a. Field of Invention
The invention relates generally to automotive interior components, and more particularly, to various soft or flexible automotive interior components formed with and utilizing renewable materials including polylactic acid and soy-based materials.
b. Description of Related Art
In order to minimize adverse impact on the environment, it is increasingly important for manufacturers of automobiles to search for ways to make their products “greener” and more environmentally friendly. One way to do so is to minimize the amount of material that finds its way to the junkyard at the end of an automobile's life cycle. These automobiles, often called “end-of-life vehicles” or “ELVs,” can become eyesores and environmental hazards if not built in a way to minimize the amount of material they leave behind. Additionally, various states as well as the European Union and Japan have passed increasingly stringent laws and regulations regarding end-of-life vehicles. It is therefore desirable for manufacturers of automobiles and automotive parts to build vehicular components out of recyclable, biodegradable, or otherwise “green” materials whenever possible. It is also desirable, from a customer relations standpoint, for manufacturers of automobiles and automobile parts to be able to advertise their products as being “green” or environmentally friendly.
To date, automobile headrests, seats, armrests and other automotive interior components are generally made utilizing at least two separate polymer components: a foamed polymer cushioning material, and a polymer sheeting material to separate the cushioning from the upholstery. The foam used is generally a polyurethane, while the sheeting may be any suitable polymer sheeting material such as PVC or LDPE. These materials can be difficult, and in some cases impossible, to recycle. Although technologies for recycling these materials are improving, it remains difficult to do so in an economically viable manner. That is, the cost of recycling these materials often exceeds the value of the recycled product. Therefore, these materials often end up in junkyards and landfills.
Given the difficulties in recycling materials currently used in vehicle seats and headrests, it is therefore desirable to develop a seat and headrest assembly that uses more earth-friendly, or “green,” materials. One way to do so is to use natural, biodegradable materials. Biodegradable materials will, upon disposal, begin to rapidly breakdown in an environmentally-friendly manner. Compared to conventional materials, biodegradable materials will be broken down by microorganisms and other processes much more quickly.
Another way to lessen the environmental impact of an automobile is to use materials which do not deplete non-renewable resources, such as fossil fuels. Most polymers are made from non-renewable petroleum products, the supply of which will eventually run out. Moreover, increasingly, environmentally-minded consumers demand and value products made from renewable resources.
A typical automobile seat construction is illustrated in U.S. Pat. No. 6,733,072 to Jaillet. Referring to
It is desirable, therefore, to maximize the use in automobiles of materials from natural, renewable resources. It is also desirable to design certain automobile components, especially those which cannot be otherwise easily recycled, using natural, biodegradable materials, and for such materials to be made from renewable resources, and to minimize the amount of fossil fuels needed for their manufacture. There is also a need to design components using such materials which may be used with existing components and assembly methods.
The invention solves the problems and overcomes the drawbacks and deficiencies of prior art automobile interior component designs by providing an automobile interior component including a support layer formed of a foam material and generally covered by a cover layer, and a film layer generally disposed between the support and cover layers to prevent a selected portion of the foam material from directly contacting the cover layer during manufacture of the interior component, and/or to allow placement of the cover layer on a selected portion of the support layer upon application of a vacuum within the film layer. The support, film and/or cover layers may be formed of biodegradable and/or renewable materials.
For the automobile interior component described above, the support layer may contain a renewable foam material, which in an exemplary embodiment may be a soy polyol material. The film layer may be made of a predominately renewable material, which in an exemplary embodiment may be a polylactic acid (PLA) material or a polyhydroxy alkanoate (PHA) material. The support layer may be made of a predominately petroleum based foam material, and the film layer may be a polylactic acid (PLA) material or a polyhydroxy alkanoate (PHA) material. Moreover, the cover layer may be made of a predominately renewable material, and in a particular embodiment, the renewable material may be a polylactic acid (PLA) material or a polyhydroxy alkanoate (PHA) material.
The invention also provides a “pour in place” method of manufacturing an automobile interior component, with the method including the steps of forming a mold in the shape of the interior component, lining an interior of the mold with film and cover layers, filling the interior with a liquid foam material which substantially expands to fill the mold interior to form a support layer, and removing the support layer having the film and cover layers thereon from the mold interior. For the method described above, the support, film and/or cover layers may be formed of a biodegradable and/or renewable materials.
Yet further, the invention provides a “foam on stick” method of manufacturing an automobile interior component, with the method including the steps of forming a mold in shape of the interior component, lining an interior of the mold with a release agent, filling the interior with a liquid foam material which substantially expands to fill the mold interior to form a support layer, removing the support layer from the mold interior, substantially covering the support layer with a film layer, and substantially covering the support and film layers with a cover layer. For the method described above, the support, film and/or cover layers may be formed of a biodegradable and/or renewable materials.
Additional features, advantages, and embodiments of the invention may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detail description serve to explain the principles of the invention. In the drawings:
Referring now to the drawings wherein like reference numerals designate corresponding parts throughout the several views,
Referring to
Specifically, referring to
Referring to
Referring to
Once foamed in the mold and removed as in
For the exemplary headrest application discussed above, the polylactic acid film layer 18 may need only serve the purpose of providing an impermeable layer during the aforementioned manufacture/assembly process, after which, layer 18 may be allowed to biodegrade in a period shortly after completion of the manufacture/assembly process. Alternatively, layer 18 may remain in use in a vehicle without any adverse affects, and may be allowed to biodegrade at the end-of-life stage for a vehicle.
Those skilled in the art would readily appreciate in view of this disclosure that various modifications could be made to the biodegradable and renewable automotive interior component 10 described above, without departing from the scope of the present invention. For example, instead of using a soy based foam layer 16, component 10 may include only a sugar based film layer 18 for providing at least partial biodegrading and renewability capabilities, and a conventional petroleum based polyurethane foam. Moreover, as discussed above, while soy based foam layer 16 may contain soy polyol, and sugar based film layer 18 may be formed primarily of polylactic acid (PLA) or polyhydroxy alkanoate (PHA), other legumes including similar biodegradable and renewable properties as soy based foam layer 16 and film layer 18 (made of a renewable/agriculturally grown material) may be used instead to provide a biodegradable and renewable component 10. For example, the soy based foam layer 16 may be formed from other vegetables or seeds, including for example, palm oil, grape seeds etc. The polymer material for the aforementioned film, cover and/or foam layers may be derived from an agricultural based process which yields sugar, which is then processed to fermentation or polymerization to produce the film, cover or the foam layers.
To summarize, use of soy based foam layer 16 and sugar based film layer 18 in component 10 allows natural and renewable resources to be used in automobiles. Soy based foam layer 16 and sugar based film layer 18 also allows for design of certain automobile components, especially those which cannot be otherwise easily recycled, using natural, biodegradable materials, and further allows use of such materials with existing manufacturing and assembly methods.
Although particular embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those particular embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.