Use of N-methyl-N-acylglucamines as solubilizers

Information

  • Patent Grant
  • 10813862
  • Patent Number
    10,813,862
  • Date Filed
    Wednesday, May 29, 2013
    11 years ago
  • Date Issued
    Tuesday, October 27, 2020
    4 years ago
Abstract
The invention relates to the use of N-methyl-N—C8-C14-acylglucamines as solubilizers in cosmetic preparations. The invention further relates to clear lotions for the preparation of wet wipes, comprising a) 0.1 to 5.0 wt.-% of the N-methyl-N—C8-C14-acylglucamines, b) 0.05 to 5% of one or more water-insoluble or only partially water-soluble anti-microbial agents, c) 0 to 5 wt.-% of one or more oils, d) 85 to 99.85 wt.-% of water, e) 0 to 5 wt.-% of surfactants, and f) 0 to 5 wt.-% of additional auxiliaries and additives.
Description

The invention relates to the use of N-methyl-N-acylglucamines as solubilizers in cosmetics preparations and also cosmetics preparations containing them, in particular lotions for producing wet wipes.


In the production of cosmetic or dermatological preparations, the problem frequently occurs that certain ingredients do not have sufficient water solubility and the preparations, in particular in the presence of salts, become hazy or form several phases. In order to avoid this, generally solubilizers or hydrotropes are added to the preparations.


WO 96/14374 describes the use of carboxylic acid N-alkyl-N-polyhydroxy-alkylamides of the formula R2CO—NR3—[Z], in which R2CO is an aliphatic acyl radical having 1 to 8 carbon atoms, R3 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 8 carbon atoms and [Z] is a polyhydroxyalkyl radical having 3 to 12 carbon atoms and 3 to 10 OH groups, as solubilizers for laundry detergents, dishwashing agents and cleaning agents, and also for cosmetics and/or pharmaceutical preparations. Those which may be mentioned as preferred are the carboxylic acid N-alkylglucamides, wherein R3 is hydrogen, a methyl or octyl group, and R2CO is derived from formic acid, acetic acid, propionic acid, butyric acid or caproic acid, with the proviso that the sum of the carbon atoms in the acyl and alkyl radicals is preferably 6 to 10. Those which are cited explicitly are acetic acid N-octylglucamine, butyric acid N-octylglucamine and also caproic acid N-methylglucamine.


WO 95/16824 relates to lotions for producing wet wipes, such as wet toilet paper, containing a softening substance, an immobilizer, and also optionally a hydrophilic surfactant. As softening substance, mention may be made of fatty acid esters of C12-C28 fatty acids and C1-C8 monohydric alcohols, for example methyl palmitate, methyl stearate, isopropyl laurate, isopropyl myristate, isopropyl palmitate and ethylhexyl palmitate, and also esters of long-chain fatty alcohols with short-chain fatty acids, for example lauryl lactate or cetyl lactate. The immobilizer is intended to prevent the migration of the softening substance into the paper web and to fix it to the surface of the paper cloth. Suitable immobilizers which may be mentioned are polyhydroxy fatty acid esters and polyhydroxy fatty acid amides. Particularly preferred polyhydroxy fatty acid amides which may be mentioned are N-methyl- or N-methoxypropyl-N-acylglucamines having a straight-chain C12-C18 acyl group, for example N-lauryl-N-methylglucamide, N-lauryl-N-methoxypropylglucamide, N-cocoyl-N-methylglucamide, N-cocoyl-N-methoxypropylglucamide, N-palmityl-N-methoxypropylglucamide, N-talloyl-N-methylglucamide and N-talloyl-N-methoxypropylglucamide. Optional hydrophilic surfactants which may be mentioned are alkylglycosides, alkylglycoside ethers, alkylpolyethoxylated esters and also ethoxylated sorbitan mono-, di- and/or triesters of C12-C18 fatty acids.


It is the object of the invention to provide solubilizers having an improved solubilization capacity for producing cosmetics preparations.


The object is achieved by the use of N-methyl-N—C8-C14-acylglucamines as solubilizers in cosmetics preparations.


It has been found that N-methyl-N-acylglucamines having a high fraction of C3-C14 acyl exhibit a particularly high solubilization capacity. N-Methyl-N-acylglucamines of these chain lengths are outstandingly suitable for producing clear solutions of water-insoluble and only partially water-soluble substances, and therefore for producing stable wet-wipe lotions.


N-Methyl-N-acylglucamines have the formula (I),




embedded image


where R is an alkyl radical or a monounsaturated or polyunsaturated alkenyl radical, and in the case of C8-C14 acylglucamines, therefore, a C7-C13 alkyl or a monounsaturated or polyunsaturated alkenyl radical.


Generally, N-methyl-N-acylglucamines used according to the invention contain at least 80% by weight of N-methyl-N-acylglucamines which contain a C8-C14 acyl group. Particularly preferably, the fraction of N-methyl-N-acylglucamines which contain a C8-C14 acyl group is at least 90% by weight. In addition, the N-methyl-N-acylglucamines used according to the invention as solubilizers contain small fractions of N-methyl-N-acylglucamines derived from short-chain and/or long-chain fatty acids, in particular those which contain C1-C4 acyl, C6 acyl, C18 acyl and/or C20 acyl.


In one embodiment of the invention, N-methyl-N-acylglucamines are used, wherein at least 80% by weight of the N-methyl-N-acylglucamines contain a C8 acyl, or a C10 acyl group.


In a further embodiment of the invention, N-methyl-N-acylglucamines are used, wherein at least 80% by weight of the N-methyl-N-acylglucamines contain a C12 acyl or a C14 acyl group.


In a further embodiment of the invention, N-methyl-N-acylglucamines are used which consist exclusively of N-methyl-N-acylglucamines which contain a C8 acyl, C10 acyl, C12 acyl, or a C14 acyl group or mixtures thereof.


The N-methyl-N-acylglucamines can, as described in EP 0 550 637 B1, be prepared by reacting the corresponding fatty acid esters or fatty acid ester mixtures with N-methylglucamine in the presence of a solvent having hydroxyl groups or alkoxy groups. Suitable solvents are, for example, C1-C4 monohydric alcohols, ethylene glycol, propylene glycol, glycerol, and also alkoxylated alcohols. Preference is given to 1,2-propylene glycol. N-methylglucamine can, as likewise described in EP 0 550 637 A1, be obtained by reductive amination of glucose with methylamine.


Suitable fatty acid esters which are reacted with the N-methylglucamines to form N-methyl-N-acylglucamines are generally the methyl esters which are obtained by transesterification from natural fats and oils, for example the triglycerides.


Suitable raw materials for the preparation of the fatty acid methyl esters are, for example, coconut oil or palm oil. The N-methyl-N-acylglucamines used according to the invention are suitable as solubilizers for producing skin and hair treatment compositions. Examples are body washes, shower creams, skincare compositions, day creams, night creams, care creams, nutrient creams, body lotions and ointments. The N-methyl-N-acylglucamines used according to the invention are suitable as solubilizers for producing oil-in-water emulsions, preferably for the treatment or care of the skin.


Skin-care compositions such as creams and lotions generally, in addition to the said oils, have surfactants, emulsifiers, fats, waxes, stabilizers, refitting agents, thickeners, biogenic active ingredients, film-forming agents, preservatives, colorants and fragrances.


In a particularly preferred embodiment, the N-methyl-N-acylglucamines are used as solubilizers in lotions for producing wet wipes.


Such lotions, in addition to the N-methyl-N-acylglucamines, contain at least one or more water-insoluble or only partially water-soluble antimicrobial active ingredients b), optionally oils c), water d), optionally surfactants e), and also optionally further customary auxiliaries and additives f) and preferably exhibit a clear appearance. It is understood here that the composition is optically transparent at a layer thickness of 5 cm and does not appear opaque and emulsion-like. In addition, the compositions do not exhibit separation into a plurality of phases and are therefore homogeneous.


Water-insoluble or only partially water-soluble antimicrobial active ingredients b) are preferably phenoxyethanol, benzyl alcohol, phenethyl alcohol, 1,2-octanediol, ethylhexyl glycerol, sorbitan caprylate, glyceryl caprylate, parabens, or contain mixtures of two or more thereof. Particular preference is given to benzyl alcohol and phenoxyethanol.


The oil content of the lotions is generally up to 5% by weight, preferably up to 2% by weight, based on all components of the lotion.


The oils c) are preferably selected from the group of natural and synthetic fats, such as the triglycerides, preferably of esters of fatty acids with alcohols of low carbon number such as isopropanol, propylene glycol or glycerol, or of esters of long-chain fatty alcohols with alkanoic acids of low carbon number or alkyl benzoates, and also natural or synthetic hydrocarbon oils.


Triglycerides of linear or branched, saturated or unsaturated, optionally hydroxylated, C8-C30 fatty acids come into consideration, in particular vegetable oils, such as sunflower, maize, soy, rice, jojoba, babusscu, pumpkin, grapeseed, sesame, walnut, apricot, orange, wheatgerm, peach kernel, macadamia, avocado, sweet almond, lady's smock, castor oil, olive oil, peanut oil, rapeseed oil and coconut oil, and also synthetic triglyceride oils, e.g. the commercial product Myritol® 318. Hardened triglycerides are also preferred according to the invention. Oils of animal origin, for example beef tallow, perhydrosqualene and lanolin can also be used.


A further class of preferred oils are the benzoic acid esters of linear or branched C8-22 alkanols, e.g. the commercial products Finsolv® SB (isostearyl benzoate), Finsolv® TN (C12-C15 alkyl benzoate) and FinsoIv® EB (ethylhexyl benzoate).


A further class of preferred oils are the dialkyl ethers having in total 12 to 36 carbon atoms, in particular having 12 to 24 carbon atoms, such as, e.g., di-n-octyl ether (Cetiol® OE), di-n-nonyl ether, di-n-decyl ether, di-n-undecyl ether, di-n-dodecyl ether, n-hexyl n-octyl ether, n-octyl n-decyl ether, n-decyl n-undecyl ether, n-undecyl n-dodecyl ether and n-hexyl n-undecyl ether, di-3-ethyldecyl ether, tert-butyl n-octyl ether, isopentyl n-octyl ether and 2-methylpentyl n-octyl ether, and also di-tert-butyl ether and diisopentyl ether.


Branched saturated or unsaturated fatty alcohols having 6-30 carbon atoms also come into consideration, e.g. isostearyl alcohol, and also Guerbet alcohols.


A further class of preferred oils are hydroxycarboxylic acid alkyl esters. Preferred hydroxycarboxylic acid alkyl esters are full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid. Further esters suitable in principle of hydroxycarboxylic acids are esters of R-hydroxypropionic acid, of tartronic acid, of D-gluconic acid, saccharic acid, mucic acid or glucuronic acid. As alcohol component of these esters, primary, linear or branched aliphatic alcohols having 8 to 22 carbon atoms are suitable. In this case, the esters of C12-C15 fatty alcohols are particularly preferred.


Esters of this type are commercially available, e.g. under the trade name Cosmacol® from EniChem, Augusta Industriale.


A further class of preferred oils are dicarboxylic acid esters of linear or branched C2-C10 alkanols, such as di-n-butyl adipate (Cetiol® B), di-(2-ethylhexyl) adipate and di-(2-ethylhexyl) succinate and also diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di-(2-ethylhexanoate), propylene glycol diisostearate, propylene glycol dipelargonate, butanediol diisostearate and neopentyl glycol dicaprylate and also diisotridecyl azelate.


Oils which are equally preferred are symmetrical, unsymmetrical or cyclic esters of carbonic acid with fatty alcohols, glycerol carbonate or dicaprylyl carbonate (Cetiol® CC).


A further class of preferred oils are the esters of dimeric unsaturated C12-C22 fatty acids (dimer fatty acids) with monohydric linear, branched or cyclic C2-C18 alkanols, or with polyhydric linear or branched C2-C6 alkanols.


A further class of preferred oils is hydrocarbon oils, for example those having linear or branched, saturated or unsaturated C7-C40 carbon chains, for example Vaseline, dodecane, isododecane, cholesterol, lanolin, synthetic hydrocarbons such as polyolefins, in particular polyisobutene, hydrogenated polyisobutene, polydecane, also hexadecane, isohexa-decane, paraffin oils, isoparaffin oils, e.g. the commercial products of the Permethyl® series, squalene, squalene, and alicyclic hydrocarbons, e.g. the commercial product 1,3-di-(2-ethylhexyl)cyclohexane (Cetiol® S).


Preferred oils are triglycerides, in particular triglycerides of caprylic acid and/or capric acid, termed dialkyl ethers, in particular dicapryl ether, and also dicapryl carbonate.


The invention also relates to lotions for producing wet wipes containing

  • a) N-methyl-N—C8-C14-acylglucamines as described above,
  • b) one or more water-insoluble or only partially water-soluble antimicrobial active ingredients,
  • c) optionally one or more oils,
  • d) water,
  • e) optionally surfactants,
  • f) optionally further auxiliaries and additives.


Generally, the lotions according to the invention contain

  • a) 0.1 to 5.0% by weight, preferably 0.2 to 3.0% by weight, of the N-methyl-N-acylglucamines,
  • b) 0.05 to 5% by weight, preferably 0.1 to 2% by weight, particularly preferably 0.2 to 1.5% by weight, of one or more water-insoluble or only partially water-soluble antimicrobial active ingredients,
  • c) 0 to 5% by weight, preferably 0 to 2% by weight, of one or more oils,
  • d) 85 to 99.85% by weight, preferably 90 to 98% by weight, of water,
  • e) 0 to 5% by weight, preferably 0 to 2% by weight, of surfactants,
  • f) 0 to 5% by weight, preferably 0 to 2% by weight, of further auxiliaries and additives,


    wherein the total of components a) to f) is 100% by weight.


The invention also relates to the wet wipes themselves impregnated with the lotion according to the invention.


The optional surfactants e) can be nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants.


Anionic surfactants which come into consideration are (C10-C22) alkyl and alkylene carboxylates, alkyl ether carboxylates, fatty alcohol sulfates, fatty alcohol ether sulfates, alkylamide sulfates and alkylamide sulfonates, fatty acid alkyl amide polyglycol ether sulfates, alkanesulfonates and hydroxy-alkane sulfonates, olefin sulfonates, acyl esters of isethionates, α-sulfo fatty acid esters, alkylbenzene sulfonates, alkylphenol glycol ether sulfonates, sulfosuccinates, sulfosuccinic acid semiesters and diesters, fatty alcohol phosphates, fatty alcohol ether phosphates, protein-fatty acid condensation products, alkyl monoglyceride sulfates and alkyl monoglyceride sulfonates, alkylglyceride ether sulfonates, fatty acid methyl-taurides, fatty acid sarcosinates, sulfosuccinates, sulforicinoleates, acyl glutamates and acyl glycinates. These compounds and mixtures thereof are used in the form of their water-soluble or water-dispersible salts, for example the sodium, potassium, magnesium, ammonium, mono-, di- and triethanolammonium, and also analogous alkylammonium salts.


Suitable cationic surfactants are substituted or unsubstituted straight-chain or branched quaternary ammonium salts of the R1N(CH3)3X, R1R2N(CH3)2X, R1R2R3N(CH3)X or R1R2R3R4NX type. The radicals R1, R2, R3 and R4 can preferably be independently of one another unsubstituted alkyl having a chain length of between 8 and 24 carbon atoms, in particular between 10 and 18 carbon atoms, hydroxyalkyl having 1 to 4 carbon atoms, phenyl, C2 to C18 alkenyl, C7 to C24 aralkyl, (C2H4O)xH, wherein x is from 1 to 3, alkyl radicals containing one or more ester groups, or cyclic quaternary ammonium salts. X is a suitable anion. Preference is given to (C8-C22) alkyltrimethylammonium chloride or bromide, particularly preferably cetyltrimethylammonium chloride or bromide, di-(C8-C22) alkyldimethylammonium chloride or bromide, (C8-C22) alkyldimethyl-dibenzylammonium chloride or bromide, (C8-C22) alkyldimethylhydroxy-ethylammonium chloride, phosphate, sulfate, lactate, particularly preferably distearyldimethylammonium chloride, di(C8-C22) alkylaminopropyltri-methylammonium chloride and methosulfate.


Nonionic surfactants which come into consideration, for example, are the following compounds:

    • polyethylene, polypropylene and polybutylene oxide condensates of alkylphenols. These compounds comprise the condensation products of alkylphenols having a C6 to C20 alkyl group which can either be linear or branched, with alkene oxides. These surfactants are termed alkylphenol alkoxylates, e.g. alkylphenol ethoxylates.
    • condensation products of aliphatic alcohols with 1 to 25 mol of ethylene oxide. The alkyl or alkenyl chain of the aliphatic alcohols can be linear or branched, primary or secondary, and generally contains 8 to 22 carbon atoms. Particular preference is given to the condensation products of C10 to C20 alcohols having 2 to 18 mol of ethylene oxide per mole of alcohol. The alcohol ethoxylates can have a narrow homolog distribution of the ethylene oxide (“narrow range ethoxylates”) or a broad homolog distribution of the ethylene oxide (“broad range ethoxylates”). Examples of commercially available nonionic surfactants of this type are Tergitol® 15-S-9 (condensation product of a linear secondary C11-C15 alcohol with 9 mol of ethylene oxide), Tergitol® 24-L-NMW (condensation product of a linear primary C12-C14 alcohol with 6 mol of ethylene oxide having a narrow molar mass distribution). Likewise, the Genapol® brands from Clariant, fall under this class of product.
    • condensation products of ethylene oxide with a hydrophobic base formed by condensation of propylene oxide with propylene glycol. The hydrophobic part of these compounds preferably has a molecular weight between 1500 and 1800. The attachment of ethylene oxide to this hydrophobic part leads to an improvement in water solubility. The product is liquid up to a polyoxyethylene content of approximately 50% of the total weight of the condensation product, which corresponds to a condensation with up to approximately 40 mol of ethylene oxide. Commercially available examples of this class of product are the Pluronic® brands from BASF and the Genapol® PF brands from Clariant.
    • condensation products of ethylene oxide with a reaction product of propylene oxide and ethylenediamine. The hydrophobic unit of these compounds consists of the reaction product of ethylenediamine with excess propylene oxide and generally has a molecular weight of from 2500 to 3000. To this hydrophobic unit is added ethylene oxide up to a content of 40 to 80% by weight of polyoxyethylene and a molecular weight of from 5000 to 11 000. Commercially available examples of this class of compound are the Tetronic® brands from BASF and the Genapol® PN brands from Clariant.


Further suitable nonionic surfactants are alkyl and alkenyl oligoglycosides and also fatty acid polyglycol esters or fatty amine polyglycol esters each having 8 to 20, preferably 12 to 18, carbon atoms in the fatty alkyl radical, alkyl oligoglycosides, alkenyl oligoglycosides and fatty acid N-alkylglucamides.


In addition, the compositions according to the invention can contain amphoteric surfactants. These can be described as derivatives of long-chain secondary or tertiary amines which have an alkyl group having 8 to 18 carbon atoms and in which a further group is substituted with an anionic group which imparts the water solubility, for instance, e.g., with a carboxyl, sulfate or sulfonate group. Preferred amphoteric surfactants are N—(C12-C18)-alkyl-β-aminopropionates and N—(C12-C18)-alkyl-β-imino-dipropionates as alkali metal salts and mono-, di- and trialkylammonium salts. Suitable further surfactants are also amine oxides. These are oxides of tertiary amines with a long-chain group of 8 to 18 carbon atoms and two usually short-chain alkyl groups having 1 to 4 carbon atoms. Preference here is given, for example, to the C10 to C18 alkyldimethylamine oxides, fatty acid amido alkyldimethylamine oxide.


Auxiliaries and additives f) are, for example, emulsifiers, preservatives and fragrances.


As emulsifiers, the following preferably come into consideration: addition products of 0 to 30 mol of ethylene oxide and/or 0 to 5 mol of propylene oxide to linear fatty alcohols having 8 to 22 carbon atoms, to fatty acids having 12 to 22 carbon atoms, to alkylphenols having 8 to 15 carbon atoms in the alkyl group and to sorbitan or sorbitol esters; (C12-C18) fatty acid mono- and diesters of addition products of 0 to 30 mol of ethylene oxide to glycerol; glycerol monoesters and diesters and sorbitan mono- and diesters of saturated and unsaturated fatty acids having 6 to 22 carbon atoms and optionally the ethylene oxide addition products thereof; addition products of 15 to 60 mol of ethylene oxide to castor oil and/or hardened castor oil;


polyol esters, and in particular polyglycerol esters, such as, e.g., polyglycerol polyricinoleate and polyglycerol poly-12-hydroxystearate.


Equally preferably suitable are ethoxylated fatty amines, fatty acid amides, fatty acid alkanolamides and mixtures of compounds from a plurality of these classes of substance.


As preservatives, the preservatives that are listed in the relevant annex of the European cosmetics legislation are suitable. Examples are benzoic acid and sorbic acid, and particularly highly suitable is, for example, 1,3-bis-(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (Nipaguard®DMDMH).


As fragrances, individual odorant compounds, e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used. Odorant compounds of the ester type are, e.g., benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate. The ethers include, for example, benzyl ethyl ether, and the aldehydes include, e.g., the linear alkanols having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones include, e.g., the ionones, alpha-isomethylionone and methyl cedryl ketone, the alcohols include anethole, citronellol, eugenol, geranion, linalool, phenylethyl alcohol and terpineol, and the hydrocarbons include principally the terpenes and balsams. Preferably, mixtures of various odorants are used which together generate an appropriate fragrance.


As fragrances, natural odorant mixtures can also be comprised, as are accessible from plant or animal sources, e.g. pine oil, citrus oil, jasmine oil, lily oil, rose oil, or ylang-ylang oil. Essential oils of low volatility which are usually used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, frankincense oil, galbanum oil and ladanum oil.


The invention will be explained in more detail by the examples hereinafter.







EXAMPLES
Examples 1 to 5 and Also Comparative Examples 1 and 2

The N-acyl-N-methylglucamines described hereinafter were prepared according to EP 0 550 637 from the corresponding fatty acid methyl esters and N-methylglucamine in the presence of 1,2-propylene glycol as solvent and obtained as solid comprising active substance and 1,2-propylene glycol (all figures in % by weight). Mixtures of N-acyl-N-methylglucamines with acyl radicals of the stated carbon numbers were obtained (C8/C10 and/or C12/C14).













TABLE 1






Methyl
Active
1,2-Propylene
Melting


Example
esters
substance (%)
glycol (%)
point







Example 1
C12/14
90
10
85


Example 2
 C8/10
90
10
50









The viscosities were measured using a Brookfield viscometer model DV II, with the spindles from spindle set RV at 20 revolutions/minute and at 20° C. Spindles 1 to 7 from the spindle set RV were used. Under these measurement conditions, spindle 1 was selected for viscosities of a maximum of 500 mPa·s, spindle 2 for viscosities of a maximum of 1000 mPa·s, spindle 3 for viscosities of a maximum of 5000 mPa·s, spindle 4 for viscosities of a maximum of 10000 mPa·s, spindle 5 for viscosities of a maximum of 20000 mPa·s, spindle 6 for viscosities of a maximum of 50000 mPa·s and spindle 7 for viscosities of a maximum of 200000 mPa·s.


Solubilizer tests were carried out. As test oil phase 1, a mixture of phenoxyethanol/benzyl alcohol/sorbitanic caprylate (Velsan® SC) in the ratio 1:1:1 was used. The usage rate was 1.5% by weight.


The test oil phase and increasing amounts of solubilizer (0.5/1/1.5/2/2.5% of active substance) were mixed and made up to 100% with water at 20 to 25° C. with stirring. The turbidity of the solution was assessed after 30 min. Turbid formulations were further heated to approximately 60° C. after evaluation, and after cooling they were evaluated again. The lowest concentration at which the solution became clear was noted (all figures in % by weight).













TABLE 2








Clear





Chain
solution
Obser-


Solubilizer
Solubilizer
fraction
from
vation







Example 3
Example 1
C 12/14
2.0%



Example 4
Example 2
 C 8/10
1.5%


Comparative
Glucopon 215

2.0%
only after


example 1
(C8/10-


additional



alkylpolyglucoside)


heating









As may be seen in table 2, the C8/10 and C12/14-N/acyl-N-methylglucamines exhibit clear solutions at lower initial concentrations compared with comparative example 1, even without additional heating.


As test oil phase 2, a mixture of phenoxyethanollbenzyl alcohol/sorbitan caprylate (Velsan® SC)/dicaprylyl ether=1:1:1:1 was used. The usage rate was 2.0% by weight.


The test oil phase and an increasing amount of solubilizer (0.5/1/1.5/2/2.5% by weight of active substance) were mixed and made up to 100% with water at 20-25° C. with stirring. The turbidity of the solution was evaluated after 30 min. Turbid formulations were heated once more to approximately 60° C. after evaluation, and after they had cooled were evaluated again. The lowest concentration at which the solution became clear was noted (all figures in % by weight).













TABLE 3








Clear





Chain
solution
Obser-


Solubilizer
Solubilizer
fraction
from
vation







Example 5
Example 1
C 12/14
2.0%



Example 6
Example 2
 C 8/10
2.5%


Comparative
Glucopon 215

3.0%
only after


example 2
(C8/10-


additional



alkylpolyglucoside)


heating









As may be seen in table 3, the N-acyl-N-methylglucamines according to the invention exhibit clear solutions at a low starting concentration compared with alkylpolyglucosides, even without additional heating.

Claims
  • 1. A composition for producing wet wipes containing a) 0.1 to 5.0% by weight of a mixture of N-methyl-N—C8-C14-acylglucamines wherein at least 80% by weight of the N-methyl-N-acylglucamines have a C8-C10 acyl group,b) 0.05 to 5% by weight of one or more water-insoluble or only partially water-soluble antimicrobial active ingredients selected from the group consisting of phenyoxyethanol, benzyl alcohol, phenethyl alcohol, 1,2-octanediol, ethylhexyl glycerol, sorbitan caprylate, glyceryl caprylate and parabens, provided that sorbitan caprylate is one of the ingredients,c) 0 to 5% by weight of one or more oils,d) 85 to 99.85% by weight of water,e) 0 to 5% by weight of surfactants, andf) 0 to 5% by weight of further auxiliaries and additives,wherein the composition is in the form of a clear lotion, the lotion being optically transparent at a layer thickness of 5 cm.
  • 2. The clear lotion as claimed in claim 1, wherein it contains at least one oil selected from the group consisting of dicapryl ether, triglycerides of caprylic and/or capric acid and dicapryl carbonate.
  • 3. A wet wipe which is impregnated with the clear lotion as claimed in claim 1.
  • 4. A process for producing the clear solution as claimed in claim 1, comprising the step of adding to the clear solution a mixture of N-methyl-N—C8-C14-acylglucamines as a solubilizer.
  • 5. The composition as claimed in claim 1, wherein the total of components a) to f) is 100% by weight.
  • 6. The composition as claimed in claim 1, wherein the composition does not exhibit separation into a plurality of phases.
  • 7. The composition as claimed in claim 1, wherein b) is a combination of sorbitan caprylate, phenoxyethanol and benzyl alcohol.
  • 8. A composition for producing wet wipes containing a) 0.1 to 5.0% by weight of a mixture of N-methyl-N—C8-C14-acylglucamines wherein at least 80% by weight of the N-methyl-N-acylglucamines have a C8-C10 acyl group,b) 0.05 to 5% by weight of sorbitan caprylate,c) 0 to 5% by weight of one or more oils,d) 85 to 99.85% by weight of water,e) 0 to 5% by weight of surfactants, andf) 0 to 5% by weight of further auxiliaries and additives,wherein the composition is in the form of a clear lotion, the lotion being optically transparent at a layer thickness of 5 cm.
  • 9. The clear lotion as claimed in claim 8, wherein it contains at least one oil selected from the group consisting of dicapryl ether, triglycerides of caprylic and/or capric acid and dicapryl carbonate.
  • 10. A wet wipe which is impregnated with the clear lotion as claimed in claim 8.
  • 11. The composition as claimed in claim 8, wherein the total of components a) to f) is 100% by weight.
  • 12. The composition as claimed in claim 8, wherein the composition does not exhibit separation into a plurality of phases.
  • 13. The composition as claimed in claim 8, wherein the sorbitan caprylate is present in an amount of 0.2 to 1.5% by weight.
  • 14. The composition as claimed in claim 8, wherein the sorbitan caprylate is present in an amount of 0.1 to 2% by weight.
  • 15. The composition as claimed in claim 8, wherein the total of components a) to f) is 100% by weight.
Priority Claims (1)
Number Date Country Kind
10 2012 010 654 May 2012 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/061047 5/29/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/178671 12/5/2013 WO A
US Referenced Citations (142)
Number Name Date Kind
2016962 Flint Oct 1935 A
2667478 Schwartz Jan 1954 A
2703798 Schwartz Mar 1955 A
2891052 Boettner Jun 1959 A
2982737 Boettner May 1961 A
2993887 Zech Jul 1961 A
4079078 Collins Mar 1978 A
4413087 Bernot Nov 1983 A
4505827 Rose Mar 1985 A
4565647 Llenado Jan 1986 A
4654207 Preston Mar 1987 A
4681946 Baur Jul 1987 A
4981684 MacKenzie Jan 1991 A
5009814 Kelkenberg Apr 1991 A
5194639 Connor Mar 1993 A
5254281 Pichardo Oct 1993 A
5298195 Brumbaugh Mar 1994 A
5317047 Sabate May 1994 A
5354425 MacKey Oct 1994 A
5449770 Shumate Sep 1995 A
5454982 Murch Oct 1995 A
5500155 Weuthen Mar 1996 A
5539134 Strecker Jul 1996 A
5559078 Garst Sep 1996 A
5560873 Chen Oct 1996 A
5625098 Kao Apr 1997 A
5691299 Fabry Nov 1997 A
5711899 Kawa Jan 1998 A
5712235 Nieendick Jan 1998 A
5716922 Curry Feb 1998 A
5750748 Boutique May 1998 A
5766267 Schumacher Jun 1998 A
5777165 Kao Jul 1998 A
5789372 Fabry Aug 1998 A
5874096 Hazen Feb 1999 A
5945389 Richard Aug 1999 A
6147045 Lappas Nov 2000 A
6147124 Ansmann Nov 2000 A
6165955 Chen Dec 2000 A
6264961 Ansmann Jul 2001 B1
6274126 Newell Aug 2001 B1
6288023 Honda Sep 2001 B1
6329331 Aronson Dec 2001 B1
6350788 Herold Feb 2002 B1
6391962 Zerrer May 2002 B2
6455001 Knappe Sep 2002 B1
6727217 Nieendick Apr 2004 B1
6887838 Dykstra May 2005 B2
6903057 Tsaur Jun 2005 B1
7056379 Nieendick Jun 2006 B2
7217752 Schmucker-Castner May 2007 B2
7250392 Leonard Jul 2007 B1
7297666 Kuepper Stefan Nov 2007 B2
7407667 Zerrer Aug 2008 B2
7578995 Frantz Aug 2009 B2
7776318 Bissey-Beugras Aug 2010 B2
7820771 Lapra Oct 2010 B2
8178481 Sans May 2012 B2
8263538 Tsaur Sep 2012 B2
8729323 Kothandaraman May 2014 B2
8759255 Wacker Jun 2014 B2
9187407 Koshti Nov 2015 B2
9504636 Klug Nov 2016 B2
9949909 Klug Apr 2018 B2
10172774 Klug Jan 2019 B2
10265253 Klug Apr 2019 B2
20010023298 Weinelt Sep 2001 A1
20020004476 Pancheri Jan 2002 A1
20020065198 Highsmith May 2002 A1
20020168417 Blease Nov 2002 A1
20030004929 Julian Jan 2003 A1
20030049292 Turowski-Wanke Mar 2003 A1
20030069153 Jordan Apr 2003 A1
20030199403 Wells Oct 2003 A1
20040086470 Nieendick May 2004 A1
20050037926 Zerrer Feb 2005 A1
20050037942 Otterson Feb 2005 A1
20050172859 Nieendick Aug 2005 A1
20060058205 Ainger Mar 2006 A1
20060079414 Nieendick Apr 2006 A1
20060100127 Meier May 2006 A1
20060110415 Gupta May 2006 A1
20060110432 Luu May 2006 A1
20060135382 Molenda Jun 2006 A1
20060142291 Beilfuss Jun 2006 A1
20060166826 Zerrer Jul 2006 A1
20060171979 Calvo Aug 2006 A1
20070060489 Sun Mar 2007 A1
20070128144 Bonastre Jun 2007 A1
20070190004 Bockmuhl Aug 2007 A1
20070213226 Sieverding Sep 2007 A1
20090023622 Leidreiter Jan 2009 A1
20090253612 Mushock Oct 2009 A1
20090257972 Dieker Oct 2009 A1
20100051200 Mueller Mar 2010 A1
20100285077 Lintner Nov 2010 A1
20110002865 Fournial Jan 2011 A1
20110150786 Desenne Jun 2011 A1
20110177945 Klingelhoefer Jul 2011 A1
20110251116 Aehle Oct 2011 A1
20120009127 Dasgupta Jan 2012 A1
20120010113 Hee Jan 2012 A1
20120094890 Anantaneni Apr 2012 A1
20120172223 Wacker Jul 2012 A1
20120244092 Moser Sep 2012 A1
20130030197 Harichian Jan 2013 A1
20130189212 Jawale Jul 2013 A1
20130216491 Ogihara Aug 2013 A1
20140255330 Cron Sep 2014 A1
20140303389 Crosby Oct 2014 A1
20150032003 Cho Jan 2015 A1
20150125415 Klug May 2015 A1
20150126424 Klug May 2015 A1
20150126616 Klug May 2015 A1
20150133560 Klug May 2015 A1
20150140048 Klug May 2015 A1
20150141466 Klug May 2015 A1
20150141508 Klug May 2015 A1
20150150767 Klug Jun 2015 A1
20150164755 Klug Jun 2015 A1
20150164756 Klug Jun 2015 A1
20150282478 Baur Oct 2015 A1
20150320037 Wacker Nov 2015 A1
20150335550 Koshti Nov 2015 A1
20160074310 Klug Mar 2016 A1
20160136072 Klug May 2016 A1
20160143828 Klug May 2016 A1
20160243014 Dahms Aug 2016 A1
20160272666 Klug Sep 2016 A1
20160361243 Klug Dec 2016 A1
20170000710 Klug Jan 2017 A1
20170002297 Klug Jan 2017 A1
20170044434 Baur Feb 2017 A1
20170055524 Baur Mar 2017 A1
20170071199 Baur Mar 2017 A1
20170101606 Klug Apr 2017 A1
20170218293 Klug Aug 2017 A1
20170265477 Baur Sep 2017 A1
20170292062 Wylde Oct 2017 A1
20170305838 Appel Oct 2017 A1
20180215879 Kupfer Aug 2018 A1
20190076344 Klug Mar 2019 A1
Foreign Referenced Citations (176)
Number Date Country
2127644 Jan 1995 CA
1061960 Jun 1992 CN
1077489 Oct 1993 CN
1078746 Nov 1993 CN
1088258 Jun 1994 CN
1140987 Jan 1997 CN
1141653 Jan 1997 CN
1155239 Jul 1997 CN
1292641 Apr 2001 CN
1296524 May 2001 CN
1501772 Jun 2004 CN
1518408 Aug 2004 CN
1594518 Mar 2005 CN
100528887 May 2006 CN
1997341 Jul 2007 CN
102186340 Sep 2011 CN
102595882 Jul 2012 CN
103468362 Dec 2013 CN
103468382 Dec 2013 CN
104918490 Sep 2015 CN
1956509 May 1971 DE
2226872 Dec 1973 DE
4235783 Apr 1994 DE
4435383 Nov 1995 DE
19507531 Sep 1996 DE
19701127 Jul 1998 DE
19916090 Oct 2000 DE
10117993 Oct 2002 DE
10130357 Jan 2003 DE
102007034438 Jan 2009 DE
202013011412 Jan 2014 DE
202013011413 Jan 2014 DE
102012021647 May 2014 DE
0048436 Mar 1982 EP
0285768 Oct 1988 EP
0285786 Oct 1988 EP
0336151 Oct 1989 EP
0378985 Jul 1990 EP
0407874 Jan 1991 EP
0539588 May 1993 EP
0550637 Jul 1993 EP
0572723 Dec 1993 EP
0614881 Sep 1994 EP
0633244 Jan 1995 EP
0709449 May 1996 EP
0745719 Dec 1996 EP
0769548 Apr 1997 EP
0774503 May 1997 EP
0995994 Apr 2000 EP
1043017 Oct 2000 EP
1078978 Feb 2001 EP
1093722 Apr 2001 EP
1110944 Jun 2001 EP
1177223 Feb 2002 EP
1379129 Jan 2004 EP
1676831 Jul 2006 EP
1716842 Nov 2006 EP
S4810053 Feb 1973 JP
S63270534 Nov 1988 JP
H06501731 Feb 1994 JP
H06501733 Feb 1994 JP
H06240599 Aug 1994 JP
H07507341 Aug 1995 JP
H0812993 Jan 1996 JP
H0848618 Feb 1996 JP
H09502476 Mar 1997 JP
H09506683 Jun 1997 JP
H09510956 Nov 1997 JP
H10501279 Feb 1998 JP
H10508043 Aug 1998 JP
H11505839 May 1999 JP
H11246890 Sep 1999 JP
H11512334 Oct 1999 JP
2000512286 Sep 2000 JP
2000297028 Oct 2000 JP
2001501635 Feb 2001 JP
2001131579 May 2001 JP
2001247528 Sep 2001 JP
2002542344 Dec 2002 JP
2006183030 Jul 2006 JP
2006183039 Jul 2006 JP
2007538023 Dec 2007 JP
2008110953 May 2008 JP
2010018586 Jan 2010 JP
2013534232 Sep 2013 JP
2014532815 Dec 2014 JP
2015518026 Jun 2015 JP
2017526776 Sep 2017 JP
9205764 Apr 1992 WO
9206073 Apr 1992 WO
9206154 Apr 1992 WO
9206158 Apr 1992 WO
9206161 Apr 1992 WO
9206162 Apr 1992 WO
9318125 Sep 1993 WO
9319149 Sep 1993 WO
9410130 May 1994 WO
9412608 Jun 1994 WO
9412609 Jun 1994 WO
9419941 Sep 1994 WO
9516824 Jun 1995 WO
9517880 Jul 1995 WO
9519415 Jul 1995 WO
9523840 Sep 1995 WO
9533033 Dec 1995 WO
9533035 Dec 1995 WO
9603974 Feb 1996 WO
9610386 Apr 1996 WO
9614374 May 1996 WO
9616540 Jun 1996 WO
9628023 Sep 1996 WO
9637589 Nov 1996 WO
9637592 Nov 1996 WO
9747284 Dec 1997 WO
9800496 Jan 1998 WO
9841601 Sep 1998 WO
9856496 Dec 1998 WO
9951716 Oct 1999 WO
0065014 Nov 2000 WO
0137658 May 2001 WO
0160877 Aug 2001 WO
02089575 Nov 2002 WO
2002096882 Dec 2002 WO
03000055 Jan 2003 WO
2003106457 Dec 2003 WO
2004056358 Jul 2004 WO
2004099150 Nov 2004 WO
2004099160 Nov 2004 WO
2005035486 Apr 2005 WO
2005063094 Jul 2005 WO
2005077934 Aug 2005 WO
2005117580 Dec 2005 WO
2006043635 Apr 2006 WO
2006056433 Jun 2006 WO
2006089633 Aug 2006 WO
2006100288 Sep 2006 WO
2007040280 Apr 2007 WO
2007057407 May 2007 WO
2007075459 Jul 2007 WO
2007101369 Sep 2007 WO
2007115643 Oct 2007 WO
2007115644 Oct 2007 WO
2007115646 Oct 2007 WO
2007141066 Dec 2007 WO
2007147500 Dec 2007 WO
2007149134 Dec 2007 WO
2005085216 Jan 2008 WO
2008009360 Jan 2008 WO
2008066153 Jun 2008 WO
2008067911 Jun 2008 WO
2008104503 Sep 2008 WO
2009002956 Dec 2008 WO
2009029561 Mar 2009 WO
2009049851 Apr 2009 WO
2010005692 Jan 2010 WO
2010006713 Jan 2010 WO
2010069502 Jun 2010 WO
2010074747 Jul 2010 WO
2010074751 Jul 2010 WO
2010138661 Dec 2010 WO
WO 2011138450 Nov 2011 WO
2012061991 May 2012 WO
2012116939 Sep 2012 WO
2013178668 Dec 2013 WO
2013178670 Dec 2013 WO
2013178671 Dec 2013 WO
2013178679 Dec 2013 WO
2013178697 Dec 2013 WO
2013178700 Dec 2013 WO
2013178701 Dec 2013 WO
2014067663 May 2014 WO
2014170025 Oct 2014 WO
2015082062 Jun 2015 WO
2015124302 Aug 2015 WO
2016023693 Feb 2016 WO
2016041823 Mar 2016 WO
Non-Patent Literature Citations (35)
Entry
Smith, J.T. et al., “Micellar Electrokinetic Capillary Chromatography with in Situ Charged Micelles. 1. Evaluation of N-D-Gluco-N-methylalkanamide Surfactants as Anionic Borate Complexes,” Anal. Chem. 1994, 66, 1119-1133.
Söderlind, E. et al., “The usefulness of sugar surfactants as solubilizing agents in parenteral formulations,” Elsevier, I nternational IJournal of Pharmaceutics 252 (2003) pp. 61-71, Aug. 19, 2002.
Tegeler, T. et al., Special Guest Editor Section: Electrically Driven Microseparation Methods for Pesticides and Metabolites: I. Micellar Electrokinetic Capillary Chromatography of Carbamate Insecticides with MEGA-Borate and SDS Surfactants, Journal of AOAC International, vol. 82, No. 6, pp. 1542-1549, Nov. 6, 1999.
Zhu, Y-P, et al., “Surface Properties of N-Alkanoyl-N-Methy Glucamines and Related Materials”, J. of Surfactants and Detergents, vol. 2, No. 3, Jul. 1, 1999.
Bezard (Lipids 1971;6:630-634).
Dale et al. (J. Sci. Food. Agric. 1955;6:166-170) (Year: 1955).
English Translation of Cited Excerpts of CN103468382A, Dec. 25, 2013. 2 pages.
Friedrich Vogel: “Kosmetik aus der Sicht des Chemikers”, Chemie in Unserer Zeit, No. 5, Jan. 1, 1986 (Jan. 1, 1986), pp. 156-164, XP055109030, DOI: 10.1002/ciuz.19860200504 p. 160.
Hardcopy of http://igf-bingen.de/Croda_produkte.pdf, Dec. 1, 2016. 3 pages.
International Preliminary Report on Patentability for PCT/EP2013/061044, dated Feb. 12, 2014. 7 pages.
International Preliminary Report on Patentability for PCT/EP2014/001723, dated Jun. 8, 2015. 16 pages.
International Preliminary Report on Patentability for PCT/EP2015/000443, dated Jan. 22, 2016. 6 pages.
International Preliminary Report on Patentability for PCT/EP2015/076072, dated May 16, 2017. 5 pages.
International Search Report for PCT/EP2013/061044, dated May 15, 2014. 2 pages.
International Search Report for PCT/EP2013/061075, dated May 15, 2014. 2 pages.
International Search Report for PCT/EP2013/061076, dated May 15, 2014. 2 pages.
International Search Report for PCT/EP2013/061100, dated Jul. 16, 2014. 4 pages.
International Search Report for PCT/EP2013/061100, dated Jul. 15, 2014. 4 pages.
International Search Report for PCT/EP2014/001723, dated Jan. 5, 2015. 3 pages.
International Search Report for PCT/EP2015/000443, dated Jun. 2, 2015. 2 pages.
International Search Report for PCT/EP2015/000871 dated Jul. 15, 2015. 3 pages.
International Search Report for PCT/EP2015/076072, dated Feb. 29, 2016. 2 pages.
Mohammadi et al. Langmuir vol. 20, pp. 9657-9662; publication year: 2004.
Palm fatty acid distillate (PFAD) [online] retrieved on May 21, 2018 from: https://www.neste.com/ corporate-info/sustainability/sustainable-supply-chain/pfad-residue-palm-oil-refining-process; 1 page (Year: 2018).
Plante et al. Castor Oil [online] retrieved on Jan. 13, 2016 from: http://www.dionex.com/en-us/ webdocs/110518-PO-UHPLC-Castor-Oil-31May2011-LPN2822-01.pdf; 5 pages.
PubChem, Methylmeglumine, 2006. (Year: 2006) 9 pages.
Quack, et al., Fette-Seifen-Anstrichmittel 78, 200(1976). 7 pages.
R. Mohammadi, J. Wassink, A. Amirfazli, “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces”, Langmuir, American Chemical Society, (Oct. 10, 2004), vol. 20, No. 22, doi:10.1021/ 1a049268k, ISSN 07437463, pp. 9657-9662, XP055098502.
Study on Synthesis and Properties of “Green” Surfactants—Glucamine derivates, Zhao Handong, Master Thesis, Southern Yangtze University, pp. 5-6, Jul. 25, 2007.
Tan et al. (Appl Microbiol Biotechnol. 1997;47:207-211) (Year: 1997).
The Chemistry of Coconut Oil, accessed online Jul. 12, 2018 (Year: 2018) 5 pages.
V. Bergeron, P. Cooper, C. Fischer. J. Giermanska-Kahn, D. Langevin, and A. Pouchelon, “Polydimethylsiloxane (PDMS)-based antifoams” Colloids and Surfaces A: Physicochemical and Engineering Aspects 122 (1997) 103 120. 18 pages.
Walter, A. ; Suchy, S.E. ; Vinson, P.K., “Solubility properties of the alkylmethylglucamide surfactants”, Biochimica et Biophysica Acta (BBA)—Biomembranes, Elsevier, Amsterdam, NL, Amsterdam, NL, (Nov. 2, 1990), vol. 1029, No. 1, doi:10.1016/0005-2736(90)90437-S, ISSN 0005-2736, pp. 67-74, XP023354648.
International Search Report for PCT/EP2013/061047, dated May 22, 2014.
Lichtenthaler, F.W., “Carbohydrates as Organic Raw Materials,” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, 2010. (34 pages).
Related Publications (1)
Number Date Country
20150140048 A1 May 2015 US