Tung et al., "A quantitative analysis of the effects of excitatory neurotoxins on retinal ganglion cells in the chick," Visual Neurosci., 4:217-223 (1990). |
Sisk et al., "Histological changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate," Graefe's Arch. Clin. Exp. Ophthalmol., 223:250-258 (1985). |
Siliprandi et al., "N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina," Visual Neurosci., 8:567-573 (1992). |
Reif-Lehrer et al., "Effects of monosodium glutamate on chick embryo retina in culture," Invest. Ophthalmol. Vis. Sci., 14(2):114-124 (1975). |
Blank, J.C., "Effects of monosodium glutamate on the isolated retina of the chick embryo as a function of age: A morphological study," Exp. Eye Res., 32:105-124 (1981). |
Olney et al., "The role of specific ions in glutamate neurotoxicity," Neurosci. Lett., 65:65-71 (1986). |
Olney et al., "The anti-excitotoxic effects of certain anesthetics, analgesics and sedative-hypnotics," Neurosci. Lett., 68:29-34 (1986). |
Price et al., "CNQX potently and selectively blocks kainate excitotoxicity in the chick embryo retina," Soc. Neurosci. Abst., 14:418 (1988). |
David et al., "Involvement of excitatory neurotransmitters in the damage produced in chick embryo retinas by anoxia and extracellular high potassium," Exp. Eye Res., 46:657-662 (1988). |
Caprioli et al., "Large retinal ganglion cells are more susceptible to excitotoxic and hypoxic injury than small cells," Invest. Ophthalmol. Vis. Sci., 34(Suppl.): 1429 (1993). |
Cummins et al., "Electrophysiology of cultured retinal ganglion cells to investigate basic mechanics of damage," Glaucoma Update IV, 59-65 (1991). |
Sucher et al., "N-methyl-D-aspartate antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro," J. Neurosci, 11(4):966-971 (1991). |
Massey, S., "Cell types using glutamate as neurotransmitter in the vertebrate retina," N.N. Osborne and G.J. Chader (Eds.) Progress in Retinal Research, Ch. 9, Pergammon Press:Oxford, 339-425 (1990). |
Miller et al., "Excitatory amino acid receptors in the vertebrate retina," Retinal Transmitters and Modulators: Models for the Brain, (W.W. Morgan, Ed.) CRC Press, Inc., Boca Raton, II:123-160 (1985). |
Zeevalk et al., "Action of the anti-ischemic agent ifenprodil on N-methyl-D-aspartate and kainatemediated excitotoxicity," Brain Res., 522:135-139 (1990). |
Ornstein et al., "Antagonists of the NMDA receptor complx," DN&P, 7(1):5-12 (1994). |
Lipton, S.A., "Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide," TINS, 16(12):527-532 (1993). |
Beal, M.F., "Mechanisms of excitotoxicity in neurologic diseases," FASEB J., 6:3338-3344 (1992). |
Choi, D.W., "Excitotoxic cell death," J. Neurobiol., 23:1261-1276 (1992). |
Sattayasai et al., "Morphology of quisqualate-induced neurotoxicity in the chicken retina," Invest. Ophthalmol. Vis. Sci., 28:106-117 (1987). |
Quest Med., 33(2-3):75-85 (1980). |