Use of polytetrahydrofuranes in lubricating oil compositions

Information

  • Patent Grant
  • 9938484
  • Patent Number
    9,938,484
  • Date Filed
    Wednesday, May 7, 2014
    10 years ago
  • Date Issued
    Tuesday, April 10, 2018
    6 years ago
Abstract
Lubricating oil compositions comprise one or more polytetrahydrofuranes that are prepared by alkoxylating polytetrahydrofurane with at least one C8-C30 epoxy alkane.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage entry of PCT/EP2014/059276, filed on May 7, 2014, which claims priority to European Application Number 13168334.4, filed on May 17, 2013, which is incorporated herein by reference in their entireties.


TECHNICAL FIELD

The presently claimed invention is directed to the use of polytetrahydrofuranes that are prepared by alkoxylating polytetrahydrofurane with at least one C8-C3 epoxy alkane in lubricating oil compositions.


BACKGROUND

Lubricating oil compositions are used in a variety of applications, such as industrial applications, transportation and engines. Industrial applications comprise of applications such as hydraulic oil, air compressor oil, gas compressor oil, gear oil, bearing and circulating system oil, refrigerator compressor oil and steam and gas turbine oils.


Conventional lubricating oil compositions comprise base stocks, co-solvents and additives. The base stock is in each case selected according to the viscosity that is desired in the envisioned application. Combinations of base stocks of different viscosities, i.e. low and high viscosity respectively, are often used to adjust the needed final viscosity. The co-solvents are used to dissolve polar additives in usually less polar or unpolar base stocks.


The most common additives are antioxidants, detergents, anti-wear additives, metal deactivator, corrosion inhibitors, friction modifiers, extreme-pressure additives, defoamers, anti-foaming agents, viscosity index improvers and demulsifying agents. These additives are used to impart further advantageous properties to the lubricating oil composition including longer stability and additional protection.


However, after a certain operation time, lubricating oil compositions have to be replaced for various reasons such as lubricity loss and/or product degradation. Depending on the machine (engine, gearbox, compressor . . . ) engineering design and the affinity of the lubricant components to adhere to the surface, a certain residue of the lubricating oil composition (hold-up) remains in the machine, engine, gear etc. It is used in. When being replaced by an unused and possibly different lubricating oil composition, the used and new lubricants are mixed with each other. Thus, in order to avoid any complications during operation, compatibility between the old and new lubricant is very important.


Depending on their chemical properties a variety of components of lubricating oil compositions are incompatible with each other, i.e. the mixture of these components leads to oil gelling, phase separation, solidifying or foaming. The oil gelling leads to a dramatic increase of the viscosity which in turn can cause engine problems and can even require the engine to be replaced, if the damage is severe. Hence, when providing novel compounds that are used in lubricating oil compositions it should always be ensured that these compounds are compatible with compounds that are conventionally used in lubricating oil compositions.


Besides compatibility with other lubricants, another area of concern is the energy efficiency. The efficiency can be increased if losses are minimized. The losses can be categorized in losses without and with load, their sum being the total losses. Within many parameters which can be influenced by geometry, material etc. lubricant viscosity has a major effect on losses without load, i.e. spilling: Losses with load can be influenced by a low friction coefficient. Thus, at a given viscosity, energy efficiency strongly depends on the friction coefficient measured for a lubricant.


The friction coefficient can be measured with several methods like Mini-Traction-Machine (MTM), SRV, 2 disc test rig etc. The benefit of a MTM is that one can see the coefficient of friction as an influence of the slide roll ratio. Slide roll ratio describes the difference of the speeds of ball and disc used in the MTM.


DE 32 10 283 A1 describes polyethers that are obtained by reacting C8-C28-epoxy alkane and tetrahydrofuran in the presence of a starter compound having Zerewitinoff-active hydrogen atoms. These compounds show lubricating properties.


EP 1 076 072 A1 discloses polyethers derived from polytetrahydrofuran and mixtures of 1,2-epoxybutane and 1,2-epoxydodecane. These compounds are formulated into gasoline fuels to reduce the deposits in an injector.


SUMMARY

Thus, it was an objective of the presently claimed invention to provide compounds that show a low friction coefficient and that are compatible with base stocks, in particular base stocks such as mineral oils and polyalphaoleflns, which are conventionally used in lubricating oil compositions for the preparation of lubricating oil compositions.


Surprisingly, it has been found that alkoxylated polytetrahydrofuranes which are derived from polytetrahydrofurane and at least one C8-C30 epoxy alkane show a low friction coefficient and are compatible with base stocks that are conventionally used in lubricating oil compositions such as mineral oils and polyalphaolefins, preferably low viscosity polyalphaolefins, and consequently can be used for the formulation of lubricating oil compositions.


DETAILED DESCRIPTION

Hence, in one embodiment, the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (I)




embedded image


  • wherein

  • m is an integer in the range of ≥0 to ≤30,

  • m′ is an integer in the range of ≥0 to ≤30,

  • (m+m′) is an integer in the range of ≥1 to ≤60,

  • k is an integer in the range of ≥2 to ≤30,

  • and

  • R1 denotes an unsubstituted, linear or branched, alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 carbon atoms,

  • whereby the concatenations denoted by k, m and m′ are distributed to form a block polymeric structure,

  • as lubricant.



Hence, in another embodiment, the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤50,

  • m′ is an integer in the range of ≥1 to ≤50,

  • (m+m′) is an integer in the range of ≥1 to ≤90,

  • n is an integer in the range of ≥0 to ≤75,

  • n′ is an integer in the range of ≥0 to ≤75,

  • p is an integer in the range of ≥0 to ≤75,

  • p′ is an integer in the range of ≥0 to ≤75,

  • R1 denotes an unsubstituted, linear or branched, alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 identical or different, denotes a hydrogen atom or —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure,

  • as lubricant.



Hence, in another embodiment, the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤30,

  • m′ is an integer in the range of ≥1 to ≤30,

  • (m+m′) is an integer in the range of ≥2 to ≤60,

  • n is an integer in the range of ≥0 to ≤45,

  • n′ is an integer in the range of ≥0 to ≤45,

  • (n+n′) is an integer in the range of ≥0 to ≤80,

  • p is an integer in the range of ≥0 to ≤25,

  • p′ is an integer in the range of ≥0 to ≤25,

  • (p+p′) is an integer in the range of ≥0 to ≤30,

  • k is an integer in the range of ≥2 to ≤30,

  • R1 denotes an unsubstituted, linear or branched, alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 identical or different, denotes a hydrogen atom or —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure,

  • as lubricant.



Hence, in another embodiment, the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤50,

  • m′ is an integer in the range of ≥1 to ≤50,

  • (m+m′) is an integer in the range of ≥1 to ≤90,

  • n is an integer in the range of ≥0 to ≤75,

  • n′ is an integer in the range of ≥0 to ≤75,

  • p is an integer in the range of ≥0 to ≤75,

  • p′ is an integer in the range of ≥0 to ≤75,

  • R1 denotes an unsubstituted, linear or branched, alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 or 28 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 identical or different, denotes a hydrogen atom or —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure,

  • for reducing friction between moving surfaces, whereby friction is determined by measuring the friction coefficient at 25% slide roll ratio (SRR) using mini-traction machine (MTM) measurements at 70° C. and 1 GPa.



By the term of “lubricant”, in the sense of the presently claimed invention, is meant a substance capable of reducing friction between surfaces.


By the term of “lubricant”, in the sense of the presently claimed invention, is meant a substance which is primarily capable of reducing friction between surfaces.


As used herein, “branched” denotes a chain of atoms with one or more side chains attached to it. Branching occurs by the replacement of a substituent, e.g., a hydrogen atom, with a covalently bonded alkyl radical.


“Alkyl radical” denotes a moiety constituted solely of atoms of carbon and of hydrogen.


Alkoxylated polytetrahydrofuranes are inter alia described in U.S. Pat. No. 6,423,107 B1. However, this patent is entirely silent about using alkoxylated polytetrahydrofuranes as lubricants.


The inventively claimed alkoxylated polytetrahydrofuranes are oil soluble, which means that, when mixed with mineral oils and/or polyalphaolefins, preferably low viscosity polyalphaolefins, in a weight ratio of 10:90, 50:50 and 90:10, the inventively claimed alkoxylated polytetrahydrofuranes do not show phase separation after standing for 24 hours at room temperature for at least two weight rations out of the three weight ratios 10:90, 50:50 and 90:10. Preferably the alkoxylated polytetrahydrofurane has a kinematic viscosity in the range of ≥200 mm2/s to ≤700 mm2/s, more preferably in the range of ≥250 mm2/s to ≤650 mm2/s, at 40° C., determined according to ASTM D 445.


Preferably the alkoxylated polytetrahydrofurane has a kinematic viscosity in the range of ≥25 mm2/s to ≤90 mm2/s, more preferably in the range of ≥30 mm2/s to ≤80 mm2/s, at 100° C., determined according to ASTM D 445.


Preferably the alkoxylated polytetrahydrofurane has a pour point in the range of ≥−60° C. to ≤20° C., more preferably in the range of ≥−50° C. to ≤15° C., determined according to DIN ISO 3016.


Preferably the alkoxylated polytetrahydrofurane has a weight average molecular weight Mw in the range of 500 to 20000 g/mol, more preferably in the range of 2000 to 10000 g/mol, most preferably in the range of 2000 to 7000 g/mol, even more preferably in the range of 4000 to 7000 g/mol determined, determined according to DIN 55672-1.


Preferably the alkoxylated polytetrahydrofurane has a polydispersity in the range of 1.05 to 1.60, more preferably in the range of 1.05 to 1.50, most preferably in the range of 1.05 to 1.45, determined according to DIN 55672-1.


Preferably k is an integer in the range of ≥3 to ≤25, more preferably k is an integer in the range of ≥3 to ≤20, most preferably in the range of ≥5 to ≤20, even more preferably in the range of ≥6 to ≤16.


Preferably m is an integer in the range of ≥1 to ≤25 and m′ is an integer in the range of ≥1 to ≤25, more preferably m is an integer in the range of ≥1 to ≤20 and m′ is an integer in the range of ≥1 to ≤20.


Preferably (m+m′) is an integer in the range of ≥3 to ≤65, more preferably (m+m′) is an integer in the range of ≥3 to ≤50, even more preferably (m+m′) is an integer in the range of ≥3 to ≤40.


Preferably the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1, more preferably in the range of 0.3:1 to 5:1, most preferably in the range of 0.3:1 to 4:1, even more preferably in the range of 0.3:1 to 3:1.


Preferably n is an integer in the range of ≥6 to ≤40 and n′ is an integer in the range of ≥6 to ≤40, more preferably n is an integer in the range of ≥8 to ≤35 and p′ is an integer in the range of ≥8 to ≤35.


Preferably (n+n′) is an integer in the range of ≥10 to ≤80, more preferably (n+n′) is an integer in the range of ≥15 to ≤70.


Preferably p is an integer in the range of ≥5 to ≤25 and p′ is an integer in the range of ≥5 to ≤25, more preferably p is an integer in the range of ≥5 to ≤15 and p′ is an integer in the range of ≤5 to ≤15.


Preferably (p+p′) is an integer in the range of ≥10 to ≤30, more preferably (p+p′) is an integer in the range of ≥15 to ≤30.


Preferably R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 carbon atoms. More preferably R1 denotes an unsubstituted, linear alkyl radical having 8, 9, 10, 11, 12, 13, 14, 15 or 16 carbon atoms. Most preferably R1 denotes an unsubstituted, linear alkyl radical having 8, 9, 10, 11 or 12 carbon atoms.


In case the alkoxylated polytetrahydrofurane comprises units, wherein R2 denotes —CH2—CH3, the ratio of (n+n′) to k is in the range of 1.5:1 to 10:1, more preferably in the range of 1.5:1 to 6:1, most preferably in the range of 2:1 to 5:1.


In case the alkoxylated polytetrahydrofurane comprises units, wherein R3 denotes —CH3, the ratio of (p+p′) to k is in the range of 1.2:1 to 10:1, more preferably in the range of 1.2:1 to 6:1.


In another preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤30,

  • m′ is an integer in the range of ≥1 to ≤30,

  • (m+m′) is an integer in the range of ≥3 to ≤50,

  • n is an integer in the range of ≥3 to ≤45,

  • n′ is an integer in the range of ≥3 to ≤45,

  • (n+n′) is an integer in the range of ≥6 to ≤90,

  • p is an integer in the range of ≥0 to ≤75,

  • p′ is an integer in the range of ≥0 to ≤75,

  • k is an integer in the range of ≥3 to ≤25,

  • (p+p′) is an integer in the range of ≥0 to ≤30,

  • k is an integer in the range of ≥3 to ≤25,

  • R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure, as a lubricant.



In a more preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤30,

  • m′ is an integer in the range of ≥1 to ≤30,

  • (m+m′) is an integer in the range of ≥3 to ≤50,

  • n is an integer in the range of ≥3 to ≤45,

  • n′ is an integer in the range of ≥3 to ≤45,

  • (n+n′) is an integer in the range of ≥6 to ≤90,

  • p is an integer in the range of 0 to ≤75,

  • p′ is an integer in the range of ≥0 to ≤75,

  • k is an integer in the range of ≥3 to ≤25,

  • (p+p′) is an integer in the range of ≥0 to ≤30,

  • k is an integer in the range of ≥3 to ≤25,

  • R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1 and the ratio of (n+n′) to k is in the range of 1.5:1 to 10:1, as a lubricant.



In a most preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤25,

  • m′ is an integer in the range of ≥1 to ≤25,

  • (m+m′) is an integer in the range of ≥3 to ≤40,

  • n is an integer in the range of ≥6 to ≤40,

  • n′ is an integer in the range of ≥6 to ≤40,

  • (n+n′) is an integer in the range of ≥12 to ≤70,

  • p is an integer in the range of ≥0 to ≤25,

  • p′ is an integer in the range of ≥0 to ≤25,

  • (p+p′) is an integer in the range of ≥0 to ≤30,

  • k is an integer in the range of ≥5 to ≤20,

  • R1 denotes an unsubstituted, linear alkyl radical having 8, 9, 10, 11 or 12 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure,

  • wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 4:1 and the ratio of (n+n′) to k is in the range of 1.5:1 to 5:1, as a lubricant.



In another preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤25,

  • m′ is an integer in the range of ≥1 to ≤25,

  • (m+m′) is an integer in the range of ≥3 to ≤50,

  • n is an integer in the range of ≥0 to ≤45,

  • n′ is an integer in the range of ≥0 to ≤45,

  • (n+n′) is an integer in the range of ≥0 to ≤80,

  • p is an integer in the range of ≥3 to ≤45,

  • p′ is an integer in the range of ≥3 to ≤45,

  • (p+p′) is an integer in the range of ≥6 to ≤90,

  • k is an integer in the range of ≥3 to ≤25,

  • R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure, as a lubricant.



In a more preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤30,

  • m′ is an integer in the range of ≥1 to ≤30,

  • (m+m′) is an integer in the range of ≥3 to ≤50,

  • n is an integer in the range of ≥0 to ≤45,

  • n′ is an integer in the range of ≥0 to ≤45,

  • (n+n′) is an integer in the range of ≥0 to ≤80,

  • p is an integer in the range of ≥3 to 45,

  • p′ is an integer in the range of ≥3 to ≤45,

  • (p+p′) is an integer in the range of ≥6 to ≤90,

  • k is an integer in the range of ≥3 to ≤25,

  • R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1 and the ratio of (p+p′) to k is in the range of 1.5:1 to 10:1, as a lubricant.



In a most preferred embodiment the presently claimed invention is directed to the use of an alkoxylated polytetrahydrofurane of general formula (II)




embedded image


  • wherein

  • m is an integer in the range of ≥1 to ≤25,

  • m′ is an integer in the range of ≥1 to ≤25,

  • (m+m′) is an integer in the range of ≥3 to ≤50,

  • n is an integer in the range of ≥0 to ≤45,

  • n′ is an integer in the range of ≥0 to ≤45,

  • (n+n′) is an integer in the range of ≥0 to ≤80,

  • p is an integer in the range of ≥5 to ≤20,

  • p′ is an integer in the range of ≥5 to ≤20,

  • (p+p′) is an integer in the range of ≥10 to ≤30,

  • k is an integer in the range of ≥5 to ≤20,

  • R1 denotes an unsubstituted, linear alkyl radical having 8, 9, 10, 11 or 12 carbon atoms,

  • R2 denotes —CH2—CH3,

  • and

  • R3 denotes —CH3,

  • whereby the concatenations denoted by k are distributed to form a block polymeric structure and the concatenations denoted by p, p′, n, n′, m and m′ are distributed to form a block polymeric structure or a random polymeric structure, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 4:1 and the ratio of (p+p′) to k is in the range of 1.5:1 to 5:1, as a lubricant.



The alkoxylated polytetrahydrofuranes are obtained by reacting at least one polytetrahydrofurane block polymer with at least one C8-C3 epoxy alkane and optionally at least one epoxide selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide in the presence of at least one catalyst. In case at least one epoxide selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide is used, the at least one C8-C30 epoxy alkane and the at least one epoxide selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide can either be added as a mixture of epoxides to obtain a random copolymer or in portions, whereby each portion contains a different epoxide, to obtain a block copolymer.


Preferably the at least one C8-C30 epoxy alkane is selected from the group consisting of 1,2-epoxyoctane; 1,2-epoxynonane; 1,2-epoxydecane; 1,2-epoxyundecane; 1,2-epoxydodecane; 1,2-epoxytridecane; 1,2-epoxytetradecane; 1,2-epoxypentadecane; 1,2-epoxyhexadecane; 1,2-epoxyheptadecane; 1,2-epoxyoctadecane; 1,2-epoxynonadecane; 1,2-epoxylcosane; 1,2-epoxyunicosane; 1,2-epoxydocosane; 1,2-epoxytricosane; 1,2-epoxytetracosane; 1,2-epoxypentacosane; 1,2-epoxyhexacosane; 1,2-epoxyheptacosane; 1,2-epoxyoctacosane; 1,2-epoxynonacosane and 1,2-epoxytriacontane.


Preferably the at least one catalyst is a base or a double metal cyanide catalyst (DMC catalyst). More preferably the at least one catalyst is selected from the group consisting of alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide and barium hydroxide, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and caesium hydroxide and alkali metal alkoxylates such as potassium tert-butoxylate. Most preferably the at least one catalyst is sodium hydroxide or potassium tert-butoxylate. Most preferably the at least one catalyst is potassium tert-butoxylate.


In case the catalyst is a base, any inert solvents capable of dissolving alkoxylated polytetrahydrofurane and polytetrahydrofurane may be used as solvents during the reaction or as solvents required for working up the reaction mixture in cases where the reaction is carried out without solvents. The following solvents are mentioned as examples: methylene chloride, trichloroethylene, tetrahydrofuran, dioxane, methyl ethyl ketone, methylisobutyl ketone, ethyl acetate and isobutyl acetate.


In case the catalyst is a base, the amount of catalysts used is preferably in the range from 0.01 to 1.0, more preferably in the range from 0.05 to 0.5, % by weight, based on the total amount of the alkoxylated polytetrahydrofurane. The reaction is preferably carried out at a temperature in the range of 70 to 200° C., more preferably from 100 to 160° C. The pressure is preferably in the range from 1 bar to 150 bar, more preferably in the range from 3 to 30 bar.


In case a DMC catalyst is used, it is in principle possible to use all types of DMC catalysts known from the prior art. Preference is given to using double metal cyanide catalysts of the general formula (1):

M1a[M2(CN)b(A)c]d.fM1gXn.h(H2O).eL,  (1)

wherein


M1 is a metal ion selected from the group comprising Zn2+, Fe2+, Co3+, Ni2+, Mn2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, Al3+, V4+, V5+, Sr2+, W6+, Cr2+, Cr3+ and Cd2+,


M2 is a metal ion selected from the group comprising Fe2+, Fe3+, Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, C3+, Rh3+, Ru2+ and Ir3+,


M1 and M2 are identical or different,


A is an anion selected from the group comprising halide, hydroxide, sulfate, carbonate, cyanide, thiocyanate, isocyanate, cyanate, carboxylate, oxalate and nitrate,


X is an anion selected from the group comprising halide, hydroxide, sulfate, carbonate, cyanide, thiocyanate, Isocyanate, cyanate, carboxylate, oxalate and nitrate,


L is a water-miscible ligand selected from the group comprising alcohols, aldehydes, ketones, ethers, poly-ethers, esters, ureas, amides, nitriles and sulfides,


and


a, b, c, d, g and n are selected so that the compound is electrically neutral


and


e is the coordination number of the ligand or zero,


f is a fraction or integer greater than or equal to zero,


h is a fraction or integer greater than or equal to zero.


Such compounds are generally known and can be prepared, for example, by the process described in EP 0 862 947 B1 by combining the aqueous solution of a water-soluble metal salt with the aqueous solution of a hexacyanometallate compound, in particular of a salt or an acid, and, if necessary, adding a water-soluble ligand thereto either during or after the combination of the two solutions.


DMC catalysts are usually prepared as a solid and used as such. The catalyst is typically used as powder or in suspension. However, other ways known to those skilled in the art for using catalysts can likewise be employed. In a preferred embodiment, the DMC catalyst is dispersed with an Inert or non-inert suspension medium which can be, for example, the product to be produced or an intermediate by suitable measures, e.g. milling. The suspension produced in this way is used, if appropriate after removal of interfering amounts of water by methods known to those skilled in the art, e.g. stripping with or without use of inert gases such as nitrogen and/or noble gases. Suitable suspension media are, for example, toluene, xylene, tetrahydrofuran, acetone, 2-methylpentanone, cyclohexanone and also polyether alcohols according to the invention and mixtures thereof. The catalyst is preferably used in a suspension in a polyol as described, for example, in EP 0 090 444 A.


In another embodiment, the presently claimed invention is directed to the use of at least one alkoxylated polytetrahydrofurane as defined above or a mixture of polytetrahydrofuranes as defined above for the preparation of a lubricating oil composition.


In another embodiment, the presently claimed invention is directed to a lubricating oil composition comprising at least one alkoxylated polytetrahydrofurane as defined above or a mixture of alkoxylated polytetrahydrofurane as defined above. Preferably the lubricating oil composition comprises ≥1% to ≤10% by weight or ≥1% to ≤40% by weight or ≥20% to ≤100% by weight,


more preferably ≥1% to ≤5% by weight or ≥1% to ≤35% by weight or ≥25% to ≤100% by weight,


most preferably ≥1% to ≤2% by weight or ≥2% to ≤30% by weight or ≥30% to ≤100% by weight,


of at least one alkoxylated polytetrahydrofurane as defined above, related to the total amount of the lubricating oil composition.


Preferably, the lubricating oil composition according to the presently claimed invention has a friction coefficient in the range of 0.003 to 0.030 at 25% slide roll ratio (SRR) determined using mini-traction machine (MTM) measurements at 70° C. and 1 GPa.


In another embodiment, the presently claimed invention relates to an industrial oil comprising at least one alkoxylated polytetrahydrofurane.


Lubricating oil compositions comprising at least one alkoxylated polytetrahydrofurane as defined above or a mixture of polytetrahydrofuranes as defined above can be used for various applications such as light, medium and heavy duty engine oils, industrial engine oils, marine engine oils, automotive engine oils, crankshaft oils, compressor oils, refrigerator oils, hydrocarbon compressor oils, very low-temperature lubricating oils and fats, high temperature lubricating oils and fats, wire rope lubricants, textile machine oils, refrigerator oils, aviation and aerospace lubricants, aviation turbine oils, transmission oils, gas turbine oils, spindle oils, spin oils, traction fluids, transmission oils, plastic transmission oils, passenger car transmission oils, truck transmission oils, industrial transmission oils, industrial gear oils, insulating oils, instrument oils, brake fluids, transmission liquids, shock absorber oils, heat distribution medium oils, transformer oils, fats, chain oils, minimum quantity lubricants for metalworking operations, oil to the warm and cold working, oil for water-based metalworking liquids, oil for neat oil metalworking fluids, oil for semi-synthetic metalworking fluids, oil for synthetic metalworking fluids, drilling detergents for the soil exploration, hydraulic oils, in biodegradable lubricants or lubricating greases or waxes, chain saw oils, release agents, moulding fluids, gun, pistol and rifle lubricants or watch lubricants and food grade approved lubricants.


A lubricating oil composition can comprise of base stocks, co-solvents and a variety of different additives in varying ratios.


Preferably the lubricating oil composition further comprises base stocks selected from the group consisting of mineral oils (Group I, II or III oils), polyalphaolefins (Group IV oils), polymerized and interpolymerized olefins, alkyl naphthalenes, alkylene oxide polymers, silicone oils, phosphate esters and carboxylic acid esters (Group V oils). Preferably the lubricating oil comprises ≥50% to ≤99% by weight or ≥80% to ≤99% by weight or ≥90% to ≤99% by weight base stocks, related to the total amount of the lubricating oil composition.


Definitions for the base stocks in this invention are the same as those found in the American Petroleum Institute (API) publication “Engine Oil Licensing and Certification System”, Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Said publication categorizes base stocks as follows:


a) Group I base stocks contain less than 90 percent saturates and/or greater than 0.03 percent sulphur and have a viscosity Index greater than or equal to 80 and less than 120 using the test methods specified in the following table


b) Group II base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulphur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in the following table


c) Group III base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulphur and have a viscosity index greater than or equal to 120 using the test methods specified in the following table


Analytical Methods for Base Stock
















Property
Test Method









Saturates
ASTM D 2007



Viscosity Index
ASTM D 2270



Sulphur
ASTM D 2622




ASTM D 4294




ASTM D 4927




ASTM D 3120










Group IV base stocks contain polyalphaoleflns. Synthetic lower viscosity fluids suitable for the present invention include the polyalphaolefins (PAOs) and the synthetic oils from the hydrocracking or hydroisomerization of Fischer Tropsch high boiling fractions Including waxes. These are both stocks comprised of saturates with low impurity levels consistent with their synthetic origin. The hydroisomerized Fischer Tropsch waxes are highly suitable base stocks, comprising saturated components of iso-paraffinic character (resulting from the isomerization of the predominantly n-paraffins of the Fischer Tropsch waxes) which give a good blend of high viscosity Index and low pour point. Processes for the hydrosomerization of Fischer Tropsch waxes are described in U.S. Pat. Nos. 5,362,378; 5,565,086; 5,246,566 and 5,135,638, as well in EP 710710, EP 321302 and EP 321304.


Polyalphaolefins suitable for the present invention, as either lower viscosity or high viscosity fluids depending on their specific properties, include known PAO materials which typically comprise relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include but are not limited to C2 to about C32 alphaolefins with the C8 to about C16 alphaolefins, such as 1-octene, 1-decene, 1-dodecene and the like being preferred. The preferred polyalphaolefins are poly-1-octene, poly-1-decene, and poly-1-dodecene, although the dimers of higher olefins in the range of C14 to C18 provide low viscosity base stocks.


Low viscosity PAO fluids suitable for the present invention, may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts Including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate. For example, the methods disclosed by U.S. Pat. Nos. 4,149,178 or 3,382,291 may be conveniently used herein. Other descriptions of PAO synthesis are found in the following U.S. Pat. No. 3,742,082 (Brennan); U.S. Pat. No. 3,769,363 (Brennan); U.S. Pat. No. 3,876,720 (Heilman); U.S. Pat. No. 4,239,930 (Allphin); U.S. Pat. No. 4,367,352 (Watts); U.S. Pat. No. 4,413,156 (Watts); U.S. Pat. No. 4,434,408 (Larkin); U.S. Pat. No. 4,910,355 (Shubkin); U.S. Pat. No. 4,956,122 (Watts); and U.S. Pat. No. 5,068,487 (Theriot).


Group V base stocks contain any base stocks not described by Groups I to IV. Examples of Group V base stocks include alkyl naphthalenes, alkylene oxide polymers, silicone oils, phosphate esters and carboxylic acid esters.


Synthetic lubricating oils Include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulphides and derivative, analogs and homologs thereof.


Further carboxylic acid esters suitable for the present invention include the esters of mono and polybasic acids with monoalkanols (simple esters) or with mixtures of mono and polyalkanols (complex esters), and the polyol esters of monocarboxylic acids (simple esters), or mixtures of mono and polycarboxylic acids (complex esters). Esters of the mono/polybasic type include, for example, the esters of monocarboxylic acids such as heptanoic acid, and dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, or mixtures thereof with polyalkanols, etc. Specific examples of these types of esters include nonyl heptanoate, dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, dibutyl-TMP-adipate, etc.


Also suitable for the present invention are esters, such as those obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols such as the neopentyl polyols, e.g. neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl-1,3-propanediol, trimethylol propane, trimethylol butane, pentaerythritol and dipentaerythritol with monocarboxylic acids containing at least 4 carbons, normally the C5 to C30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures thereof, with polycarboxylic acids.


Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters and C13 Oxo acid diester of tetraethylene glycol.


Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, oly(methyl)siloxanes and poly(methylphenyl)siloxanes. Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.


The lubricating oil composition of the invention optionally further includes at least one other performance additive. The other performance additives include dispersants, metal deactivators, detergents, viscosity modifiers, extreme pressure agents (typically boron- and/or sulphur- and/or phosphorus-containing), antiwear agents, antioxidants (such as hindered phenols, aminic antioxidants or molybdenum compounds), corrosion inhibitors, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents, friction modifiers and mixtures thereof.


The total combined amount of the other performance additives (excluding the viscosity modifiers) present on an oil free basis may Include ranges of 0% by weight to 25% by weight, or 0.01% by weight to 20% by weight, or 0.1% by weight to 15% by weight or 0.5% by weight to 10% by weight, or 1 to 5% by weight of the composition.


Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.


In one embodiment the lubricating composition further includes one or more viscosity modifiers.


When present the viscosity modifier may be present in an amount of 0.5% by weight to 70% by weight, 1% by weight to 60% by weight, or 5% by weight to 50% by weight, or 10% by weight to 50% by weight of the lubricating composition.


Viscosity modifiers include (a) polymethacrylates, (b) esterified copolymers of (II) a vinyl aromatic monomer and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) esterified interpolymers of (II) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) hydrogenated copolymers of styrene-butadiene, (e) ethylene-propylene copolymers, (f) polyisobutenes, (g) hydrogenated styrene-isoprene polymers, (h) hydrogenated isoprene polymers, or (II) mixtures thereof.


In one embodiment the viscosity modifier includes (a) a polymethacrylate, (b) an esterified copolymer of (II) a vinyl aromatic monomer, and (i) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) an esterified interpolymer of (II) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) mixtures thereof.


Extreme pressure agents include compounds containing boron and/or sulphur and/or phosphorus.


The extreme pressure agent may be present in the lubricating composition at 0% by weight to 20% by weight, or 0.05% by weight to 10% by weight, or 0.1% by weight to 8% by weight of the lubricating composition.


In one embodiment the extreme pressure agent is a sulphur-containing compound. In one embodiment the sulphur-containing compound may be a sulphurised olefin, a polysulphide, or mixtures thereof. Examples of the sulphurised olefin include a sulphurised olefin derived from propylene, isobutylene, pentene; an organic sulphide and/or polysulphide including benzyldisulphide; bis-(chlorobenzyl) disulphide; dibutyl tetrasulphide; di-tertiary butyl polysulphide; and sulphurised methyl ester of oleic acid, a sulphurised alkylphenol, a sulphurised dipentene, a sulphurised terpene, a sulphurised Diels-Alder adduct, an alkyl sulphenyl N′N-dialkyl dithiocarbamates; or mixtures thereof.


In one embodiment the sulphurised olefin includes a sulphurised olefin derived from propylene, isobutylene, pentene or mixtures thereof.


In one embodiment the extreme pressure agent sulphur-containing compound includes a dimercaptothiadiazole or derivative, or mixtures thereof. Examples of the dimercaptothiadiazole include compounds such as 2,5-dimercapto-1,3,4-thiadiazole or a hydrocarbyl-substituted 2,5-dimercapto-1,3,4-thiadiazole, or oligomers thereof. The oligomers of hydrocarbyl-substituted 2,5-dimercapto-1,3,4-thiadiazole typically form by forming a sulphur-sulphur bond between 2,5-dimercapto-1,3,4-thiadiazole units to form derivatives or oligomers of two or more of said thiadiazole units. Suitable 2,5-dimercapto-1,3,4-thiadiazole derived compounds include for example 2,5-bis(tert-nonyldithio)-1,3,4-thiadiazole or 2-tert-nonyldithio-5-mercapto-1,3,4-thiadiazole. The number of carbon atoms on the hydrocarbyl substituents of the hydrocarbyl-substituted 2,5-dimercapto-1,3,4-thiadiazole typically Include 1 to 30, or 2 to 20, or 3 to 16.


In one embodiment the dimercaptothiadiazole may be a thiadiazole-functionalised dispersant. A detailed description of the thiadiazole-functionalised dispersant is described is paragraphs [0028] to [0052] of International Publication WO 2008/014315.


The thiadiazole-functionalised dispersant may be prepared by a method including heating, reacting or complexing a thiadiazole compound with a dispersant substrate. The thiadiazole compound may be covalently bonded, salted, complexed or otherwise solubilised with a dispersant, or mixtures thereof.


The relative amounts of the dispersant substrate and the thiadiazole used to prepare the thiadiazole-functionalised dispersant may vary. In one embodiment the thiadiazole compound is present at 0.1 to 10 parts by weight relative to 100 parts by weight of the dispersant substrate. In different embodiments the thiadiazole compound is present at greater than 0.1 to 9, or greater than 0.1 to less than 5, or 0.2 to less than 5: to 100 parts by weight of the dispersant substrate. The relative amounts of the thiadiazole compound to the dispersant substrate may also be expressed as (0.1-10):100, or (>0.1-9):100, (such as (>0.5-9):100), or (0.1 to less than 5): 100, or (0.2 to less than 5): 100.


In one embodiment the dispersant substrate is present at 0.1 to 10 parts by weight relative to 1 part by weight of the thiadiazole compound. In different embodiments the dispersant substrate is present at greater than 0.1 to 9, or greater than 0.1 to less than 5, or about 0.2 to less than 5: to 1 part by weight of the thiadiazole compound. The relative amounts of the dispersant substrate to the thiadiazole compound may also be expressed as (0.1-10):1, or (>0.1-9):1, (such as (>0.5-9):1), or (0.1 to less than 5): 1, or (0.2 to less than 5): 1.


The thiadiazole-functionalised dispersant may be derived from a substrate that includes a succinimide dispersant (for example, N-substituted long chain alkenyl succinimides, typically a polyisobutylene succinimide), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant, a polyetheramine dispersant, a viscosity modifier containing dispersant functionality (for example polymeric viscosity index modifiers (VMs) containing dispersant functionality), or mixtures thereof. In one embodiment the dispersant substrate includes a succinimide dispersant, an ester-containing dispersant or a Mannich dispersant.


In one embodiment the extreme pressure agent includes a boron-containing compound. The boron-containing compound includes a borate ester (which in some embodiments may also be referred to as a borated epoxide), a borated alcohol, a borated dispersant, a borated phospholipid or mixtures thereof. In one embodiment the boron-containing compound may be a borate ester or a borated alcohol.


The borate ester may be prepared by the reaction of a boron compound and at least one compound selected from epoxy compounds, halohydrin compounds, epihalohydrin compounds, alcohols and mixtures thereof. The alcohols include dihydric alcohols, trihydric alcohols or higher alcohols, with the proviso for one embodiment that hydroxyl groups are on adjacent carbon atoms, i.e., vicinal.


Boron compounds suitable for preparing the borate ester include the various forms selected from the group consisting of boric acid (including metaboric acid, orthoboric acid and tetraboric acid), boric oxide, boron trioxide and alkyl borates. The borate ester may also be prepared from boron halides.


In one embodiment suitable borate ester compounds include tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, triheptyl borate, trioctyl borate, trinonyl borate and tridecyl borate. In one embodiment the borate ester compounds include tributyl borate, tri-2-ethylhexyl borate or mixtures thereof.


In one embodiment, the boron-containing compound is a borated dispersant, typically derived from an N-substituted long chain alkenyl succinimide. In one embodiment the borated dispersant includes a polyisobutylene succinimide. Borated dispersants are described in more detail in U.S. Pat. No. 3,087,936; and U.S. Pat. No. 3,254,025.


In one embodiment the borated dispersant may be used m combination with a sulphur-containing compound or a borate ester.


In one embodiment the extreme pressure agent is other than a borated dispersant.


The number average molecular weight of the hydrocarbon from which the long chain alkenyl group was derived includes ranges of 350 to 5000, or 500 to 3000, or 550 to 1500. The long chain alkenyl group may have a number average molecular weight of 550, or 750, or 950 to 1000.


The N-substituted long chain alkenyl succinimides are borated using a variety of agents Including boric acid (for example, metaboric acid, orthoboric acid and tetraboric acid), boric oxide, boron trioxide, and alkyl borates. In one embodiment the borating agent is boric acid which may be used alone or in combination with other borating agents.


The borated dispersant may be prepared by blending the boron compound and the N-substituted long chain alkenyl succinimides and heating them at a suitable temperature, such as, 80° C. to 250° C., or 90° C. to 230° C., or 100° C. to 210° C., until the desired reaction has occurred. The molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may have ranges including 10:1 to 1:4, or 4:1 to 1:3; or the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may be 1:2. Alternatively, the ratio of moles B:moles N (that is, atoms of B:atoms of N) in the borated dispersant may be 0.25:1 to 10:1 or 0.33:1 to 4:1 or 0.2:1 to 1.5:1, or 0.25:1 to 1.3:1 or 0.8:1 to 1.2:1 or about 0.5:1 An inert liquid may be used in performing the reaction. The liquid may include toluene, xylene, chlorobenzene, dimethylformamide or mixtures thereof.


In one embodiment the lubricating composition further includes a borated phospholipid. The borated phospholipid may be derived from boronation of a phospholipid (for example boronation may be carried out with boric acid). Phospholipids and lecithins are described in detail in Encyclopedia of Chemical Technology, Kirk and Othmer, 3rd Edition, in “Fats and Fatty Oils”, Volume 9, pages 795-831 and in “Lecithins”, Volume 14, pages 250-269.


The phospholipid may be any lipid containing a phosphoric acid, such as lecithin or cephalin, or derivatives thereof. Examples of phospholipids include phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, phosphotidic acid and mixtures thereof. The phospholipids may be glycerophospholipids, glycerol derivatives of the above list of phospholipids. Typically, the glycerophospholipids have one or two acyl, alkyl or alkenyl groups on a glycerol residue. The alkyl or alkenyl groups may contain 8 to 30, or 8 to 25, or 12 to 24 carbon atoms. Examples of suitable alkyl or alkenyl groups include octyl, dodecyl, hexadecyl, octadecyl, docosanyl, octenyl, dodecenyl, hexadecenyl and octadecenyl.


Phospholipids may be prepared synthetically or derived from natural sources. Synthetic phospholipids may be prepared by methods known to those in the art. Naturally derived phospholipids are often extracted by procedures known to those in the art. Phospholipids may be derived from animal or vegetable sources. A useful phospholipid is derived from sunflower seeds. The phospholipid typically contains 35% to 60% phosphatidylcholine, 20% to 35% phosphatidylinositol, 1% to 25% phosphatidic acid, and 10% to 25% phosphatidylethanolamine, wherein the percentages are by weight based on the total phospholipids. The fatty acid content may be 20% by weight to 30% by weight palmitic acid, 2% by weight to 10% by weight stearic acid, 15% by weight to 25% by weight oleic acid, and 40% by weight to 55% by weight linoleic acid.


Friction modifiers may include fatty amines, esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and polyalkylene-polyamines.


In one embodiment the lubricating composition may contain phosphorus- or sulphur-containing antiwear agents other than compounds described as an extreme pressure agent of the amine salt of a phosphoric acid ester described above. Examples of the antiwear agent may include a non-ionic phosphorus compound (typically compounds having phosphorus atoms with an oxidation state of +3 or +5), a metal dialkyldithiophosphate (typically zinc dialkyldithiophosphates), a metal mono- or di-alkylphosphate (typically zinc phosphates), or mixtures thereof.


The non-ionic phosphorus compound includes a phosphite ester, a phosphate ester, or mixtures thereof.


In one embodiment the lubricating composition of the invention further includes a dispersant. The dispersant may be a succinimide dispersant (for example N-substituted long chain alkenyl succinimides), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant or a polyetheramine dispersant.


In one embodiment the succinimide dispersant includes a polyisobutylene-substituted succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000, or 950 to 1600.


Succinimide dispersants and their methods of preparation are more fully described in U.S. Pat. Nos. 4,234,435 and 3,172,892.


Suitable ester-containing dispersants are typically high molecular weight esters. These materials are described in more detail in U.S. Pat. No. 3,381,022.


In one embodiment the dispersant includes a borated dispersant. Typically the borated dispersant includes a succinimide dispersant including a polyisobutylene succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000. Borated dispersants are described in more detail above within the extreme pressure agent description.


Dispersant viscosity modifiers (often referred to as DVMs) include functionalised polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene-maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.


Corrosion inhibitors include 1-amino-2-propanol, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.


Metal deactivators include derivatives of benzotriazoles (typically tolyltriazole), 1,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or 2-alkyldithiobenzothiazoles. The metal deactivators may also be described as corrosion inhibitors.


Foam inhibitors Include copolymers of ethyl acrylate and 2-ethylhexyl acrylate and optionally vinyl acetate.


Demulsifiers include trialkyl phosphates, and various polymers and copolymers of ethylene glycol, ethylene oxide, propylene oxide, or mixtures thereof.


Pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.


Seal swell agents including Exxon Necton-37™ (FN 1380) and Exxon Mineral Seal Oil™ (FN 3200).


Preferably the lubricating oil composition contains co-solvents selected from the group consisting of di-isodecyl adipate, di-propyladipate, di-isotridecyl adipate, trimethylpropyl tricaprylate, di-isooctyl adipate, di-ethylhexyl adipate and d-inonyl adipate. Preferably the lubricating oil composition contains co-solvents in an amount of ≥0.5% to ≤35% by weight, more preferably ≥1% to ≤30% by weight, related to the overall weight of the lubricating oil composition.


In another embodiment, the presently claimed invention is directed to a method of reducing friction in an engine using an engine oil comprising at least one alkoxylated polytetrahydrofurane as defined above or a mixture of polytetrahydrofuranes as defined above.


In another embodiment, the presently claimed invention is directed to a method of enhancing the friction modification properties of a lubricating oil composition in the lubrication of a mechanical device comprising formulating said lubricating oil composition with at least one alkoxylated polytetrahydrofurane as defined above.


Enhancing the friction-modification properties means in the sense of the present invention that the friction coefficient of a lubricating oil composition comprising a carboxylic acid ester as defined above is lower that the friction coefficient of a lubricating oil composition that does not contain said carboxylic acid ester. The friction-modification properties are determined by measuring the friction coefficient at 25% slide roll ratio (SRR) using mini-traction machine (MTM) measurements at 70° C. and 1 GPa.


A mechanical device in the sense of the presently claimed invention is a mechanism consisting of a device that works on mechanical principles.


The mechanical device is preferably selected from the group consisting of bearings, gears, joints and guidances. Preferably the mechanical device is operated at temperatures in the range of ≥10° C. to ≤80° C.







EXAMPLES

OHZ=hydroxyl number, determined according to DIN 53240


Mn=number average molecular weight, determined according to DIN 55672-1 and referred to Polystyrene calibration standard.


Mw=weight average molecular weight, determined according to DIN 55672-1 and referred to Polystyrene calibration standard.


PD=polydispersity, determined according to DIN 55672-1


Measuring Physical Properties


The kinematic viscosity was measured according to the standard international method ASTM D 445.


The viscosity Index was measured according to the ASTM D 2270.


The pour point according was measured to DIN ISO 3016.


Friction Coefficient Evaluation


The fluids were tested in the MTM (Mini-Traction Machine) instrument using the so-called traction test mode. In this mode, the friction coefficient is measured at a constant mean speed over a range of slide roll ratios (SRR) to give the traction curve. SRR=sliding speed/mean entrainment speed=2 (U1−U2)/(U1+U2) in which U1 and U2 are the ball and disc speeds respectively


The disc and ball used for the experiments were made of steel (AISI 52100), with a hardness of 750 HV and Ra<0.02 μm. The diameter was 45.0 mm and 19.0 mm for the disc and the ball respectively. The tractions curves were run with 1.00 GPa contact pressure, 4 m/s mean speed and 70° C. temperature. The slide-roll ratio (SRR) was varied from 0 to 25% and the friction coefficient measured.


Oil Compatibility Evaluation


A method was developed in-house to determine oil compatibility. The oil and test material were mixed in 10/90, 50/50 and 90/10% w/w ratios respectively. The mixtures were mixed at room temperature by rolling for 12 hours. The mixtures' appearance was observed after homogenization and again after 24 hours. The test material is deemed compatible with the oil when no phase separation is observed after 24 hours for at least two of the ratios investigated.


Synthesis of the Polyalkylene Glycols


Example 1: PolyTHF 650 with 20 Equivalents of C12 Epoxide

A steel reactor (1.5 l) was loaded with polytetrahydrofurane (MW 650) (0.2 mol, 130 g), and 3.4 g KOtBu was mixed and the reactor was purged with nitrogen. The reactor was heated under vacuum (10 mbar) and heated to 140° C. for 0.25 h. Then again nitrogen was loaded. At a pressure of 2 bar 50 g C12 epoxide was brought in dropwise at 140° C. 686 g C12 epoxide of total (736 g; 4.0 mol) was added during 10 h at 140° C. and under pressure of 6 bar. Yield: 874 g, quantitative (Theor.: 866 g) OHZ: 28.2 mg KOH/g.


Example 2: PolyTHF 650 with 12 Equivalents of C12 Epoxide and 20 Equivalents of Butylene Oxide (Block)

A steel reactor (1.5 l) was loaded with polytetrahydrofurane (MW 250) (0.2 mol, 130 g), and 3.4 g KOtBu was mixed and the reactor was purged with nitrogen. The reactor was heated under vacuum (10 mbar) and heated to 140° C. for 0.25 h. Then again nitrogen was loaded. At a pressure of 2 bar 50 g C12 epoxide was brought in dropwise at 140° C. 390 g C12 epoxide of total (441 g; 2.4 mol) was added during 5 h at 140° C. and under pressure of 6 bar. Then butylene oxide (288 g, 4.0 mol) was added within 4 h at 140° C. The reactor was stirred for 10 h at 140° C. and cooled to 80° C. The product was stripped by nitrogen. Then the product was discharged and mixed with Amboso® (magnesium silicate, 30 g) and mixed on a rotary evaporator at 80° C. The purified product was obtained by filtration in a pressure strainer (Filtrations media: Seitz 900). Yield: 866 g, quantitative (Theor.: 859 g) OHZ: 30.1 mg KOH/g


Example 3: PolyTHF 650 with 12 Equivalents of C12 Epoxide and 20 Butylene Oxide (Random)

A steel reactor (5 l) was loaded with polytetrahydrofurane (MW 250) (0.732 mol, 476 g), and KOtBu (12.6 g) was mixed and the reactor was purged with nitrogen. At a pressure of 2 bar a mixture of butylene oxide and C12 epoxide (14.64 mol, 1104 g butylene oxide; 8.8 mol, 1617 g C12 epoxide) was brought in dropwise during 30 h at 140° C. and under pressure of 6 bar. The reactor was stirred for 10 h at 140° C. and cooled to 80° C. The reactor was cooled to 80° C. and the product was stripped by nitrogen. Then the product was discharged and mixed with Ambosol® (magnesium silicate, 60 g) and mixed on a rotary evaporator at 80° C. The purified product was obtained by filtration in a pressure strainer (Filtrations media: Seitz 900). Yield: 3077 g (96%) (Th.: 3200 g), OHZ: 31.4 mg KOH/g


Example 4: PolyTHF 650 with 12 Equivalents of C12 Epoxide and 20 Equivalents of Propylene Oxide (Random)

A steel reactor (1.5 l) was loaded with polytetrahydrofurane (MW 650) (0.2 mol, 130 g), and KOtBu (3.21 g) was mixed and the reactor was purged with nitrogen. At a pressure of 2 bar a mixture of propylene oxide and C12 epoxide (4.0 mol, 232 g PO; 2.4 mol, 441 g C12 epoxide) was brought in dropwise during 7 h at 140° C. and under pressure of 6 bar. The reactor was stirred for 10 h at 140° C. and cooled to 80° C. The reactor was cooled to 80° C. and the product was stripped by nitrogen. Then the product was discharged and mixed with Ambosol® (magnesium silicate, 60 g) and mixed on a rotary evaporator at 80° C. The purified product was obtained by filtration in a pressure strainer (Filtrations media: Seitz 900). Yield: 800 g (quantitative) (Th.: 803 g), OHZ: 30.8 mgKOH/g.


Example 5: PolyTHF 1000 with 18 Equivalents of C12 Epoxide and 30 Equivalents of Butylene Oxide (Random)

A steel reactor (1.5 l) was loaded with polytetrahydrofurane (MW 1000) (0.1 mol, 100 g), and KOtBu (2.59 g) was mixed and the reactor was purged with nitrogen. At a pressure of 2 bar a mixture of butylene oxide and C12 epoxide (3.0 mol, 216 g butylene oxide; 1.8 mol, 331 g C12 epoxide) was brought in dropwise during 5 h at 140° C. and under pressure of 6 bar. The reactor was stirred for 10 h at 140° C. and cooled to 80° C. The reactor was cooled to 80° C. and the product was stripped by nitrogen. Then the product was discharged and mixed with Ambosol® (magnesium silicate, 60 g) and mixed on a rotary evaporator at 80° C. The purified product was obtained by filtration in a pressure strainer (Filtrations media: Seitz 900). Yield: 661 g (quantitative) (Th.: 647 g), OHZ: 24.7 mg KOH/g


Example 6: PolyTHF 1000 with 36 Equivalents of C12 Epoxide and 60 Equivalents of Butylene Oxide (Random)

A steel reactor (1.5 l) was loaded with polytetrahydrofurane (MW 1000) (0.1 mol, 100 g), and KOtBu (4.78 g) was mixed and the reactor was purged with nitrogen. At a pressure of 2 bar a mixture of butylene oxide and C12 epoxide (6.0 mol, 432 g butylene oxide; 3.6 mol, 662 g C12 epoxide) was brought in dropwise during 11 h at 140° C. and under pressure of 6 bar. The reactor was stirred for 10 h at 140° C. and cooled to 80° C. The reactor was cooled to 80° C. and the product was stripped by nitrogen. Then the product was discharged and mixed with Ambosol® (magnesium silicate, 60 g) and mixed on a rotary evaporator at 80° C. The purified product was obtained by filtration in a pressure strainer (Filtrations media: Seitz 900). Yield: 1236 g (quantitative) (Th.: 1194 g), OHZ: 9.4 mg KOH/g


Example 7: PolyTHF 650 with 4 Equivalents of C12 Epoxide and 40 Equivalents of Butylene Oxide (Random)

The oil compatibility and friction data are summarized in Table 2. The data demonstrate that the molecules derived from the present invention, namely polyalkylene glycols produced from the alkoxylation of polytetrahydrofuran (p-THF) with C12 epoxide show compatibility with mineral oils and low viscosity polyalphaolefins whilst providing low friction coefficients (≤0.025 at 25% SRR in MTM experiments).


Oil compatible materials presented in Examples 1 to 7 consistently exhibit friction coefficient equal or lower than 0.025 at 25% SRR in the MTM experiments.


















TABLE 1








Starting alcohol
Random/Block
PO
BuO
C12 epoxide
OHZ [mgKOH/g]
Mn
Mw
PD





Example 1
pTHF 650
block


20
28.2
4517
4923
1.09


Example 2
pTHF 650
block: 1. C12

20
12
30.1
3861
4602
1.19




epoxide, 2. BuO


Example 3
pTHF 650
random

20
12
31.4
4720
4650
1.42


Example 4
pTHF 650
random
20

12
30.8
4660
5074
1.09


Example 5
pTHF1000
random

30
18
24.7
4551
5667
1.24


Example 6
pTHF1000
random

60
36
9.4
5204
6629
1.27


Example 7
pTHF 650
block

40
4
27
4872
5369
1.10











Comparative examples













Example 8*
polybutylene glycol (propandiol + 43 BO)



Example 9*
p-THF 1000 + 20 PO



Example 10*
p-THF 1000 + 10 PO + 13 EO



Example 11*
p-THF 250



Example 12*
p-THF 650



Example 13*
p-THF 1000
























TABLE 2













Mineral oil








Group III







compatibility
Low viscosity PAO



Kinematic



at room
compatibility at



viscosity

Pour
MTM friction
temperature
room temperature



(mm2/s)
Viscosity
point
coefficient at
(oil/test material)
(oil/test material)



















40° C.
100° C.
Index
(° C.)
25% SSR
10/90
50/50
90/10
10/90
50/50
90/10






















Example 1
289
40
192
12
0.015
Yes
Yes
Yes
No
Yes
Yes


Example 2
284
37
182
−11
0.020
Yes
Yes
Yes
Yes
Yes
Yes


Example 3
392
50
189
−42
0.019
Yes
Yes
Yes
Yes
Yes
Yes


Example 4
268
38
195
−35
---0.016
Yes
Yes
Yes
Yes
Yes
Yes


Example 5
412
52
191
−43
0.018
Yes
Yes
Yes
Yes
Yes
Yes


Example 6
441
56
195
−39
0.019
Yes
Yes
Yes
Yes
Yes
Yes


Example 7
539
64
192
−42
0.022
Yes
Yes
Yes










Comparative examples


















Example 8*
304
35
159
−39
0.034
Yes
Yes
Yes
No
No
No


Example 9*
348
50
207
−9
0.013
No
No
No
No
No
No


Example 10*
359
57
227
−6
0.008
No
No
No
No
No
No


Example 11*
54
7
94
−42
0.007
No
No
No
No
No
No


Example 12*
159
22
165
3
0.007
No
No
No
No
No
No


Example 13*
291
40
193
6
0.007
No
No
No
No
No
No








Claims
  • 1. A lubricating oil composition comprising an alkoxylated polytetrahydrofurane of general formula (II):
  • 2. The lubricating oil composition according to claim 1, wherein k is an integer in the range of ≥3 to ≤25.
  • 3. The lubricating oil composition according to claim 1, wherein the alkoxylated polytetrahydrofurane has a weight average molecular weight Mw in the range of 500 to 20000 g/mol determined according to DIN 55672-1 (polystyrene calibration standard).
  • 4. The lubricating oil composition according to claim 1, wherein (m+m′) is in the range of ≥3 to ≤65.
  • 5. The lubricating oil composition according to claim 1, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1.
  • 6. The lubricating oil composition according to claim 1, wherein m is an integer in the range of ≥1 to ≤25 and m′ is an integer in the range of ≥1 to ≤25.
  • 7. The lubricating oil composition according to claim 1, wherein R1 denotes an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms.
  • 8. The lubricating oil composition according to claim 1, wherein R3 is —CH3.
  • 9. The lubricating oil composition according to claim 1, wherein m is an integer in the range of ≥1 to ≤30,m′ is an integer in the range of ≥1 to ≤30,(m+m′) is an integer in the range of ≥3 to ≤50,n is an integer in the range of ≥3 to ≤45,n′ is an integer in the range of ≥3 to ≤45,(n+n′) is an integer in the range of ≥6 to ≤90,p is an integer in the range of ≥0 to ≤75,p′ is an integer in the range of ≥0 to ≤75,k is an integer in the range of ≥3 to ≤25,R1 is an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms,R2 is —CH2—CH3, andR3 is —CH3.
  • 10. The lubricating oil composition according to claim 9, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1 and the ratio of (n+n′) to k is in the range of 1.5:1 to 10:1.
  • 11. The lubricating oil composition according to claim 1, wherein m is an integer in the range of ≥1 to ≤30,m′ is an integer in the range of ≥1 to ≤30,(m+m′) is an integer in the range of ≥3 to ≤50,n is an integer in the range of ≥0 to ≤45,n′ is an integer in the range of ≥0 to ≤45,p is an integer in the range of ≥3 to ≤45,p′ is an integer in the range of ≥3 to ≤45,(p+p′) is an integer in the range of ≥6 to ≤90,k is an integer in the range of ≥3 to ≤25,R1 is an unsubstituted, linear alkyl radical having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms,R2 is —CH.sub.2-CH.sub..3, andR3 is —CH.sub.3.
  • 12. The lubricating oil composition according to claim 11, wherein the ratio of (m+m′) to k is in the range of 0.3:1 to 6:1 and the ratio of (p+p′) to k is in the range of 1.5:1 to 10:1.
  • 13. The lubricating oil composition according to claim 1 having a friction coefficient in the range of 0.003 to 0.030 at 25% slide roll ratio (SRR) determined using mini-traction machine (MTM) measurements at 70° C. and 1 GPa.
  • 14. The lubricating oil composition according to claim 1, which is effective for enhancing friction modification properties of one or more of the following: light, medium and heavy duty engine oils, industrial engine oils, marine engine oils, automotive engine oils, crankshaft oils, compressor oils, refrigerator oils, hydrocarbon compressor oils, very low-temperature lubricating oils and fats, high temperature lubricating oils and fats, wire rope lubricants, textile machine oils, refrigerator oils, aviation and aerospace lubricants, aviation turbine oils, transmission oils, gas turbine oils, spindle oils, spin oils, traction fluids, transmission oils, plastic transmission oils, passenger car transmission oils, truck transmission oils, industrial transmission oils, industrial gear oils, insulating oils, instrument oils, brake fluids, transmission liquids, shock absorber oils, heat distribution medium oils, transformer oils, fats, chain oils, minimum quantity lubricants for metalworking operations, oil to the warm and cold working, oil for water-based metalworking liquids, oil for neat oil metalworking fluids, oil for semi-synthetic metalworking fluids, oil for synthetic metalworking fluids, drilling detergents for the soil exploration, hydraulic oils, in biodegradable lubricants or lubricating greases or waxes, chain saw oils, release agents, moulding fluids, gun, pistol and rifle lubricants or watch lubricants, and food grade approved lubricants.
  • 15. A method of reducing friction in an engine comprising obtaining a lubricating oil composition comprising at least one alkoxylated polytetrahydrofurane according to claim 1, and contacting the lubricating oil composition with surfaces of the engine.
  • 16. A method of enhancing friction modification properties of a lubricating oil composition in the lubrication of a mechanical device comprising formulating said lubricating oil composition with at least one alkoxylated polytetrahydrofurane according to claim 1.
  • 17. The lubricating oil composition according to claim 1, which is effective for reducing friction between moving surfaces of an engine.
  • 18. The lubricating oil composition according to claim 1, wherein k is an integer in the range of ≥5 to ≤20.
  • 19. The lubricating oil composition according to claim 18, wherein the alkoxylated polytetrahydrofurane has a weight average molecular weight Mw in the range of 4000 to 7000 g/mol determined according to DIN 55672-1 (polystyrene calibration standard).
  • 20. A lubricating oil composition comprising: at least one base stock selected from the group consisting of: mineral oils (Group I, II or III oils), polyalphaolefins (Group IV oils), polymerized and interpolymerized olefins, alkyl naphthalenes, alkylene oxide polymers, silicone oils, phosphate esters and carboxylic acid esters (Group V oils);one or more additives; andan alkoxylated polytetrahydrofurane of general formula (II):
Priority Claims (1)
Number Date Country Kind
13168334 May 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/059276 5/7/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/184062 11/20/2014 WO A
US Referenced Citations (38)
Number Name Date Kind
3087936 Suer Apr 1963 A
3172892 Le Suer et al. Mar 1965 A
3254025 Suer May 1966 A
3381022 Le Suer Apr 1968 A
3382291 Brennan et al. May 1968 A
3742082 Brennan et al. Jun 1973 A
3769363 Breannan et al. Oct 1973 A
3876720 Heilman et al. Apr 1975 A
4149178 Estes et al. Apr 1979 A
4234435 Meinhardt et al. Nov 1980 A
4239930 Allphin et al. Dec 1980 A
4367352 Watts et al. Jan 1983 A
4370247 Ostyn Jan 1983 A
4413156 Watts, Jr. et al. Nov 1983 A
4477589 Van der Hulst et al. Jan 1984 A
4434408 Baba et al. Feb 1984 A
4481123 Hentsche et al. Nov 1984 A
4910355 Shubkin et al. Mar 1990 A
4956122 Watts et al. Sep 1990 A
5068487 Theriot Nov 1991 A
5135638 Miller et al. Aug 1992 A
5246566 Miller Sep 1993 A
5362378 Borghard et al. Nov 1994 A
5565086 Cody et al. Oct 1996 A
5741946 Wei Apr 1998 A
6133211 Cobianco Oct 2000 A
6423107 Delfort Jul 2002 B1
7425524 Haire et al. Sep 2008 B2
9296975 Greaves Mar 2016 B2
9556395 Kashani-Shirazi Jan 2017 B2
20110237478 Costello et al. Sep 2011 A1
20140342962 Basu et al. Nov 2014 A1
20150113867 Voelkel Apr 2015 A1
20150166926 Scherer et al. Jun 2015 A1
20150299607 Scherer et al. Oct 2015 A1
20150307807 Scherer et al. Oct 2015 A1
20160017250 Bartley et al. Jan 2016 A1
20170044459 Goyal Feb 2017 A1
Foreign Referenced Citations (15)
Number Date Country
1295570 Feb 1992 CA
102703163 Oct 2012 CN
3210283 Sep 1983 DE
0090444 Oct 1983 EP
0321302 Jun 1989 EP
0321304 Jun 1989 EP
0710710 May 1996 EP
1076072 Feb 2001 EP
WO-2008014315 Jan 2008 WO
WO-2014005932 Jan 2014 WO
WO-2014075957 May 2014 WO
WO-2014075993 May 2014 WO
WO-2014139935 Sep 2014 WO
WO-2014184062 Nov 2014 WO
WO-2014184068 Nov 2014 WO
Non-Patent Literature Citations (4)
Entry
PCT International Preliminary Report on Patentability in PCT/EP2014/059276, dated Nov. 17, 2015, 7 pages.
PCT International Search Report in PCT/EP2014/059276, dated Aug. 12, 2014, 3 pages.
PCT International Written Opinion in PCT/EP2014/059276, dated Aug. 12, 2014, 6 pages.
English language abstract and machine-assisted English translation for CN 102703163 extracted from espacenet.com database on Aug. 10, 2017, 14 pages.
Related Publications (1)
Number Date Country
20160090546 A1 Mar 2016 US