010099184 | Sep 2010 | WO |
2010141955 | Dec 2010 | WO |
2011009104 | Jan 2011 | WO |
2011031877 | Mar 2011 | WO |
2011031892 | Mar 2011 | WO |
2011088226 | Jul 2011 | WO |
2011127219 | Oct 2011 | WO |
2011127219 | Oct 2011 | WO |
2012031008 | Mar 2012 | WO |
Entry |
---|
Miranda et al., Kidney International, 78(2):191-199 (2010). “Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease.” |
Nilsson et al., British Journal of Cancer, 100(10):1603-1607 (2009). “Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer.” |
Noerholm et al., BMC Cancer, 12(1): p. 22 (2012). “RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls.” |
Skog et al., Nature Cell Biology, 10(12):1470-1476 (2008). “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.” |
Taylor et al., Gynecological Oncology, 110(1):13-21 (2008). “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer.” |
Abravaya et al., “Detection of point mutations with a modified ligase chain reaction (Gap-LCR)”, Nucleic Acids Res 23(4) 675-682 (1995). |
Affymetrix, “Gene chip human genome U133 set”, URL: http://www/affymetrix.com/products/arrays/specific/hgu133.asp; retrieved from the Internet May 21, 2003. |
Alessi et al., “New Insights into mTOR Signaling: mTORC2 and Beyond”, Sci Signal 2(67) pe 27 (2009). |
Allawi et al., “Quantitation of microRNAs using a modified Invader assay”, RNA 10(7) 1153-1161 (2004). |
Al-Nedawi et al., “Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour mils”, Nat Cell Biol 10(5) 619-624 (2008). |
Ason et al., “Differences in vertebrate microRNA expression”, PNAS 103(39) 14385-14389 (2006). |
Baj Krzyworzeka et al., “Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes”, Cancer Immunol Immunother 55(7) 808-818 (2006). |
Balzar et al., “The biology of the 17-1A antigen (Ep-CAM)”, J Mol Med (Berl) 77(10) 699-712 (1999). |
Bamford et al., “The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website”, Br J Cancer 91(2) 355-358 (2004). |
Benner et al., “Evolution, language and analogy in functional genomics”, Trends Genet 17(7) 414-418 (2001). |
Bergsmedh et al., “Horizontal transfer of oncogenes by uptake of apoptotic bodies”, Proc Natl Acad Sci USA 98(11) 6407-6411 (2001). |
Booth et al., “Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane”, J Cell Biol 172(6) 923-935 (2006). |
Bossi et al., “Molecularly imprinted polymers for the recognition of proteins: The state of the art”, Biosens Bioelectron 22(6) 1131-1137 (2007). |
Bratthauer et al., “Expression of LINE-1 Retrotransposons in Human Breast Cancer”, Cancer 73(9) 2333-2336 (1994). |
Burghoff et al., “Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation”, Cardiovasc 77(3) 534-543 (2008). |
Cadieux et al., “Genome-wide Hypomethylation in Human Glioblastomas Associated with Specific Copy Number Alteration, Methylenetetrahydrofolate Reductase Allele Status, and Increased Proliferation”, Cancer Res 66(17) 8469-8476 (2006). |
Carr et al., “Circulating Membrane Vesicles in Leukemic Blood”, Cancer 45(11 Pt 2) 5944-5951 (1985). |
Cermelli et al., “Circulating microRNAs in Patients with Chronic Hepatitis C and Non-Alcoholic Fatty Liver Disease”, PLoS One 6(8) e23937 (2011). |
Chaput et al., “The potential of exosomes in immunotherapy”, Expert Opinion on Biological Therapy 5(6) 737-747 (2005). |
Chen et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases”, Cell Res 18(10) 997-1006 (2008). |
Chen et al., “Microfluidic isolation and transcriptome analysis of serum microvesicles”, Lab Chip 10(4) 505-511 (2010). |
Chen et al., “Real-time quantification of microRNAs by stem-loop RT-PCR”, Nucleic Acids Res 33(20) e179 (2005). |
Cheng et al., “Advances of AKT Pathway in Human Oncogenesis and as a Target for Anti-Cancer Drug Discovery”, Curr Cancer Drug Targets 8(1) 2-6 (2008). |
Cheruvanky et al., “Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator”, Am J Physiol Renal Physiol 292(5) F1657-1661 (2007). |
Cheung et al., “Natural variation in human gene expression assessed in lymphoblastoid cells”, Nat Genet 33(3) 422-425 (2003). |
Cho et al., “Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features”, J Pathol 211(3) 269-277 (2007). |
Ciafre et al., “Extensive modulation of a set of microRNAs in primary glioblastoma”, BiochemBiophys Res Commun 334(4) 1351-1358 (2005). |
Clayton et al., “Human Tumor-Derived Exosomes Selectively Impair Lymphocyte Responses to Interleukin-2”, Cancer Res 67(15) 7458-7466 (2007). |
Cocucci et al., “Shedding microvesicles: artefacts no more”, Trends Cell Biol 19(2) 43-51 (2009). |
Contreras-Galindo et al., “Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer”, J Virol 82(19) 9329-9336 (2008). |
Corsten et al., “Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease”, Circ Cadriovasc Genet 3(6) 4999-506 (2010). |
Cortez et al., “MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases”, Expert Opin Biol Ther 9(6) 703-711 (2009). |
Cotton et al., “Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations”, Proc Natl Acad Sci USA 85(12) 4397-4401 (1988). |
Cowell et al., “Application of Oligonucleotides Arrays for Coincident Comparative Genomic Hybridization, Ploidy Status and Loss of Heterozygosity Studies in Human Cancers”, Methods Mol Biol 556; 47-65 (2009). |
Daskalos et al., “Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer”, Int J Cancer 124(1) 81-87 (2009). |
Day et al., “PCA3: From basic molecular science to the clinical lab”, Cancer Lett 301(1) 106 (2011). |
Deregibus et al., “Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial mils by a horizontal transfer of mRNA”, Blood 110(7) 2440-2448 (2007). |
Diehl et al., “Circulating mutant DNA to assess tumor dynamics”, Nat Med 14(9) 985-990 (2008). |
Diehl et al., “BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions”, Nature Methods 3(7) 551-559 (2006). |
Dowling et al., “mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs”, Science 328 (5982) 11672-1176 (2010). |
Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations”, Proc Natl Acad Sci USA 100(15) 8817-8822 (2003). |
Duijvesz et al., “Exosomes as Biomarker Treasure Chests for Prostate Cancer”, Eur Urol 59(5) 823-831 (2011). |
El-Hefnawy et al., “Characterization of Amplifiable, Circulating RNA in Plasma and its Potential as a Tool for Cancer Diagnostics”, Clin Chem 50(3) 564-573 (2004). |
Estecio et al., “LINE-1 Hypomethylation in Cancer is Highly Variable and Inversely Correlated with Microsatellite Instability”, PLoS One 2(5) e399 (2007). |
Fabbri et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B”, Proc Natl Acad Sci USA 104(40) 15805-15810 (2007). |
Fiorentino et al., “The minisequencing method: an alternative strategy for preimplantation genetic diagnosis of single gene disorders”, Mol Hum Reprod 9(7) 399-410 (2003). |
Fischer et al., “Length-Independent Separation of DNA Restriction Fragments in Two-Dimensional Gel Electrophoresis”, Cell 16(1) 191-200 (1979). |
Fischer et al., “Two-Dimensional Electrophoretic Separation of Restriction Enzyme Fragments of DNA”, Methods Enzymol 68; 183-191 (1979). |
Forbes et al., “The Catalogue of Somatic Mutations in Cancer (COSMIC)”, Curr Proctoc Hum Genet Chapter 10 Unit 10;11 (2008). |
Forbes et al., “COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer”, Nucleic Acids Res 38(Databases issue D652-657 (2010). |
Forbes et al., “COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer”, Nucleic Acids Res 39(Database issue) D945-950 (2011). |
Furnari et al., “Malignant astrocytic glioma: genetics, biology, and paths to treatment”, Genes Dev 21(21) 2683-2710 (2007). |
Gambim et al., “Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction”, Critical Care 11(5) R107 (2007). |
Geiss et al., “Direct multiplexed measurement of gene expression with color-coded probe pairs”, Nat Biotechnol 26(3) 317-325 (2008). |
GeneBank (Accession NM_005896 submitted Jan 31, 2003). |
Ginestra et al., “The Amount and Proteolytic Content of Vesicles Shed by Human Cancer Cell Lines Correlates with their in Vitro Invasiveness”, Anticancer Res 18(5A) 3433-3437 (1998). |
Golan et al., “Human Endogenous Retrovirus (HERV-K) Reverse Transcriptase as a Breast Cancer Prognostic Marker”, Neoplasia 10(6) 521-533 (2008). |
Gonzales et al., “Urinary exosomes: is there a future?”, Nephrology Dialysis Tranplantation 23(6) 1799-1801 (2008). |
Goodier et al., “Retrotransposons Revisited: the Restraint and Rehabilitation of Parasites”, Cell 135(1) 23-35 (2008). |
Gormally et al., “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance”, Mutat Res 635(2-3) 105-117 (2007). |
Greco et al., “Argosomes: a Potential Vehicle for the Spread of Morphogens through Epithelia”, Cell 106(5) 633-645 (2001). |
Green et al., “The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status”, Blood 116(15) 2779-2783 (2010). |
Groskopf et al., “APTIMA PCA3 Molecular Urine Test: Development of a Method to Aid in the Diagnosis of Prostate Dancer”, Clin Chem 52(6) 1089-1095 (2006). |
Guatelli et al., “Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication”, Proc Natl Acad Sci USA 87(5) 1874-1878 (1990). |
Guescini et al., “Astrocytes and Glioblastoma cells release exosomes carrying mtDNA”, J Neural Transm (Vienna) 117(1) 1-4 (2010). |
Hahn, “Molecular Biology of Double-Minute Chromosomes”, Bioessays 15(7) 477-484 (1993). |
Hanahan et al., “The Hallmarks of Cancer”, Cell 100(1) 57-70 (2000). |
Hartmann et al., “Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas”, Acta Neuropathol 120(6) 707-718 (2010). |
Heimberger et al., “The natural history of EGFR and EGFRvIII in glioblastoma patients”, J Transl Med 3; 38 (2005). |
Hessels et al., “DD3 PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer”, European Urology 44(1) 8-16 (2003). |
Hessels et al., “Detection of TMPRSS2-ERG Fusion Transcripts and Prostate Cancer Antigen 3 in Urinary Sediments May Improve Diagnosis of Prostate Cancer”, Clin Cancer Res 13(17) 5103-5108 (2007). |
Hildebrant et al., “Genetic Variations in the PI3K/PTEN/AKT/mTOR Pathway Are Associated With Clinical Outcomes in Esophageal Cancer Patients Treated with Chemoradiotherapy”, Journal of Clinical Oncology 27(6) 857-871 (2009). |
Holdhoff et al., “Analysis of Circulating Tumor DNA to Confirm Somatic KRAS Mutations”, J Natl Cancer Inst 101 (18) 1284-1285 (2009). |
Hunter et al., “Detection of microRNA Expression in Human Peripheral Blood Microvesicles”, PLoS One 3(11) e3694 (2008). |
Iero et al., “Tumour-released exosomes and their implications in cancer immunity”, Cell Death Differ 15(1) 80-88 (2008). |
Iorio et al., “MicroRNA Signatures in Human Ovarian Cancer”, Cancer Res 67(18) 8699-8707 (2007). |
Itadani et al., “Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation”, Curr Genomics 9(5) 349-360 (2008). |
Janowska-Wieczorek et al., “Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer”, Int J Cancer 113(5) 752-760 (2005). |
Ji et al., “MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer”, Oncogene 22(39) 8031-8041 (2003). |
Johnson et al., “Surface-Immobilized Peptide Aptamers as Probe Molecules for Protein Detection”, Anal Chem 80(4) 978-983 (2008). |
Jones et al., “Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses”, Science 321(5897) 1801-1806 (2008). |
Kan et al., “Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation”, Proc Natl Acad Sci USA 75(11) 5631-5635 (1978). |
Kan et al., “Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells”, Lancet 2(8096) 910-912 (1978). |
Kang et al., “Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers”, Int J Cancer 125 (2) 353-355 (2009). |
Kato et al., “A Monoclonal Antibody IMab-1 Specifically Recognizes IDH1R132H, the Most Common Glioma-Derived Mutation”, Biochem Biophys Res Commun 390(3) 547-551 (2009). |
Katoh et al., “Association of endogenous retroviruses and long terminal repeats with human disorders”, Front Oncol 3; 234 (2013). |
Keller et al., “CD24 is a marker of exosomes secreted into urine and amniotic fluid”, Kidney Int 72(9) 1095-1102 (2007). |
Kislauskis et al., “Sequences Responsible for Intracellular Localization of beta-Actin Messenger RNA Also Affect Cell Phenotype”, J Cell Biol 127(2) 441-451 (1994). |
Kleiman et al., “HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors”, Int J Cancer 110(3) 459-461 (2004). |
Klein et al., “Combined transcriptome and genome analysis of single micrometastatic cells”, Nat Biotechnol 20(4) 387-392 (2002). |
Klemke et al., “Regulation of Cell Motility by Mitogen-activated Protein Kinase”, J Cell Biol137(2) 481-492 (1997). |
Koga et al., “Purification, Characterization and Biological Significance of Tumor-derived Exosomes”, Anticancer Res25(6A) 3703-3707 (2005). |
Kosaka et al., “Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis”, Cancer Sci 101(10) 2087-2092 (2010). |
Kristensen et al., “PCR-based Methods for Detecting Single-Locus DNA Methylation Biomarkers in Cancer Diagnostics, Prognostics, and Response to Treatment”, Clinical Chemestry 55(8) 1471-1483 (2009). |
Krupp et al., “Stringent RNA quality control using the Agilent 2100 bioanalyzer”, Agilent Technologies Application Notes (2005). |
Kwoh et al., “Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format”, Proc Natl Acad Sci USA 86(4) 1173-1177 (1989). |
Landegren et al., “A Ligase-Mediated Gene Detection Technique”, Science 241(4869) 1077-1080 (1988). |
Laxman et al., “A First-Generation Multiplex Biomarker Analysis of Urine for the Early Detection of Prostate Cancer”, Cancer Res 68(3) 645-549 (2008). |
Lee et al., “MicroRNA Expression and Clinical Outcome of Small Cell Lung Cancer”, MicroRNA expression and clinical Dutcome of small cell lung cancer, PLoS One 6(6) e21300 (2011). |
Li et al., “Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing”, Nat Med 14(5) 579-584 (2008). |
Liu et al., “Reconstitution, Activities, and Structure of the Eukaryotic RNA Exosome”, Cell 127(6) 1233-1237 (2006). |
Liu et al., “Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function”, J Immunol 176(3) 1375-1385 (2006). |
Lo et al., “Automated gating of flow cytometry data via robust model-based clustering”, Cytometry 73(4) 321-332 (2008). |
Lo et al., “Prenatal diagnosis: progress through plasma nucleic acids”, Nat Rev Genet 8(1) 71-77 (2007). |
Lo et al., “Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection”, Nat Med 13(2) 218-223 (2007). |
Lower et al., “The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences”, Proc Natl Acad Sci USA 93(11) 5177-5184 (1996). |
Mack et al., “Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection”, Nat Med 6(7) 769-775 (2000). |
Maheswaran et al., “Detection of mutations in EGFR in circulating lung-cancer cells”, N Engl J Med 359(4) 366-377 (2008). |
Mallardo et al., “Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain”, Prco Natl Acad Sci USA 100(4) 2100-2105 (2003). |
Maron et al., “Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood”, J Clin Invest 117(10) 3007-3019 (2007). |
McLendon et al., “Comprehensive genomic characterization defines human glioblastoma genes and core pathways”, Nature 455(7216) 1061-1068 (2008). |
Miele et al., “Autocatalytic Replication of a Recombinant RNA”, J Mol Biol 171(3) 281-295 (1983). |
Millimaggi et al., “Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells”, Neoplasia 9(4) 349-357 (2007). |
Miranda et al., “Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease”, Kidney Int 78(2) 191-199 (2010). |
Myers et al., “Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes”, Science 230(4731) 1242-1246 (1985). |
Nagrath et al., “Isolation of rare circulating tumour cells in cancer patients by microchip technology”, Nature 450 (7173) 1235-1239 (2007). |
Nakanishi et al., “PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance”, J Urol 179(5) 1804-1809 (2008). |
Nakazawa et al., “UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement”, Proc Natl Acad Sci USA 91(1) 360-364 (1994). |
Ng et al., “The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia”, Clin Chem 49(5) 727-731 (2003). |
Ng et al., “mRNA of placental origin is readily detectable in maternal plasma”, Proc Natl Acad Sci USA 100(8) 4748-4753 (2003). |
Nilsson et al., “Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer”, Br J Cancer 100(10) 1603-1607 (2009). |
Noerholm et al., “RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls”, BMC Cancer 12; 22 (2012). |
Novakova et al., “MicroRNA involvement in glioblastoma pathogenesis”, Biochem Biophys Res Commun 386(1) 1-5 (2009). |
Oliveira et al., “Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair lefects and hMLH1 methylation status”, 13(19) 2303-2311 (2004). |
Orita et al., “Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms”, Proc Natl Acad Sci USA 86(8) 2766-2770 (1989). |
Ostriwski et al., “Rab27a and Rab27b control different steps of the exosome secretion pathway”, Nat Cell Biol 12(1) 19-30 (2010). |
Parsons et al., “An integrated genomic analysis of human glioblastoma multiforme”, Science 321(5897) 1807-1812 (2008). |
Pelloski et al., “Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma”, J Clin Oncol 25(16) 2288-2294 (2007). |
Pisitkun et al., “Discovery of Urinary Biomarkers”, molecular & Cellular Proteomics 5(10) 176-1771 (2006). |
Pleasance et al., “A comprehensive catalogue of somatic mutations from a human cancer genome”, Nature 463 (7278)191-196 (2010). |
“Probes for MYC availible on Affymetrix arrays HG-U95, HG-U133, and HG-U133 Plus 2.0”, Internet Citation, Apr. 20, 2001. Weizman Institute of Science http://genegards.weizman.ac.il/cgi-bin/geneannot/GA_serach.pl. |
Rak et al., “Genetic determinants of cancer coagulopathy, angiogenesis and disease progression”, Vnitr Lek 52(Suppl 1) 135-138 (2006). |
Raposo et al., “B lymphocytes secrete antigen-presenting vesicles”, J Exp Med 183(3) 1161-1172 (1996). |
Ratajczak et al., “Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication”, Leukemia 20(9) 1487-1495 (2006). |
Revenfeld et al., “Diagnostic and prognostic potential of extracellular vesicles in peripheral blood”, Clin Ther 36(6) 330-846 (2014). |
Roman-Gomez et al., “Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia”, Leuk Res 32(3) 487-490 (2008). |
Ruprecht et al., “Endogenous retroviruses and cancer”, Cell Mol Life Sci 65(21) 3366-3382 (2008). |
Ryan et al., “A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up”, Gut 52(1) 101-108 (2003). |
Saal et al., “MicroRNAs and the kidney: coming of age”, Curr Opin Nephrol Hypertens 18(4) 317-323 (2009). |
Sarbassov et al., “Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB”, Mol Cell 22(2) 159-168 (2006). |
Schetter et al., “MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma”, JAMA 299(4) 425-436 (2008). |
Shinojima et al., “Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme”, Cancer Research 63(20) 6962-6970 (2003). |
Simons et al., “Exosomes—vesicular carriers for intercellular communication”, Burr Opin Cell Biol 21(4) 575-581 (2009). |
Skog et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide liagnostic biomarkers”, Nat Cell Biol 10(12) 1470-1476 (2008). |
Sliva et al., “Selective gene silencing by viral delivery of short hairpin RNA”, Virol J 7;248 (2010). |
Srikantan et al., “PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer”, Proc Natl Acad Sci USA 97(22) 12216-12221 (2000). |
Steemers et al., “Whole-genome genotyping with the single-base extension assay”, Nat Methods 3(1) 31-33 (2006). |
Stoorvogel et al., “The Biogenesis and Functions of Exosomes”, Traffice 3(5) 321-330 (2002). |
Tam, “The emergent role of microRNAs in molecular diagnostics of cancer”, J Mol Diagn 10(5) 411-414 (2008). |
Taylor et al., “Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects”, Br J Cancer 92(2) 305-311 (2005). |
Taylor et al., “MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer”, Gynecol Oncol 110(1) 13-21 (2008). |
Valadi et al., “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells”, Nat Cell Biol 9(6) 654-659 (2007). |
Van Dijk et al., “Human cell growth requires a functional cytoplasmic exosome, which is involved in various mRNA decay pathways”, RNA 13(7) 1027-1035 (2007). |
Velculescu et al., “Serial analysis of gene expression”, Science 270(5235) 484-487 (1995). |
Voisset et al., “Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease”, Microbial Mol Biol Rev 72(1) 157-196 (2008). |
Wang-Johanning et al., “Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients”, Cancer Res 68(14) 5869-5877 (2008). |
Went et al., “Frequent EpCam protein expression in human carcinomas”, Hum Pathol 35(1) 122-128 (2004). |
Wieckowski et al., “Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles”, Immunol Res 36(2006) 247-254 (2006). |
Wong et al., “Circulating placental RNA in maternal plasma is associated with a preponderance of 5′ mRNA fragments: implications for noninvasive prenatal diagnosis and monitoring”, Clin Chem 51(10) 1786-1795 (2005). |
Wood et al., “The genomic landscapes of human breast and colorectal cancers”, Science 318(5853) 1108-1113 (2007). |
Wright et al., “Newer potential biomarkers in prostate cancer”, Rev Urol 9(4) 207-213 (2007). |
Yan et al., “IDH1 and IDH2 mutations in gliomas”, N Engl J Med 360(8) 765-773 (2009). |
Yu et al., “Oncogenic events regulating tissue factor expression”, Hematology Meeting Reports 1(9) (2009). |
Yuan et al., “Transfer of microRNAs by embryonic stem cell microvesicles”, PLoS One 4(3) e4722 (2009). |
Biernat et al., “Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas”, Brain Pathol 14(2) 131-136 (2004). |
Chabert et al., “Cell culture of tumors alters endogenous poly(ADPR)polymerase expression and activity”, Int J Cancer 53(5) 837-842 (1993). |
Choi et al., “Proteomic analysis of microvesicles derived from human colorectal cancer ascites.”, Proteomic 11(13) 2745-2751 (2011). |
Cooperberg et al., “The changing face of low-risk prostate cancer: trends in clinical presentation and primary management”, J Clin Oncol 22(11) 2141-9 (2004). |
Dermer “Another anniversary for the war on cancer.” Nature Biotechnology 12(3):320 (1994). |
Diehl et al., “Detection and quantification of mutations in the plasma of pateitns with colorectal tumors” PNAS 102 (45) 16268-16373 (2005). |
Eastham et al., “Relationship between clonogenic cell survival, DNA damage and chromosomal radiosensitivity in nine human cervix carcinoma cell lines” Int. Journal Radiat. Biol 77(3) 295-302 (2001). |
Gene Annot, “Probes for MYC availible on Affymetrix arrays HG-U95, HG-U133, HG-U133 Plus 2.0”, Weizmann Institue of Science found at URL http://genecards.weizmann.aci.il/cgi-bin/geneannot/ga_search.pl (Apr. 20, 2001, retrieved from the Internet on May 21, 2003). |
Keller et al., “Exosomes: from biogenesis and secretion to biological function”, Immunol Lett 107(2) 102-8 (2006). |
May “How Many Species Are there on Earth?”, Science 241(1) 1441-1449 (1998). |
Mellinghoff et al., “Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors”, N Engl J Med 353(19) 2012-2024 (2005). |
Mitchell et al., “Can urinary exosomes act as treatment response markers in prostate cancer?”, J Transl Med 7:4 (2009). |
Moderk et al., “Genome-wide detection of alternatives splicing in expressed sequences of human genes”, Nucleic Acids Research 29(13) 2850-2859 (2001). |
Moscatello et al., “Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors”, Cancer Res 55(23) 5536-5539 (1995). |
Nishikawa et al., “Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma”, Brain Tumor Pathol 21(2) 53-56 (2004). |
Ruprecht et al., “Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21” J Virol 82(20) 10008-10016 (2008). |
Saito-Hisaminto et al., “Genome-Wide Profiling of Gene Expression in 29 Normal Human Tissues with cDNA Microarray”, DNA Research 9 35-45 (2002). |
Schmidt et al., “Quantitative multi-gene expression profiling of primary prostate cancer”, Prostate 66(14) 1521-34 (2006). |
Singh et al., “Gene Expression correlates of clinical prostate cancer behavior”, Cancer Cell 1(2) 203-209 (2002). |
The International SNP Map Working Group., “A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms” NATURE 409 928-933 (2001). |
Thery et al. “Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids” Curr Protoc Cell Biol Chapter 3 Unit 3.22 1-29 (2006). |
Tomlins et al., “Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer”, Science 310 (5748) 644-648 (2005). |
Yoshimoto et al., “Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples”, Clin Cancer Res 14(2) 488-493 (2008). |
Yu et al., “Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells”, J Throm Haemost 2(11) 2065-2067 (2004). |
Bess et al., “Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations.” Virology 230(1):134-144 (1997). |
Grant et al., “The proteins of normal urine.” Journal of Clinical Pathology 10(4):360-367 (1957). |
Tullis et al., “Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I.” Analytical Biochemistry 107(1):260-264 (1980). |
Johnstone. “Exosomes biological significace: A concise review.” Blood Cells, Molecules, and Diseases 36(2): 315-321 (2006). |
Lotvall at al. “Cell to Cell Signalling via Exosomes Through esRNA.” Cell Adhesion & Migration 1(3): 156-158 (2007). |
Perkel. “Finding Points to Possible Blood Test for Brain Tumors.” Medicine Net HealthDay News [retrieved Apr. 18, 2019] https://www.medicinenet.com/script/main/art.asp?articlekey=94287 1-3 (2008). |
Number | Date | Country | |
---|---|---|---|
20160002736 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61241014 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13395284 | US | |
Child | 14792212 | US |