The present invention relates to the field of capacitive sensor arrays. More particularly, the present invention relates to the field of reducing or eliminating errors in the output of capacitive sensor arrays such as touchscreens.
Many electrical devices are incorporating touchscreen type displays. A touchscreen is a display that detects the presence, location, and pressure of a touch within the display area, generally by a finger, hand, stylus, or other pointing device. The touchscreen enables a user to interact with the display panel directly without requiring any intermediate device, rather than indirectly with a mouse or touchpad. Touchscreens can be implemented in computers or as terminals to access networks. Touchscreens are commonly found in point-of-sale systems, automated teller machines (ATMs), mobile phones, personal digital assistants (PDAs), portable game consoles, satellite navigation devices, and information appliances.
There are a number of types of touchscreen technologies. A capacitive touchscreen panel is coated, partially coated, or patterned with a material that conducts a continuous electrical current across one or more capacitive touch sensors, referred to simply as touch sensors. The touch sensors exhibit a precisely controlled field of stored electrons in both the horizontal and vertical axes to achieve capacitance. The human body is also an electrical device that has stored electrons and therefore also exhibits capacitance. When a reference capacitance of the touch sensors is altered by another capacitance field, such as a finger, electronic circuits located at each corner of the panel measure the resultant distortion in the reference capacitance. The measured information related to the touch event is sent to a capacitive touchscreen controller for mathematical processing. Touch sensors can either be touched with a bare finger or with a conductive device being held by a bare hand. Touch sensors also work based on proximity, and do not have to be directly touched to be triggered. In most cases, direct contact to a conductive metal surface does not occur and the touch sensors are separated from the user's body by an insulating glass or plastic layer. Devices with capacitive buttons intended to be touched by a finger can often be triggered by quickly waving the palm of the hand close to the surface without touching.
A capacitive touchscreen is made of an array of touch sensors arranged into rows and columns. A channel can refer to either a single sensor, a row sensor, or a column sensor. In a typical capacitive touchscreen application, the capacitance of each channel is sequentially measured to generate a profile of capacitance change in the capacitive touchscreen. This capacitance profile can be used to detect the presence of a touch event and to report the position of the touch coordinates. Typically, the sampling for each channel is done at a fixed interval. However, this can form beat frequencies that are the same as certain noise frequencies.
Finger-coupled noise is the noise coupled through a finger or a conductive stylus to one or more touch sensors when the user is touching a capacitive touchscreen. Only the touch sensors beneath the finger are affected by the finger-coupled noise. The human body acts an antenna which may pick up ambient noise, such as noise generated by surrounding compact fluorescent lights, which is subsequently passed to the touch sensors when touched. The human body is also grounded to the earth, which can be a different ground than the device ground of the capacitive touchscreen. With two different grounds, ground noise will also be added to the overall system. The finger-coupled noise can be of any frequency ranging from close to DC to hundreds of kilohertz (kHz) with an amplitude up to a few volts peak-to-peak. When the noise level at a particular frequency is high enough, it can cause the capacitive touchscreen controller to report a touch when no touch is actually present, referred to as a false touch.
Random sampling techniques include techniques for reducing or eliminating errors in the output of capacitive sensor arrays such as touch panels. The channels of the touch panel are periodically sampled to determine the presence of one or more touch events. Each channel is individually sampled in a round robin fashion. During each round robin, all channels are sampled once. In this manner, each round robin is referred to as a sampling cycle. Multiple sampling cycles are performed such that each channel is sampled multiple times. In some embodiments, a channel capacitance is determined for each channel by averaging the sampled values for the channel over a predetermined number of sampling cycles. In other embodiments, means other than averaging are used to calculate the channel capacitance, including but not limited to calculating a mean or a weighted average. A random sampling technique is used to sample each of the channels. Multiple different randomization techniques can be used. One random sampling technique randomizes a starting channel in each sampling cycle. Another random sampling technique randomizes the selection of all channels in each sampling cycle. Yet another random sampling technique randomizes the sampling cycle delay period between each sampling cycle. Still another random sampling technique randomizes the channel delay period between sampling each channel.
In one aspect, a method of detecting one or more touch events on a capacitive touch sensitive device is disclosed. The method includes configuring a plurality of channels, each channel corresponding to the capacitive touch sensitive device; sampling each channel in the plurality of channels according to a randomization algorithm that includes performing multiple sampling cycles, each sampling cycle including sampling each channel in the plurality of channels; for each channel, calculating a channel capacitance using sampled data; and determining one or more touch events from the channel capacitances calculated for the plurality of channels.
In another aspect, another method of detecting one or more touch events on a capacitive touch sensitive device is disclosed. The method includes configuring a plurality of channels, each channel corresponding to the capacitive touch sensitive device; sampling each channel in the plurality of channels according to a randomization algorithm such that each channel is sampled, wherein sampling each channel includes measuring a capacitance of each channel; performing multiple sampling cycles, wherein a sampling cycle includes sampling each channel in the plurality of channels one time; for each channel, calculating a channel capacitance using the measured capacitances from the multiple sampling cycles for the channel; and determining one or more touch events from the channel capacitances calculated for the plurality of channels.
In some embodiments, the randomization algorithm further includes randomly selecting each channel within the sampling cycle. In some embodiments, a sampling cycle delay period is included between each sampling cycle and the randomization algorithm further includes randomly changing the sampling cycle delay period between each sampling cycle. In some embodiments, a channel delay period is included between each channel sampling and the randomization algorithm further includes randomly changing the channel delay period. In some embodiments, the plurality of channels includes N channels, and the randomization algorithm further includes randomly generating the channel delay period every M channel samples such that a same channel delay period is applied for each of M channel samples before a new channel delay period is randomly generated and applied to a next M channel samples. In some embodiments, M is less than N. In other embodiments, M is greater than N. In some embodiments, noise is distributed across a frequency response of the sampled channels.
In yet another aspect, an apparatus for detecting one or more touch events on a touch panel is disclosed. The apparatus includes a capacitive touch sensitive device including a plurality of channels, each channel including a touch sensor; a processor configured to implement a randomization algorithm that includes performing multiple sampling cycles, each sampling cycle including sampling each channel in the plurality of channels; and a measuring circuit coupled to the capacitive touch sensitive device and to the processor, wherein the measuring circuit is configured to sample each channel in the plurality of channels according to the randomization algorithm, wherein the processor is configured to receive sampled data from the measuring circuit, to calculate a channel capacitance for each channel using the received sample data, and to determine one or more touch events from the channel capacitances calculated for the plurality of channels.
In some embodiments, the randomization algorithm further includes randomly selecting each channel within the sampling cycle. In some embodiments, a sampling cycle delay period is included between each sampling cycle, and the randomization algorithm further includes randomly changing the sampling cycle delay period between each sampling cycle. In some embodiments, a channel delay period is included between each channel sampling, and the randomization algorithm further includes randomly changing the channel delay period. In some embodiments, the plurality of channels includes N channels, and the randomization algorithm further includes randomly generating the channel delay period every M channel samples such that a same channel delay period is applied for each of M channel samples before a new channel delay period is randomly generated and applied to a next M channel samples. In some embodiments, M is less than N. In other embodiments, M is greater than N.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the differential sensing scheme and, together with the description, serve to explain the principles of the haptic feedback system, but not limit the invention to the disclosed examples.
Embodiments of the present invention are directed to random sampling techniques to reduce noise in a capacitive touchscreen. Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
While the random sampling techniques will be described in conjunction with the embodiments below, it will be understood that they are not intended to limit the methods and systems of these embodiments and examples. On the contrary, the random sampling techniques are intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the present invention as defined by the appended claims. Furthermore, in the following detailed description, numerous specific details are set forth in order to more fully illustrate the methods and systems. However, it will be apparent to one of ordinary skill in the prior art that the methods and systems may be practiced without these specific details.
In accordance with the present application, some of the components, process steps, and/or data structures may be implemented using various types of processing systems, including hardware, software, or any combination thereof. In addition, those of ordinary skill in the art will recognize that devices of a less general purpose nature, such as hardwired devices, application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.
Random sampling techniques include techniques for reducing or eliminating errors in the output of capacitive sensor arrays such as touchpads, touchscreens, touch sliders and the like, including touch sensors that detect the presence and position of a stylus, as well as those that detect and determine finger position. As used herein, reference to a finger, a touch, a touch event, or the like refers to a user making contact, or proximate contact as applicable, to the touchscreen or touch panel by a user's finger or conductive device held by the user, such as a conductive stylus. The random sampling techniques describe means of extracting a touch event related signal in the presence of extraneous signals. In particular, the random sampling techniques describe methods of spreading out or reducing any noise, such as finger-coupled noise, present at a dominant frequency to a level that does not cause a false touch. The random sampling techniques randomize the interval at which each sensor channel is sampled. In some embodiments, the randomization is achieved by randomizing the sampling order of the channels. In other embodiments, the randomization is achieved by inserting a random delay between successive channel sampling. While the illustrative embodiment described herein is applied in a mobile telephone, it is understood that capacitive touch sensors are used in a wide variety of devices. Examples of such devices include, but are not limited to, portable devices, such as personal digital assistants (PDAs), global positioning systems (GPS) receivers, as well as larger devices such as touchscreen enabled displays and computer systems, as well as appliances.
Each touch sensor in the touchpad measures a change in capacitance. The touchpad circuit 20 converts the sensed capacitance change to a voltage. Noise present in the system can alter the change in capacitance perceived by the capacitive touch sensors, making it indistinguishable from a real touch event. Finger-coupled noise can cause the touchpad circuit to report false touches.
When a finger or a conductive stylus approaches the touch panel, at the area where the touch panel is contacted, the channel capacitance changes, or in the case of the two-dimensional array of touch sensors in
The channels of the touch panel are periodically sampled to determine the presence of one or more touch events. All channels are not continuously and simultaneously sampled so as to minimize power and processing requirements. Instead, each channel is individually sampled in a round robin fashion. During each round robin, all channels are sampled once. In this manner, each round robin is referred to as a sampling cycle. Multiple sampling cycles are performed such that each channel is sampled multiple times. A channel capacitance is determined for each channel by averaging the sampled values for the channel over a predetermined number of sampling cycles. Channel capacitance is calculated by averaging to reduce the influence of noise.
In this non-random sampling technique, every channel is sampled according to a fixed time period defined by (N−1)*T+TD. This constant sampling period forms beat frequencies. The frequency response associated with sampling the touch panel using the non-random sampling technique shows spikes at the beat frequencies. Touch detection is susceptible to noise at the beat frequencies as sampling of the touch event is performed at the same beat frequencies.
The noise spikes seen in the non-random sampling technique can be alleviated by randomizing the time interval at which the samples are taken for each channel. Instead of sampling at beat frequencies that leads to systematic noise, sampling is randomized so that taking averages results in spreading the noise across multiple frequencies. The end result using randomization is that even if noise is present at a certain frequency or frequency span, the noise is spread across other frequencies, thereby reducing the peak noise. Using the non-random sampling technique, if a peak noise is present at a certain frequency which is the same frequency as or a multiple of a beat frequency, then the peak noise is not reduced by taking averages. However, the random sampling techniques do lead to a reduced peak noise. Multiple different randomization techniques can be used.
In an alternative embodiment, the first random sampling technique is modified so that each channel is randomly selected, not just the starting channel. In this modified technique, each sample is selected once and at random during each sampling cycle.
Sampling of each channel is delayed by the channel delay period T. Each sampling cycle is delayed by the sampling cycle delay period, represented as some fixed period TD plus a randomly generated delay dX. As shown in
Sampling of each channel is delayed by the channel delay period, represented as some fixed period T plus a randomly generated delay dX. Each sampling cycle is delayed by the sampling cycle delay period, represented as some fixed period TD plus the randomly generated delay dX. The random delay dX is changed after every M channels are sampled. In the third random sampling technique, M is less than the number of channels N. As shown in
The random sampling techniques are described above in the context of a two-dimensional array of touch sensors, such as the touch panel of
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such references, herein, to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.
This application is a Divisional of, and claims priority to, U.S. patent application Ser. No. 12/987,008, filed Jan. 7, 2011, and claims priority under 35 U.S.C. §119(e) to U.S. provisional patent application Ser. No. 61/326,830, filed Apr. 22, 2010, and titled “Differential Capacitive Touchpad Circuit and Method,” the disclosures of which are hereby incorporated by reference in their entireties into the present application and for all purposes, and is related to the following patent applications and patents: U.S. patent application Ser. No.12/986,776, titled “Method and Apparatus for Improving Dynamic Range of a Touchscreen Controller,” filed Jan. 7, 2011, issued as U.S. Pat. No. 8,599,167; U.S. patent application Ser. No. 12/986,841, filed Jan. 7, 2011 titled “System for and method of Transferring Charge to Convert Capacitance to Voltage for Touchscreen Controllers,” issued as U.S. Pat. No. 8,624,870; U.S. patent application Ser. No. 12/986,991, filed Jan. 7, 2011, titled “System Integration of Tactile Feedback and Touchscreen Controller for Near-Zero Latency Haptics Playout,” issued as U.S. Pat. No. 8,698,766; U.S. patent application Ser. No. 12/986,881, titled “Noise Cancellation Technique for Capacitance Touchscreen Controller Using Differential Sensing,” filed Jan. 7, 2011, issued as U.S. Pat. No. 8,493,356; and U.S. patent application Ser. No. 12/986,905 titled “Method and Apparatus for Generating Piezoelectric Transducer Excitation Waveforms Using A Boost Converter,” filed Jan. 7, 2011, issued as U.S. Pat. No. 8,854,319, the disclosures of which are incorporated by reference in their entireties and for all purposes into the present application.
Number | Date | Country | |
---|---|---|---|
61326830 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12987008 | Jan 2011 | US |
Child | 15176006 | US |