The object of the invention is the use of quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M is a transition metal Mo, W, Ta, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) and of doped quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M=Ta, Ti, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) with elements of group 1b (silver (Ag), gold (Au), copper (Cu)) as electron emitters under the influence of an external electric field, i.e. for cold electron emission (“cold cathode”).
Electron emitters are used in various commercially available devices. Conventional emitters, used in cathode tubes, are usually made of tungsten wire or other materials with a low surface work function that emit electrons when heated (Shan I, Physics Word, 45, June (1997). Lately, vast research is being conducted on the so-called cold electron emitters which release electrons due to electric field intensity. Known devices based on cold electron emission may essentially assume two geometric forms. The first form consists in very sharp electron-emitting tips arranged in a specific configuration, this being achieved through elaborate photolithographic techniques. Said tips are generally made of silicon, molybdenum or tungsten, although recently, considerable progress has been made in the use of diamond powder with a specific lattice configuration, or a coating of such diamond powder or of similarly structured carbon on other microtips (Kumar N. et al., U.S. Pat. No. 5,199,918 of Apr. 6, 1993). Additionally, it is possible to use microtips shaped as thin wires and scales of various materials including carbon (Q. Wang et al., App. Phys. Lett. 70, 24, pp. 3308 (1997). With the first method, highly complex lithographic techniques are required to fabricate the tips. Moreover, tips not made of diamond have a relatively short life span due to resistive heating, which gives rise to tip erosion. Both problems can be overcome by making use of diamond microtips, for proper operation, however, high anode voltage is required.
According to the second method,. the device based on electron emission relies on low or negative electron affinity of the surface which is usually made of diamond or of diamond-like carbon (Kumar N. et al., U.S. Pat. No. 5,341,063 of Aug. 23, 1994; Valone S. N. et al., U.S. Pat. No. 5,602,439 of Feb. 2, 1997). The second method likewise requires a high anode voltage which rather complicates the operation of the device. To improve functionality, diamond or diamond-like carbon with various lattice-structure defects have been employed (Jaskie J. E. et al., U.S. Pat. No. 5,619,092 of Apr. 8, 1997) and some other improvements have been introduced (Habermann et al., J. Vac. Sci. Tech. B16, p. 693, 1998; Patterson D. E. et al., Mat. Res. Soc. Symp. Proc. 509, 1998).
In recent years new nanomaterials, particularly carbon and BxCyNz nanotubes have been found to constitute a promising source for electron emission (Zettl A. et al., U.S. Pat. No. 6,057,637 of May 2, 2000). Due to the shape of these nanomaterials as such the stability of the cathode current is good as opposed to metal tips which lose sharpness over time, and work voltages are lower as compared to diamond powder. There are still several problems hampering their application, however—primarily the non-homogeneity of the material due to the uncontrolled synthesis and the problem of the disposition of the nanotubes with respect to the substrate (De Heer W. A. et al., Science 270, 1179 (1995)), although there have been attempts to reduce these disadvantages with new methods of synthesis.
Therefore, the following drawbacks are exhibited by conventional cold electron emitters: the wear and tear of the metal tip, the elaborate and costly tip fabrication technique wherein a diamond is required, the high anode. voltage, and, for nanomaterials, the low definition or reproducibility of the emitters.
It is the object of the present invention to disclose and utilize such materials for fabricating cold electron emitters that will allow emitters to function in a stable and lasting manner, to be readily manufactured, and to operate at low anode voltages.
According to the invention, said object is achieved by employing quasi-one-dimensional transition metal ternary compounds and quasi-one-dimensional transition metal chalcogenide compounds as electron emitters, as defined by the independent patent claims.
The invention shall now be described with reference to two preferred embodiments thereof and illustrated in the accompanying drawings, in which:
The present invention relates to the use of quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M is a transition metal Mo, W, Ta, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) and of doped quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M=Ta, Ti, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) with elements of group 1b (silver (Ag), gold (Au), or copper (Cu)) as electron emitters under the influence of an external electric field. The percentage of quasi-one-dimensional transition metal ternary compounds and/or doped quasi-one-dimensional transition metal ternary compounds doped with elements of group 1b in the active material ranges from 0.01 to 99.9%, the rest consisting of additives in the form of conducting, non-conducting or semi-conducting compounds or composites.
In accordance with the invention said materials are employed as the cathode emitter material in devices based on electron emission under the influence of an external electric field. Electron emission takes place at a pressure below 1 mbar.
First Embodiment
Use of bundles of MoS2−yIx , nanotubes for electron emission Bundles of MoS2−yIx , nanotubes are used as cold emitter. The emission characteristic of the bundles of MoS2−yIx , nanotubes (that is, the emission current I in dependence of the voltage U) employed as the cold electron emitter (cathode) is measured in high vacuum. The measurement of cold emission in a measuring cell of the type used in our research is schematically depicted in
The bundles of MoS2−yIx nanotubes were attached on the 0.1 mm thick Ni sheet with silver paste which ensures good electrical contact with the conducting substrate. The brand used was SPI Flash dry, 4999AB paste, supplied by SPI Supplies for the preparation of samples for scanning electron microscopy. A sample of bundles of MoS2−yIx nanotubes with a mass of approx. 3 mg is shown in
The readout was recorded with a personal computer 2.8 times per second. At the maximum voltage of the power supply 3000 V the voltage on the emitter was 2770 V, whereas the emission current reached the value of 1 μA as, shown in
Second Embodiment
Use of Agx(NbS4)4Iy for electron emission
As cold emitter Agx(NbS4)4Iy is used. The emission characteristic of Agx(NbS4)4Iy (that is, the emission current I in dependence of the voltage U) employed as the cold electron emitter is measured in high vacuum. The measurement of cold emission as used in our research is schematically shown in
The subsequent measurements of the voltage dependence of the current and of the time dependence of the current were carried out at a distance a=5±1 mm. The anode voltage was varied in the range of 600 to 2800 V, as can be seen in
Materials based on quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M is a transition metal Mo, W, Ta, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) and/or doped quasi-one-dimensional transition metal ternary compounds MxHyHz (where M=Ta, Ti, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) doped with elements of group 1b (silver (Ag), gold (Au), or copper (Cu)) are thus used as electron emitters under the influence of an external electric field. The percentage of quasi-one-dimensional transition metal ternary compounds and/or doped quasi-one-dimensional transition metal ternary compounds doped with elements of group 1b in the active material ranges from 0.01 to 99.9%, the rest consisting of additives in the form of conducting, non-conducting or semi-conducting compounds or composites. Electron emission takes place at a pressure below 1 mbar.
It is to be understood that electron emitters under the influence of an external electric field that are made of materials based on quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M is a transition metal Mo, W, Ta, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) and/or doped quasi-one-dimensional transition metal ternary compounds MxHyHaz (where M=Ta, Ti, Nb; H is sulfur (S), selenium (Se), tellurium (Te); Ha is iodine (I)) doped with elements of group 1b (silver (Ag), gold (Au), or copper (Cu)), wherein the percentage of quasi-one-dimensional transition metal ternary compounds and/or doped quasi-one-dimensional transition metal ternary compounds doped with elements of group 1b in the active material ranges from 0.01 to 99.9%, the rest consisting of additives in the form of conducting, non-conducting or semi-conducting compounds or composites are likewise considered to be within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
P-200200189 | Aug 2002 | SI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SI03/00027 | 7/23/2003 | WO | 2/17/2006 |