Use of picoplatin to treat colorectal cancer

Information

  • Patent Grant
  • 8178564
  • Patent Number
    8,178,564
  • Date Filed
    Friday, February 6, 2009
    15 years ago
  • Date Issued
    Tuesday, May 15, 2012
    12 years ago
Abstract
The invention provides a method of treatment of colorectal cancer by administration of the anti-cancer platinum drug picoplatin in conjunction with 5-FU and leucovorin in a variety of treatment regimens. Dosages, dosing schedules, and ancillary treatments are described.
Description
BACKGROUND OF THE INVENTION

Colorectal cancer remains the second most common cause of cancer-related death in the United States and a significant cause of cancer-related death in other countries as well.1 For decades, the only approved chemotherapeutic drug for treatment of colorectal cancer was 5-fluorouracil (5-FU), and it continues to be the backbone of most first-line chemotherapeutic regimens for patients with advanced disease. However, there has been much progress made in treatment of colorectal cancer in the past decade, with the approval of several new therapeutic agents including irinotecan, oxaliplatin, capecitabine, and most recently, cetuximab and bevacizumab.2,3 Importantly, a variety of new chemotherapeutic regimens utilizing these agents have been devised, which have led to increased response rates and incremental increases in the time to progression and median survival for patients with advanced disease.2,3 Response rates for 5-FU/leucovorin, irinotecan, and oxaliplatin as single agent therapy have been low (23%, 18%, and 12%, respectively), progression-free survival has been short (median 4.0, 4.3, and 4.0 months, respectively), and median survival has also been short, approximately (12, 12, and 14.5 months, respectively).4 With the introduction of 5-FU-based combination chemotherapeutic regimens using irinotecan and oxaliplatin, the response rate has increased substantially, with response rates reported as high as 64% (FOLFOX7), time to progression ranging from 8.9-12.3 months, and median survival now approaching approximately 20 months in some reports.2-4


Unfortunately, however, these newer combination chemotherapy regimens do have increased toxicity. Regimens containing irinotecan are associated with significant diarrhea and other gastrointestinal toxicity, while those containing oxaliplatin are associated with neurotoxicity.2-10 The neurotoxicity observed is of two types: first, a cumulative and often dose limiting sensory loss with paresthesias that can interfere with function and second, a disturbing cold sensitivity that limits patient acceptance of the FOLFOX regimen.7-10 Thus a drug of comparable efficacy without neurotoxicity would be a welcome substitute for oxaliplatin in combination with 5-FU and leucovorin.


Picoplatin is a platinum analogue that has demonstrated synergy with 5-FU in vitro in pre-clinical studies and has undergone extensive Phase 1 and 2 testing in a variety of cancers.11-22 Like other platinum analogues, picoplatin causes cell death by the formation of covalent cross-links in DNA that interfere with DNA replication and transcription, leading to cell death. Cisplatin, the first platinum analogue, was introduced approximately 20 years ago and is still widely used. The approval of cisplatin was followed by approval of carboplatin, and most recently by that of oxaliplatin.


Treatment with platinum analogues is limited by their toxicity. While neurotoxicity and nephrotoxicity are the main dose-limiting toxicities (DLT) observed following cisplatin treatment, myelosuppression is most significant following carboplatin treatment. Carboplatin is known to cause cumulative dose-related toxicity that results in slow bone marrow recovery. Peripheral neurotoxicity is well documented in patients treated with oxaliplatin. The unacceptable nephrotoxicity, oto-, and neurotoxicity associated with earlier platinum analogues has not been reported with picoplatin either in animal studies or in clinical trials.11,19-22


The efficacy of platinum analogues is also limited by several (intrinsic or acquired) mechanisms of resistance, including impaired cellular uptake, intracellular inactivation by thiols [e.g., reduced glutathione], and enhanced DNA repair and/or increased tolerance to platinum-DNA adducts.23 Pre-clinical studies indicate that picoplatin can overcome these three mechanisms of resistance. This has been demonstrated in vitro and by using human ovarian xenograft tumor models that exhibit resistance to cisplatin.13-17 Several human ovarian and colon cell lines with induced resistance to oxaliplatin retain sensitivity to picoplatin.16-18


In Phase 1 studies, indications of activity were seen in subjects with ovarian cancer, non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), head and neck cancer, renal cell cancer, thymic cancer, pancreatic cancer, stomach cancer, leiomyosarcoma, liver cancer, mesothelioma, and prostate cancers.24,25 In Phase 2 studies, indications of efficacy were seen in subjects with ovarian, NSCLC, SCLC, mesothelioma, prostate cancer, and breast cancer.


Picoplatin and processes for making picoplatin and for using picoplatin in treatment are disclosed and claimed in U.S. Pat. Nos. 5,665,771 (issued Sep. 9, 1997), and 6,518,428 (issued Feb. 11, 2003), and in PCT/GB0102060, filed May 10, 2001, published as WO2001/087313, which are incorporated herein by reference in their entireties.


About 40% of patients with mCRC have K-ras mutations and their mCRC does not respond to epidermal growth factor receptor (EGFR) inhibitors such as cetuximab and panitumumab. Many cetuximab-treatment studies in mCRC demonstrated very low or even zero response rates, short progression-free survival, and short overall survival in K-ras mutation positive mCRC. Because K-ras wild type CRC patients treated with EGFR inhibitors have significantly higher objective response rates, increased progression-free survival, and increased overall survival, K-ras testing is now used in routine clinical practice to select the subset of mCRC patients most likely to benefit from treatment with an EGFR inhibitor. Subset selection spares patients who are unlikely to respond to EGFR inhibitors for side effects and the cost of an ineffective drug. Examples of companies that offer K-ras testing to medical oncologists include:


For example, see: M. Brink et al., Carcinogenesis. 2003; 24:703-10; A. Lièvre et al., J Clin Oncol. 2008; 26:374-9; W. De Roock et al., Ann Oncol. 2007, Nov. 12; F. Di Fiore et al., Br J Cancer. 2007; 96:1166-9; A. Lièvre et al., Cancer Res. 2006; 66:3992-5; C. S. Karapetis et al., NEJM. 2008; 359 (N 17):1757-1765; Amado et al., 2008 American Society of Clinical Oncology Gastrointestinal Cancers Symposium, Abstract 278.


Picoplatin (SP-4-3) (cis-aminedichloro(2-methylpyridine)Pt(II)), and useful prodrugs and analogs thereof are disclosed in U.S. Pat. Nos. 5,665,771; 6,518,428; 6,413,953 and PCT/GB/01/02060.


SUMMARY OF THE INVENTION

An embodiment of the present invention provides a method of treatment of colorectal cancer, comprising administering to a patient afflicted with colorectal cancer picoplatin, 5-fluorouracil (5-FU), and leucovorin, wherein 5-FU and leucovorin are administered intravenously at least twice at intervals of about 2-6 weeks and the picoplatin is administered with the leucovorin and 5-FU every other time that the fluorouracil and leucovorin are administered.


Another embodiment of the invention provides a method of treatment of colorectal cancer, comprising administering to a patient afflicted with colorectal cancer effective amounts of a combination of picoplatin, 5-FU and leucovorin, wherein the picoplatin, 5-FU and leucovorin are administered intravenously at least twice at intervals of about two weeks, wherein the amount of picoplatin is less than the maximum tolerated dose of picoplatin when administered in said combination.


Another embodiment of the invention provides a method of treatment of colorectal cancer, comprising administering to a patient afflicted with colorectal cancer picoplatin, 5-FU, and leucovorin, wherein 5-FU and leucovorin are administered intravenously at intervals of about two weeks, and the picoplatin is administered with the leucovorin and 5-FU every time that the fluorouracil and leucovorin are administered, wherein the picoplatin is administered at a dose of about 45-120 mg/m2.


In various embodiments of the present method, the patient has not previously been treated for metastatic disease, or the patient has not previously had systemic treatment, such as chemotherapy, for localized or metastatic disease. For example, the patient may have had surgery to remove or to de-bulk the primary tumor and then be treated with one of the picoplatin, 5-FU, leucovorin regimens (e.g., FOLPI) of the invention to prevent or delay progression of the cancer, including to prevent or delay the development of metastases. The patient may have received earlier chemotherapy at the time of primary tumor treatment, at least 6 months prior to the present picoplatin treatment.


In various embodiments, the picoplatin can be administered with curative intent, rather than merely seeking to arrest the disease with no remission. The dosage of the picoplatin can be increased beyond that bringing about disease stasis in order to achieve a cure in the patient.


The picoplatin and the leucovorin can be administered concurrently in any treatment cycle where picoplatin is administered.


In another embodiment of the invention, the picoplatin is administered substantially concurrently with the leucovorin and the picoplatin is administered at every second treatment of the patient with the 5-FU and the leucovorin, e.g., every four weeks. The leucovorin can be administered at a dosage of about 250-500 mg/m2, preferably at about 400 mg/m2. The picoplatin is administered at a dosage of about 60-180 mg/m2. The 5-FU is administered at a total dosage of about 2500-3000 mg/m2. A preferred treatment cycle for leucovorin and 5-FU is every two weeks, and picoplatin is administered every 4 weeks, e.g., at a low dose of about 60-75 mg/m2, e.g., 60 mg/m2, or at a high dose of about 120-180 mg/m2, preferably about 120-150 mg/m2, e.g. about 150 mg/m2.


Therefore, in one embodiment of the invention, the leucovorin, at a dosage of 250-500 mg/m2, is administered as an about 2 hour infusion concurrently with the picoplatin, when it is given, wherein the picoplatin dosage is 120-180 mg/m2, e.g., about 150 mg/m2; the administration of the leucovorin and the picoplatin being followed by a 5-FU dosage of about 400 mg/m2 as a bolus; the 5-FU dosage being followed by 5-FU at a dosage of 2,400 mg/m2, preferably administered as a 46 hour continuous infusion, wherein the leucovorin and 5-FU are provided to the patient at intervals of two weeks and the leucovorin, picoplatin, and 5-FU are provided to the patient at alternating intervals of four weeks. In another embodiment, a low dose of picoplatin of about 45-75 mg/m2, e.g., about 60-75 mg/m2, e.g., about 60 mg/m2, is administered.


In another embodiment of the invention, the leucovorin, at a dosage of 400 mg/m2, is administered as a 2 hour infusion; the administration of the leucovorin being followed by a 5-FU bolus at a dosage of 400 mg/m2; the 5-FU bolus dosage being followed by parenteral 5-FU at a dosage of 2,400 mg/m2, preferably administered as a 46 hour continuous infusion; the administration of the leucovorin and the 5-FU taking place every two weeks; wherein every two weeks picoplatin, at a dosage of up to about 50 mg/m2, e.g., at about 40-50 mg/m2, e.g., about 45 mg/m2, is administered concurrently with the leucovorin, preferably simultaneously. Picoplatin dosages of about 45-105 mg/m2 can also be administered.


It has unexpectedly been found that, in some cases, the combination of low doses of picoplatin administered with leucovorin and 5-FU at every treatment cycle, are as effective as, or more effective than, higher doses, e.g., the MTD, given at the same intervals, in producing a response. The MTD for the 2 week and 4 week picoplatin administration schedules (see Table 1) are discussed below. Preferably, such doses in the initial treatment are lower or substantially lower than the MTD. Such doses can range from about 40-60 mg/m2 of picoplatin every two weeks, given with leucovorin and followed by 5-FU, as discussed below.


It has surprisingly been found that a total cumulative dose in excess of about 900 mg/m2 can be tolerated by patients without neuropathy of Grade 2 or higher being observed.


As used herein, the term “concurrently” means that the administrations are simultaneous, overlapping or close enough in time so that the two or more agents administered are present in vivo in therapeutically effective amounts.


The present method also can comprise administration of an effective amount of a 5-HT3 receptor antagonist, as an anti-emetic.


The present invention also provides a method comprising administering picoplatin in a dosage form comprising an isotonic solution comprising water, a tonicity adjuster, and about 0.5 mg/mL dissolved picoplatin. The dosage form can also comprise an effective amount of dissolved or dispersed 5-FU and/or leucovorin in accord with the doses disclosed herein. The dosage form also does not contain a preservative or bacteriostatic agent. An appropriate volume of the dosage form can be administered to achieve a desired therapeutic dose.


The dosage form also can comprise a first container comprising the picoplatin solution and a second container comprising a solution of leucovorin. The two containers can further comprise means to simultaneously administer the contents to a patient, e.g., the containers can be plastic intravenous bags that can be independently connected to a single intravenous tube so that the content of each container can be simultaneously administered to the patient, e.g., via a Y-link. These containers can be packaged together with instructions regarding their end-use, e.g., in a kit.


In various embodiments, the invention provides a method for selecting a regimen of treatment for a patient afflicted with mCRC comprising: (a) identifying a patient afflicted with mCRC, (b) determining if the mCRC comprises a wild type K-ras gene or a mutated K-ras gene and (c) if the mCRC comprises a K-ras mutation positive genotype, then administering to the patient picoplatin and, optionally, 5-FU and leucovorin.







DETAILED DESCRIPTION OF THE INVENTION

The use of picoplatin to treat metastatic colorectal cancer will be conducted in three parts. Phase 1 is a dose escalation study to identify the maximum tolerated dose (MTD) of picoplatin that can be administered either every two weeks or every four weeks, with 5-FU and leucovorin (LV) administered every two weeks, as initial therapy for subjects with metastatic colorectal cancer who have not been previously treated for metastatic disease. Phase 2 is a randomized study. In one arm of the study, picoplatin is tested at the MTD and selected schedule (every four weeks) combined with 5-FU and leucovorin that are administered every two weeks, to assess safety and efficacy. In the other arm, picoplatin will be substituted for oxaliplatin in a modified FOLFOX 6 regimen wherein the 100 mg/m2 oxaliplatin dose in FOLFOX 6 has been reduced to 85 mg/m2, and administered every 2 weeks, so that the two agents can be compared in the context of a widely used regimen. It is believed that cancer patients can be more effectively treated with the regimen of the present invention, which employ picoplatin instead of cisplatin, carboplatin or oxaliplatin, because they will experience fewer side effects, such as neuropathy, while preferably receiving higher doses of the platinum (Pt) drug.


Subjects eligible for the Phase 1 study will have Stage IV colorectal cancer and will have received no systemic therapy for metastatic cancer. Prior adjuvant chemotherapy with a 5-FU-based treatment regimen not containing oxaliplatin or irinotecan is acceptable if there has been a treatment-free interval of at least 6 months.


Phase 1


Subjects are assigned centrally to treatment with picoplatin administered either every two or every four weeks and are assigned a dose of picoplatin to be given dependent on the study results to date. Each patient also receives 5-FU and leucovorin therapy every two weeks. Cohorts of 3 subjects receive their assigned dose of picoplatin and leucovorin and 5-FU according to the following schedule:


Day 1: Picoplatin, assigned dosage, as a 2-hour infusion, given either every cycle of 5-FU and leucovorin (q 2 weeks, Schedule A) or with every other cycle of 5-FU and leucovorin (q 4 weeks, Schedule B). Leucovorin, 400 mg/m2 in D5W (water-5% dextrose), will be administered as a 2 hour infusion, either alone or, if the patient is to receive picoplatin, at the same time as picoplatin in separate bags using a Y-line. The leucovorin (±picoplatin) will be followed by a 5-FU bolus=400 mg/m2 and then by 5-FU, 2,400 mg/m2 in D5W administered as a 46 hour continuous infusion.


Subjects in Phase 1 are centrally assigned to one of two schedules of picoplatin. The first cohort of q 2 week (Schedule A) subjects are treated with picoplatin at a dosage of 45 mg/m2, every cycle, q 2 weeks. Subsequent sequential cohorts of subjects assigned to this schedule receive picoplatin at dose levels increasing by 15 mg/m2 if treatment is well tolerated and until unacceptable dose-limiting toxicity (DLT) establishes the MTD.


The MTD is defined as the dose of picoplatin below the dose at which at least one third of at least 6 subjects experience a DLT. Tolerance data from only the first 4 weeks of treatment is used to determine the MTD. Thus, data following the first two doses of picoplatin in the q 2 week (Schedule A) subjects and following only the first dose of picoplatin in the q 4 week (Schedule B) subjects are considered. The first cohort of q 4 week (Schedule B) subjects will be treated with picoplatin at a dosage of 60 mg/m2, every other cycle, q 4 weeks. Subsequent sequential cohorts of subjects assigned to this schedule will receive picoplatin at dose levels increasing by 30 mg/m2 if treatment is well tolerated and until unacceptable dose-limiting toxicity (DLT) establishes the MTD. Depending on the pattern and severity of toxicity observed, additional intermediate dose levels of either schedule of picoplatin administration may be studied.


Within each schedule, the cohort size is 3 subjects, and is expanded to 6 subjects if a DLT is observed. Within each cohort of each schedule, one patient is treated initially; if no DLT is observed within the following 4 weeks (2 drug cycles), the remaining two subjects may be treated. If a DLT is observed in the first patient within a cohort, whether or not to proceed with enrollment of additional subjects in the cohort will be determined on a case-by-case basis. All subjects within a q 2 week (Schedule A) cohort will have completed 2 cycles (a cycle=the 2-day treatment regimen and an additional 12-day follow-up period) prior to escalating the dose in the next cohort of subjects. All subjects within a q 4 week (Schedule B) cohort will have completed 1 cycle of the 2-day treatment regimen (which should include 5FU/leucovorin) and an additional 26-day follow-up period prior to escalating the dose in the next cohort of Schedule B subjects.


If no DLT is observed among the 3 subjects within a cohort, picoplatin dose escalation may proceed in the next cohort of that schedule of picoplatin. If one DLT is observed, the cohort size at the specified dose and schedule of picoplatin is expanded to 6 subjects. Additional subjects may be entered at any dosage level and schedule below the dose at which 2 of 6 have DLT to obtain additional safety or efficacy data.


Phase 2


The dose of the Phase 2 component of this study is selected based on the dose intensity of picoplatin achieved on each dose and schedule, the number of cycles tolerated and a subjective assessment of the tolerability and safety profile of each dose and schedule and a preliminary assessment of response rate in accord with Phase 1. The schedule for Phase 2 is selected as Schedule B, the q 4 week schedule. The subjects (approximately 100 with metastatic CRC, at about 25 clinical sites) are randomized to the modified FOLFOX 66 or to FOLPI-150.


The FOLPI regimen is as follows:


Picoplatin 150 mg/m2, is administered with every alternate cycle of 5-FU and leucovorin (q 4 weeks, Schedule B) as a 2 hour infusion. Leucovorin (400 mg/m2 in D5W) is administered every 2 weeks as a 2-hour infusion, either alone, or given at the same time as the picoplatin in a separate bag using a Y-line. The administration of leucovorin+picoplatin is followed by a 5-FU bolus of 400 mg/m2 and then by 5-FU, 2400 mg/m2 in D5W administered as a 46 hour continuous infusion.


The modified FOLFOX 6 regimen is as follows:


Oxaliplatin 85 mg/m2, as a 2-hour infusion is administered every 2 weeks. Leucovorin (400 mg/m2 in D5W) is administered every 2 weeks as a 2-hour infusion. Oxaliplatin is given at the same time as the leucovorin in a separate bag using a Y-line. The administration of leucovorin+oxaliplatin is followed by a 5-FU bolus of 400 mg/m2 and then by 5-FU, 2400 mg/m2 in D5W administered as a 46 hour continuous infusion.


Neuropathy assessment is performed at baseline and after every two cycles of therapy (approximately every month) by an independent neurologist. The subject and the neurologist are not informed whether the platinum infused is oxaliplatin or picoplatin. This assessment by the neurologist is used to determine the incidence of Grade 2 or greater peripheral neuropathy. In Phase 2, for the purpose of determining toxicity for dose reduction or study drug discontinuation, the treating physician performs a neurological assessment using the NCI CTCAE. These CTCAE criteria are used to determine the need to dose reduce prior to each cycle. The assessment of the neurologist is used for determination of the safety endpoint, the incidence of neuropathy, and is performed independently every other cycle using the protocol-specified neuropathy scale, but is not be used for dose modification. For all subjects, hematology and serum chemistry laboratory studies are obtained prior to each treatment cycle. Treatment cycles (5-FU and leucovorin+picoplatin or oxaliplatin depending on schedule) are repeated every 2 weeks, but may be delayed up to 2 weeks while awaiting recovery of clinical or laboratory abnormalities. Data from all cycles of treatment and cumulative toxicity are assessed for safety analysis.


Tumor evaluations will be done at baseline and after every 4th treatment of 5-FU/leucovorin (every 8 weeks, unless doses have been delayed) on study. The efficacy endpoint will include objective response rate according to RECIST criteria.26 Duration of response, time to progression, progression-free survival, and overall survival are also evaluated.


The study treatments are summarized in Table 1, below:









TABLE 1









embedded image









embedded image









embedded image








aPicoplatin: over 2 hours 150 mg/m2; oxaliplatin: 85 mg/m2, over 2 hours; LV: 400 mg/mg2 over 2 hours (concurrent with picoplatin when given or oxaliplatin) followed by 5-FU: 400 mg/m2 bolus and then 2400 mg/m2 over 46 hours. All subjects continue cycles every two weeks until progression or discontinuation of study drug due to toxicity.








Selection of Picoplatin Dose


Picoplatin was generally tolerated in combination with other myelosuppressive chemotherapeutic agents in previous Phase 1 studies at doses of 120-150 mg/m2 administered every 3 weeks, i.e., doses equivalent to 80-100 mg/m2 every 2 weeks or 160-200 mg/m2 administered every 4 weeks. None of these studies, however, studied picoplatin in combination with 5-FU and leucovorin. 5-FU/leucovorin is not generally myelotoxic and thus the doses of picoplatin selected as the initial starting doses in the dose escalation portions of the current study, i.e., 45 mg/m2 every two weeks and 60 mg/m2 every four weeks, were well below the expected MTDs of picoplatin administered on these schedules.


Administration of Picoplatin


Investigational-site staff must use standard cytotoxic handling procedures when preparing picoplatin for administration. Picoplatin is supplied as a ready-to-use formulation. The contents of the vials must be transferred to a suitable bag for administration. The compatibility of the formulation with typical infusion equipment has been assessed, and results have established compatibility with EVA infusion bags, PVC infusion tubing, and polypropylene syringes when the materials are protected from light. PVC infusion bags are not recommended for administration of picoplatin.


The compatibility of the formulation with typical administration sets has been assessed, and limits of acceptability have been set as 8 hours in a covered infusion bag. The product is highly sensitive to light and should not be exposed to ambient light for more than 1 hour without light protection. The bag must be protected from light during preparation and administration at the time of use.


There is no preservative or bacteriostatic agent present in the picoplatin formulation. Therefore, picoplatin must be transferred under aseptic conditions. The solution must be completely used or discarded within 8 hours of introduction into an infusion bag. As with all platinum complexes, contact with aluminum should be avoided.


Picoplatin should be administered by peripheral vein or central line; it must not be given by the intramuscular or subcutaneous route. The starting dose will be calculated based on the body surface area from the height and weight of the patient. If the patient's weight changes by more than 10%, the treating physician must recalculate the body surface area and amend the dose.


Picoplatin should be administered over 2 hours. It should be administered concurrently with leucovorin, in separate bags using a Y-line, when the two drugs are to be given on the same day. These two drugs have been tested and shown to be compatible when administered in this manner.


Subjects also received anti-emetic therapy consisting of a 5-HT3 receptor antagonist plus dexamethasone 30 minutes prior to a dose of picoplatin. Subjects may also receive anti-emetic therapy for several days following treatment, which may include oral lorazepam, prochlorperazine, or equivalent for up to 7 days, as clinically indicated for breakthrough nausea and/or vomiting.


Guidance for Administration


Detailed guidance for administration of 5-FU and leucovorin are provided in the product labels. Briefly, leucovorin 400 mg/m2 IV infusion in D5W will be administered over 2 hours at the same time as picoplatin (if picoplatin is to be given on that day), in separate bags using a Y-line, followed by a bolus of 5-FU=400 mg/m2 and then by 5-FU 2,400 mg/m2 in D5W (recommended) administered as a 46-hour continuous IV infusion.


Dose Modifications


Dose Modification of Picoplatin


Dose-reduction is mandatory if any of the following hematological events are observed during the previous cycle: absolute neutrophil count (ANC)<0.5×109/L for at least 5 days; absolute neutrophil count<1.0×109/L complicated with Grade≧2 fever (>38.5° C.); platelet count<25×109/L; not reaching a platelet count≧100×109/L and ANC≧1.5×109/L by Day 15.


Dose reduction is also required for any treatment events involving any treatment-related Grade 3 toxicity, any Grade 4 toxicity, or any renal toxicity or neurotoxicities as described below.


For subjects receiving picoplatin every 2 weeks, the dose reduction should be 15 mg/m2; for subjects receiving picoplatin every 4 weeks the dose reduction should be 30 mg/m2.


Dose Reduction in the Event of Serum Creatinine Changes


Serum creatinine must be measured before every dose of picoplatin. For subjects with abnormal serum creatinine, the dose of picoplatin (but not 5-FU or leucovorin) must be modified according to the following table in Phase 1:















Dose modification for
Dose modification for


Serum Creatinine
q 2 week (Schedule A)
q 4 week (Schedule B)


Value
picoplatin subjects
picoplatin subjects







≦institutional ULN
recommended dose
recommended dose


>1.0 to 1.5 times ULN
reduce by 25%
reduce by 25%


>1.5 to 2.0 times ULN
reduce by 50%
reduce by 50%


>2.0 times ULN
discontinue treatment
discontinue treatment



with picoplatin
with picoplatin









In Phase 2, the following dose reductions will be required for elevated serum creatinine:
















Dose modification for



Serum creatinine
Phase 2 FOLPI subjects








≦institutional ULN
recommended dose



>1.0 to 1.5 times ULN
reduce by picoplatin 30 mg/m2



>1.5 to 2.0 times ULN
reduce by picoplatin 60 mg/m2



>2.0 times ULN
discontinue treatment with




picoplatin










Dose Modification in the Event of Neurotoxicity


The dose of picoplatin should be modified according to the CTCAE grade of toxicity and its duration as follows:















Duration of Toxicity











Resolves



Toxicity
before next
Persistent


Grade
cycle
(present at start of next cycle)





Grade 1
No change
Maintain picoplatin dose


Grade 2
No change
Reduce picoplatin dose by 30 mg/m2


Grade 3
Reduce
Discontinue picoplatin



picoplatin dose




by 30 mg/m2









Grade 4
Discontinue picoplatin









Up to three dose reductions of a 30 mg/m2 may occur should toxicity not improve or worsen at a later cycle.


Dose Modification of 5-FU


The first time the dose of picoplatin is reduced, the bolus dose of 5-FU should be omitted. The second time the dose of picoplatin is reduced, the infusional dose should be reduced by 600 mg/m2. Once decreased, the reduced dose of 5-FU should be continued; i.e., the dose of 5-FU should not be subsequently increased.


If the platelet count or ANC count is Grade 1 or 2 at day 15 in a cycle with picoplatin, and the subject receives the alternate i.e., even numbered cycle that does not include picoplatin, the dose of 5-FU should not be reduced at this cycle. At the next treatment cycle, the doses of picoplatin and 5-FU should be reduced by one level. Dose modifications for Grade 3 or 4 non-hematological events must be made. Continue treatment only once toxicity has resolved to <Grade 3.


Dose Modification of Leucovorin


There are no dose modifications for leucovorin, unless drug sensitivity is suspected because of a temporal relationship to the time of leucovorin administration.


Results


50 patients have been treated to date in Phase 1. In the q 2 w schedule, 1 of 6 patients showed a DLT of Grade 4 thrombocytopenia and neutropenia at a picoplatin dose level of 105 mg/m2. The q 2 w schedule is now being evaluated at 120 mg/m2. In the q 4 w schedule, DLT was observed at 180 mg/m2 in 2 of 6 patients. Patients have received up to 24 cycles and the therapy was well tolerated. For both schedules, dose delays were primarily from neutropenia or thrombocytopenia, with increased hematological toxicity observed at higher doses. Grade 3 non-hematological toxicities related to treatment include 1 coronary artery spasm following FU infusion, 1 picoplatin infusional allergic reaction, 1 stomatitis, 2 diarrhea, 1 azotemia. The cardiac and stomatitis events were attributed to the 5-FU component. No Grade 2 or higher neuropathy has been reported, even for four patients who have received a cumulative picoplatin dose of greater than about 900 mg/m2, a surprising and unexpected result, particularly in view of a high incidence of moderate to severe neuropathy observed at comparable doses of oxaliplatin. Picoplatin can be safely administered with FU and LV without the dose limiting neuropathy associated with FOLFOX.


In Schedule A (picoplatin q 2 week), the preferred dosage range is about 45-120 mg/m2, e.g., doses of 45 to 105 mg/m2, e.g., 45 mg/m2.


In Schedule B (picoplatin q 4 week), the preferred dose can be higher, e.g., about 120-210 mg/m2, e.g., 120-180 mg/m2, e.g., 150 mg/m2. A lower dose can also be administered, e.g., at 45-90 mg/m2, e.g., 60 mg/m2.


Of 44 evaluated subjects evaluated by CT scan there have been 6 confirmed partial responses and one complete response (unconfirmed) (16%). Twenty-six of 32 subjects of the Q2 week schedule have been evaluated and 2 partial responses were observed. Surprisingly, ⅔ patients in cohort A1 (45 mg/m2) showed a partial response. Eighteen of 18 subjects in the Q4 week schedule have been evaluated and 5 partial responses were observed (28%).


Phase II Study


Some preliminary results of a Phase II study of picoplatin in combination with 5-fluorouracil and leucovorin in potential neuropathy-sparing first line therapy against mCRC are shown below. A randomized, controlled study comparing the safety and efficacy of Q4W FOLPI (FOLPI with a 4 week dosing interval for picoplatin) at the picoplatin maximum tolerated dose (MTD) of 150 mg/m2 in comparison with an mFOLFOX-6 regimen of 85 mg/m2 oxaliplatin in combination with 5-FU and leucovorin in patients with metastatic CRC and no prior chemotherapy was carried out. Efficacy was assessed by objective tumor response, progression-free survival, and overall survival. The safety of each regimen was evaluated based on the incidence of adverse effects. Peripheral neuropathy was assessed in a blind study by an independent neurologist.


Study Demographics, Drug Exposure, Response, Adverse Events, and Hematologic Toxicities are as shown below. Each arm of the study was comparable in size, and of comparable median age.












Demographics*




















FOLPI
mFOLFOX-6




N = 50
N = 51















Age (in
Median (range)
59
(25-78)
62
(34-81)


years)







Age Group
<65 years
35
(70%)
27
(53%)



≧65 years
15
(30%)
24
(47%)


ECOG PS
0
5
(10%)
10
(20%)



1
42
(84%)
39
(77%)


Adjuvant
Yes
4
(8%)
5
(10%)


Therapy







Original
Colon
21
(42%)
36
(71%)


Site of
Rectum
26
(52%)
11
(22%)


Disease
Colon +
3
(6%)
3
(6%)



Rectum






Number of
Median
2
(1-6)
2
(1-6)


Metastatic
(range)






Sites







Sites of
Liver
43
(86%)
43
(84%)


Metastatic
Lymph nodes
20
(40%)
19
(37%)


Disease
Lung
20
(40%)
15
(29%)



Peritoneum/
10
(20%)
7
(14%)



pelvic/







abdominal







Bone
4
(8%)
1
(2%)



Ascites
4
(8%)
1
(2%)



Skin/soft
1
(2%)
1
(2%)



tissue







Other
9
(18%)
6
(12%)







*Data are not available for all patients at this time





Study Drug Exposure












FOLPI
mFOLFOX-6




H = 47a
N = 50a






Mean cycleb
6.51
6.64



per patient





Median cycleb
7
6.5



per patient





Range
1-14
1-16



Mean mg/m2/week
36.29
36.44



s.d.
11.80
4.62



Median mg/m2/week
33.16
36.81



Max
65.63
46.97



Min
20.00
19.83



Median relative
88.4%
86.6%



dose intensity












adatabase not complete





b2-week cycles











Response


RECIST Response Rate (interim data)












FOLPI
mFOLFOX-6




N = 50
N = 51






Partial Response
 6
 5



Stable Disease
14
18




(3 uPR)
(4 uPR)



Progressive Disease
15
16



Too early to assess
10
 8



Not Evaluable
 5
 4



Neuropathy ≧ grade 2
9%
27% 



Grade 3/4 neuropathy
 0
5%









uPR = unconfirmed partial response










Adverse Events*












FOLPI
mFOLFOX-6




N = 34
N = 37






Neutropenia
71%
22%



Thrombocytopenia
59%
19%



Nausea
44%
46%



Asthenia
38%
30%



Anemia
24%
32%



Vomiting
24%
11%



Anorexia
24%
14%



Neuropathy
18%
65%



Diarrhea
18%
11%



Alopecia
24%
 3%









*based on AE reports (all grades) in database, database not complete










Hematologic Toxicity*
















FOLPI
mFOLFOX-6




Grade

N = 44
N = 42

















ANC
1
4
(9%)
8
(19%)




2
6
(14%)
2
(5%)




3
12
(27%)
4
(10%)




4
12
(27%)
2
(5%)



Platelets
1
6
(14%)
3
(7%)




2
7
(16%)
0





3
15
(34%)
2
(5%)




4
3
(7%)
2
(5%)



Hemoglobin
1
11
(25%)
14
(33%)




2
12
(27%)
12
(29%)




3
5
(11%)
1
(2%)




4
3
(11%)
1
(2%)





*Data are not available for all patients at this time






From the above tables, it can be seen that FOLPI and mFOLFOX-6 deliver almost identical dose intensities of platinum. However, the Q4W FOLPI regimen exhibits less frequent and severe neurotoxicity than does mFOLFOX-6, while producing comparable rates of Partial Response and Stable Disease. Neurotoxicity is not dose-limiting for the FOLPI regimen, and the Q4W FOLPI regimen has comparable non-neurological tolerability to mFOLFOX-6. Although thrombocytopenia and neutropenia are more frequent and severe with FOLPI than with mFOLFOX-6, they are manageable, and the acute gastrointestinal toxicity of the two regimens is similar.


REFERENCES

The following references and other publications, patents and patent applications cited herein are incorporated by reference herein.

  • 1. Jemal et al., Cancer Statistics, 2004. CA Cancer J Clin 54(1): 8-29, 2004.
  • 2. Hoff et al., Oncology (Huntingt) 18(6): 705-708, 2004.
  • 3. Meyerhardt et al., N Engl J Med 352(5): 476-87, 2005.
  • 4. Penland et al., Oncology (Huntingt) 18(6): 715-722, 2004.
  • 5. Saltz et al., N Engl J Med, 343(13): 905-14, 2000.
  • 6. Tournigand et al., J Clin Oncol, 22(2): 229-37, 2004.
  • 7. de Gramont et al., J Clin Oncol, 18(16): 2938-47, 2000.
  • 8. Rothenberg et al., J Clin Oncol, 21(11): 2059-69, 2003.
  • 9. Andre et al., N Engl J Med, 350(23): 2343-51, 2004.
  • 10. Hwang et al., In: Clinical Use of Oxaliplatin: Case Studies and Roundtable Discussion, Editor Marshall J, CMP Healthcare Media, Oncology Publishing Group, Manhasset, N.Y. 2004.
  • 11. Douillard, J Y, Schiller, J., Eur J Cancer 38(Suppl 8): S25-S31, 2002.
  • 12. Beale, P, et al., Br J Cancer 88(7): 1128-1134, 2003.
  • 13. Raynaud F I, et al., Clin Cancer Res 3(11): 2063-2074, 1997.
  • 14. Holford J, et al., Anticancer Drug Des 13(1): 1-18, 1998.
  • 15. Holford J, et al., Br J Cancer 77(3): 366-373, 1998.
  • 16. Rogers P, et al., Eur J Cancer 38(12):1653-1660, 2002.
  • 17. Sharp S Y, et al., Eur J Cancer 38(17):2309-15, 2002.
  • 18. Plasencia C, et al., Invest New Drugs 22(4):399-409, 2004.
  • 19. Murakami H, et al., Eur J Cancer 38(Suppl 8): S1-S5, 2002
  • 20. Giaccone G, et al., Eur J Cancer 38 (Suppl 8): S19-S24, 2002.
  • 21. Gore M E, et al., Eur J Cancer 38(18): 2416-2420, 2002.
  • 22. Treat J, et al., Eur J Cancer 38(Suppl 8): S13-18, 2002.
  • 23. Perez R P, et al., Eur J Cancer 34(10): 1535-42, 1998.
  • 24. Gelmon K A, et al., Ann Oncol 15(7):1115-22, 2004.
  • 25. Gelmon K A, et al., National Cancer Institute of Canada—Clinical Trials Group trial, IND 129. Ann Oncol 14: 543-548, 2003.
  • 26. Therasse P, et al., New Guidelines to Evaluate the Response to Treatment in Solid Tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3): 205-216, 2000.


The following patent applications are incorporated herein by reference in their entireties:

  • U.S. Ser. No. 61/027,387, filed Feb. 8, 2008,
  • PCT Ser. No. US2009/000770, filed Feb. 6, 2009,
  • U.S. Ser. No. 61/027,382, filed Feb. 8, 2008,
  • PCT Ser. No. US2009/000770, filed Feb. 6, 2009,
  • U.S. Ser. No. 61/027,360, filed Feb. 8, 2008,
  • PCT Ser. No. US2009/000770, filed Feb. 6, 2009,
  • U.S. Ser. No. 11/982,841, filed Nov. 5, 2007,

Claims
  • 1. A method of treatment of metastatic colorectal cancer comprising administering to a patient afflicted with metastatic colorectal cancer and not previously treated systemically for said cancer, leucovorin, at a dosage of about 400 mg/m2, as a 2 hour infusion, the administration of the leucovorin being followed by a 5-fluorouracil (5-FU) bolus at a dosage of about 400 mg/m2; the 5-FU bolus being followed by 5-FU at a dosage of about 2,400 mg/m2 administered as a 46 hour continuous infusion; wherein the leucovorin and the 5-FU are administered to the patient every 2 weeks and administering about 60-150 mg/m2 of picoplatin to the patient simultaneously with the leucovorin every 4 weeks, wherein at least the initial dose of picoplatin is about 150 mg/m2 wherein a cumulative dose of picoplatin of greater than about 900 mg/m2 is delivered to the patient.
  • 2. The method of claim 1 wherein the patient has previously had surgery to remove or de-bulk a colorectal tumor.
  • 3. The method of claim 1 wherein the administration is effective to prevent or delay development or metastasis of the colorectal cancer.
  • 4. The method of claim 1 wherein a subsequent dose of picoplatin is administered at about a 15-30 mg/m2 lower dose than a previous dose.
  • 5. The method of claim 1 wherein the picoplatin is administered at least once at a dosage of about 60-75 mg/m2.
  • 6. The method of claim 1 further comprising administration of a 5-HT3 receptor antagonist.
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims the priority of U.S. Provisional Patent Application Ser. Nos. 60/857,066 (filed Nov. 6, 2006), 60/857,725 (filed Nov. 8, 2006), 60/877,495 (filed Dec. 28, 2006), 60/889,191 (filed Feb. 9, 2007), 60/931,589 (filed May 24, 2007), and 60/983,852 (filed Oct. 30, 2007), and is a continuation-in-part application of U.S. non-provisional application Ser. No. 11/982,841, filed Nov. 5, 2007, now abandoned which are all incorporated by reference herein in their entireties.

US Referenced Citations (123)
Number Name Date Kind
3892790 Tobe et al. Jul 1975 A
4322391 Kaplan et al. Mar 1982 A
4329299 Hydes May 1982 A
4394319 Hydes Jul 1983 A
4419340 Yolles Dec 1983 A
4533502 Rochon et al. Aug 1985 A
4760155 Heffernan et al. Jul 1988 A
4902797 Totani et al. Feb 1990 A
5072011 Abrams et al. Dec 1991 A
5082655 Snipes et al. Jan 1992 A
5194645 Barnard Mar 1993 A
5244919 Abrams et al. Sep 1993 A
5519155 Barnard et al. May 1996 A
5595979 Snyder Jan 1997 A
5624919 Farrell Apr 1997 A
5626862 Brem et al. May 1997 A
5633016 Johnson May 1997 A
5665771 Murrer Sep 1997 A
5681582 Gilis et al. Oct 1997 A
5795589 Mayer et al. Aug 1998 A
5919815 Bradley et al. Jul 1999 A
5919816 Hausheer et al. Jul 1999 A
5976577 Green et al. Nov 1999 A
6177251 Vogelstein et al. Jan 2001 B1
6235782 Pamukcu et al. May 2001 B1
6245349 Yiv et al. Jun 2001 B1
6413953 Gianomenico et al. Jul 2002 B1
6518428 Wong et al. Feb 2003 B1
6544961 St. Clair et al. Apr 2003 B1
6544962 Jones et al. Apr 2003 B1
6673370 Burke et al. Jan 2004 B2
6699844 Jones et al. Mar 2004 B2
6774131 Yuyama et al. Aug 2004 B1
6806289 Lippard et al. Oct 2004 B1
6884817 Li et al. Apr 2005 B2
6894049 Wong May 2005 B1
6906048 Davis et al. Jun 2005 B2
7011851 Burke et al. Mar 2006 B2
7109337 Kath et al. Sep 2006 B2
7122668 Barenholz et al. Oct 2006 B2
7145008 Kath et al. Dec 2006 B2
7201913 Muggetti et al. Apr 2007 B1
7208499 Kath et al. Apr 2007 B2
7235562 Kath et al. Jun 2007 B2
7253209 Kishimoto et al. Aug 2007 B2
7262182 Robinson et al. Aug 2007 B2
7264798 Cofey et al. Sep 2007 B2
7265134 Hartman et al. Sep 2007 B2
7307100 Mujica-Fernaud et al. Dec 2007 B2
7354945 Mujica-Fernaud et al. Apr 2008 B2
7378421 Mujica-Fernaud et al. May 2008 B2
7378423 Kawasaki et al. May 2008 B2
7390799 Bruncko et al. Jun 2008 B2
20020102301 Schwarz Aug 2002 A1
20020110601 Perez-Soler et al. Aug 2002 A1
20020156033 Bratzler et al. Oct 2002 A1
20020187191 Burke et al. Dec 2002 A1
20020193362 Morinaga et al. Dec 2002 A1
20020193434 Morinaga et al. Dec 2002 A1
20030027808 Palmer et al. Feb 2003 A1
20030108606 Norden et al. Jun 2003 A1
20030109487 Jones et al. Jun 2003 A1
20030118667 Bissery Jun 2003 A1
20030144312 Schoenhard Jul 2003 A1
20040010553 Katz et al. Jan 2004 A1
20040033997 Baron Feb 2004 A1
20040053882 Smith et al. Mar 2004 A1
20040101553 Lee et al. May 2004 A1
20040138140 Xu et al. Jul 2004 A1
20040156816 Anderson et al. Aug 2004 A1
20040229843 Toole et al. Nov 2004 A1
20050009908 Hedberg et al. Jan 2005 A1
20050020556 Johnson et al. Jan 2005 A1
20050026896 Keppler Feb 2005 A1
20050107346 Davis et al. May 2005 A1
20050232952 Lambert et al. Oct 2005 A1
20050249822 Pilkiewicz et al. Nov 2005 A1
20050261202 Brown et al. Nov 2005 A1
20050267075 Allen et al. Dec 2005 A1
20060003950 Strugnell et al. Jan 2006 A1
20060014768 Kawasaki et al. Jan 2006 A1
20060058311 Munzert et al. Mar 2006 A1
20060074073 Steinfeldt et al. Apr 2006 A1
20060078618 Constantinides et al. Apr 2006 A1
20060084670 Bissery Apr 2006 A1
20060142593 Lal Jun 2006 A1
20060183728 Kelly Aug 2006 A1
20060205810 Zong et al. Sep 2006 A1
20060211617 Gulati Sep 2006 A1
20060211639 Bratzler et al. Sep 2006 A1
20060246124 Pilkiewicz et al. Nov 2006 A1
20060257401 Stassi et al. Nov 2006 A1
20060263346 Leenders et al. Nov 2006 A1
20060263434 Deasi et al. Nov 2006 A1
20060293323 Elliott et al. Dec 2006 A1
20070065522 Pilkiewicz et al. Mar 2007 A1
20070082838 De et al. Apr 2007 A1
20070116729 Palepu May 2007 A1
20070122350 Pilkiewicz et al. May 2007 A1
20070123502 Turkson et al. May 2007 A1
20070190180 Pilkiewicz et al. Aug 2007 A1
20070190181 Pilkiewicz et al. Aug 2007 A1
20070190182 Pilkiewicz et al. Aug 2007 A1
20070219268 Hausheer Sep 2007 A1
20070265277 Jikyo et al. Nov 2007 A1
20070269539 Marshall et al. Nov 2007 A1
20080146555 Caligiuri et al. Jun 2008 A1
20080159980 Xu et al. Jul 2008 A1
20080161252 Reddy et al. Jul 2008 A1
20080166428 Brown et al. Jul 2008 A1
20080193498 Hausheer Aug 2008 A1
20090010878 Holmlund Jan 2009 A1
20090047365 Owa et al. Feb 2009 A1
20090061010 Zale et al. Mar 2009 A1
20090275549 Karlin et al. Nov 2009 A1
20090306034 Karlin et al. Dec 2009 A1
20100062056 Leigh Mar 2010 A1
20100178328 Martell et al. Jul 2010 A1
20100215727 Leigh et al. Aug 2010 A1
20100310661 Chen et al. Dec 2010 A1
20110052580 Martell et al. Mar 2011 A1
20110052581 Karlin et al. Mar 2011 A1
20110053879 Martell et al. Mar 2011 A1
Foreign Referenced Citations (32)
Number Date Country
1857208 Nov 2006 CN
1857221 Nov 2006 CN
1861050 Nov 2006 CN
1861051 Nov 2006 CN
1861052 Nov 2006 CN
1861053 Nov 2006 CN
1861054 Nov 2006 CN
1861055 Nov 2006 CN
1868452 Nov 2006 CN
1868453 Nov 2006 CN
1868454 Nov 2006 CN
1957913 May 2007 CN
101380303 Mar 2009 CN
0115929 Aug 1984 EP
0199524 Oct 1986 EP
0333351 Sep 1989 EP
WO-9956742 Nov 1999 WO
0129235 Apr 2001 WO
WO-0174368 Oct 2001 WO
WO-02085386 Oct 2002 WO
WO-03041645 May 2003 WO
WO-03103596 Dec 2003 WO
WO-2004045593 Jun 2004 WO
WO-2006104668 Oct 2006 WO
WO-2006112777 Oct 2006 WO
WO-2008097658 Aug 2008 WO
WO-2008097661 Aug 2008 WO
WO-2009011861 Jan 2009 WO
WO-2009032034 Mar 2009 WO
WO-2009076170 Jun 2009 WO
WO-2010132596 Nov 2010 WO
WO-2011109752 Sep 2011 WO
Related Publications (1)
Number Date Country
20090197854 A1 Aug 2009 US
Provisional Applications (6)
Number Date Country
60857066 Nov 2006 US
60857725 Nov 2006 US
60877495 Dec 2006 US
60889191 Feb 2007 US
60931589 May 2007 US
60983852 Oct 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11982841 Nov 2007 US
Child 12367394 US