1. Field of the Invention
The present invention is directed to a self-sustained plasma system and method and, in particular to a non-thermal plasma apparatus using a capillary electrode discharge configuration for the scattering, absorption, and/or reflection of electromagnetic radiation, and a process for using the same.
2. Description of Related Art
Plasma is a term used to denote a region of ionized gas. Plasma can be created through bulk heating of the ambient gas (as in a flame) or by the use of electrical energy to selectively energize electrons (as in electrical discharges). Non-Thermal Plasma (NTP) is ionized gas that is far from local thermodynamic equilibrium (LTE) and characterized by having electron mean energies significantly higher than those of ambient gas molecules. In NTP, it is possible to preferentially direct the electrical energy in order to produce highly energetic electrons with minimal, if any, heating of the ambient gas. Instead, the energy is almost entirely utilized to directly excite, dissociate and ionize the gas via electron impact.
There are many different classifications or types of plasma. The present invention is directed to a particular type of plasma referred to as the cold collisional plasma regime. In this regime the temperature of the free electrons in the plasma is about the same as the temperature of the host, background gas. These free electrons interact with the electromagnetic field of the electromagnetic waves. Energy from the electromagnetic field is absorbed by the free electrons and converted into kinetic energy. When the energetic electron collides with a molecule or atom in the background gas, the energy is transferred as heat. The heat capacity of the background gas is sufficient to absorb this heat without an appreciable rise in temperature.
A cold collisional plasma model is used to describe the interaction between the free electrons and the electromagnetic waves. The dispersion relation governing the propagation of electromagnetic waves through the plasma is represented by equation (1) as
where k is the complex wave number, ω is the angular frequency, c is the speed of light in vacuum, and ∈ is the complex dielectric constant. The equation that governs the dielectric constant is
where ne is the electron density, e is the electronic charge, me is the mass of the electron, ν is the collision frequency of the electrons with the host gas, ω is the angular frequency, and ∈0 is the complex dielectric constant. Assuming that the electromagnetic field is proportional to exp[−i(ωt−kz)], the plasma will have an absorption constant α of
α=2Im(k) (3)
where k is the complex wave number and Im(k) is the imaginary component of the wave number.
Thus, the intensity of the electromagnetic waves incident on a plasma decreases by a factor of
after traveling a distance L through the plasma. Electromagnetic waves traveling through a plasma region over a distance L will be attenuated by the amount given in equation (4) as
A(L,α)=4.34αL dB (4)
When the frequency of the electromagnetic waves lies in the region where ω<υ and ων<nee2/meεo, the absorption coefficient α can be approximated by the equation
The absorption coefficient α does not depend on the frequency of the electromagnetic waves over the specified range of validity of equation (5). Instead, the absorption coefficient α is broadband and depends on the charge density ne and the collision frequency ν.
If the collision frequency is relatively small and the electron density is not too large then the plasma acts as a mirror and reflects incident electromagnetic waves. More precisely under the conditions where ω>>υ and ω<√{square root over (nee2/meεo)} the reflectivity of the plasma region approaches unity. It is under these conditions that the plasma blocks or reflects substantially all incident electromagnetic waves. Under all other conditions the amount or level of reflection is less than 100% so some or all incident electromagnetic waves are absorbed.
Other work in this area includes U.S. Pat. No. 5,594,446 to Vidmar, et al., entitled, “Broadband Electromagnetic Absorption via a Collisional Helium Plasma,” which discloses a sealed container filled with Helium in which a non-self-sustained plasma is generated using a plurality of ionization sources, for example, electron-beam guns, as an electromagnetic anechoic chamber. This apparatus is limited in that it requires the use of a sealed container and is limited to use with Helium.
It is therefore desirable to develop a system and method for absorbing or scattering of electromagnetic waves that solves the shortcomings of conventional prior art systems and methods, such as being self-sustaining, that is, not requiring an external means of generating electrons lost through recombination processes, negative ion formation, etc., other than the electric field applied to maintain its equilibrium state. Such external means may include but are not limited to an electron gun, a photo-ionizing source, etc. Furthermore, it is also desirable for the improved system to be more energy efficient, operable under ambient pressure and temperature, and operable with a variety of gasses without requiring a sealed vacuum environment.
The present invention seeks to provide a means of absorbing or scattering electromagnetic waves that is adaptable to a wide variety of practical arrangements. This is achieved by constructing a plasma panel that utilizes self-stabilizing discharge electrodes to produce a self-sustained plasma of sufficient electron density to change the dielectric constant of the panel. Self-stabilizing refers to the active current limiting property of the electrode which results in the suppression of the glow to arc transition (e.g., as disclosed in U.S. Pat. No. 6,005,349), whereas the term self-sustaining refers to a property of the plasma where the maintenance of its equilibrium state does not require an external ionizing source. The following advantages are associated with the present inventive system that employs a capillary discharge electrode plasma panel configuration for absorbing or scattering electromagnetic waves:
a) increased energy efficiency utilization per unit volume of plasma;
b) simplified engineering, easily scaleable reactors operating under ambient pressure and temperature;
c) operates with a variety of gasses, including air, eliminating the need for vacuum systems and freeing the user from the constraints of operating in a sealed environment;
d) modular panel design provides layout flexibility to accommodate the user's specific needs;
e) modular panel design provides the possibility of use as an appliqué to the exterior of a surface to modify the level of electromagnetic exposure of the surface; and
f) substantially reduced power to plasma volume ratio leading to a relatively small system footprint.
One embodiment of the present invention is directed to a self-sustained atmospheric pressure system for absorbing or scattering electromagnetic waves. The system includes an electromagnetic source for producing electromagnetic waves, a plasma panel disposed to receive incident thereon electromagnetic waves produced by the electromagnetic source, a power supply electrically connected to the plasma panel, and a detector for receiving scattered electromagnetic waves reflected off of the plasma panel. The power supply is turnable on/off so as to generate/cease producing a non-thermal plasma between the first dielectric and second dielectric, respectively. The plasma panel comprises: (i) a first dielectric having at least one capillary defined therethrough, (ii) a segmented electrode disposed proximate and in fluid communication with the at least one capillary, and (iii) a second electrode having a first surface disposed closest towards the first dielectric and an opposite second surface. The second electrode is separated a predetermined distance from the first dielectric. A second dielectric layer is coated on the first surface of the second electrode. The assembled second electrode and second dielectric layer have at least one opening defined therethrough.
The present invention is also directed to a method for controlling exposure of an object disposed behind a plasma panel to electromagnetic waves using the system described above. Initially, the object is illuminated with electromagnetic waves radiated from the electromagnetic source and the generation of plasma is controlled by varying the supply of power to the plasma panel. Thus, controlling the generation of plasma is used to vary level and/or duration of exposure of the object to electromagnetic radiation. If the plasma generated is substantially uniform then substantially all of the incident electromagnetic waves will be absorbed when the plasma panel is turned on thereby substantially prohibiting exposure of the object (disposed downstream of the plasma panel) to the electromagnetic waves. On the other hand, when the plasma panel is turned off and the plasma ceases from being produced, thereby allowing the electromagnetic waves to reach the object. The power supply to the plasma panel may be pulsed, periodically or non-periodically, and the exposure of the object to electromagnetic waves detected.
Alternatively, the plasma being generated may be non-uniform so that the plasma panel reflects at least some of the electromagnetic waves incident on its surface. If the electromagnetic source emits multiple wavelength electromagnetic waves, the plasma panel will scatters waves reflected from its surface in different directions according to their respective individual wavelengths. The degree of separation between the various wavelength components depends on arrangement of and spacing between the capillaries. Thus, the system may be used as a diffraction grating for separating multiple wavelength electromagnetic waves into its respective wavelength components.
The foregoing and other features of the present invention will be more readily apparent form the following detailed description and drawing of illustrative embodiments of the invention wherein like reference numbers refer to similar elements throughout the several views and in which:
a) is a top view of an exemplary capillary electrode discharge plasma panel configuration in accordance with the present invention;
b) is cross-sectional view of the plasma panel of
The present invention provides an apparatus for the absorption or scattering of electromagnetic waves and a method for using the same. Absorption is achieved through the introduction of substantially uniform, collisional plasma in the path of propagation of electromagnetic waves. On the other hand, scattering (or diffraction) is achieved through the generation of localized plasma regions, which serve as an array of discrete scattering centers, along the path of propagation of electromagnetic waves.
a) and (b) show an exemplary capillary plasma panel configuration in accordance with the present invention, as described in U.S. patent application Ser. No. 09/738,923, filed on Dec. 15, 2000, which is herein incorporated by reference in its entirety. In particular,
A cover plate 135, preferably one selected so as to prohibit the passage of the electromagnetic waves of interest, may be placed proximate the surface of the second electrode 115 farthest away from the first dielectric 120 to collect the plasma in a space 145 defined therebetween by a spacer 140. The spacer 140 may also serve to hermetically seal the space 145. The thickness of the plasma 130, the electron collision rate, and the density of the electrons produced by the plasma will determine the levels of absorption and reflection of the capillary plasma panel. If the spacing of the capillaries 110 is comparable to the wavelength of the incident electromagnetic waves and the arrangement of the capillaries 110 is sufficient to create a substantially uniform plasma layer in the region between the first dielectric 120 and the assembled second electrode 115 and dielectric layers 100 then the plasma will absorb the incident electromagnetic waves. Otherwise, the capillaries 110 will act as discrete scattering centers and diffraction effects will occur similar to Bragg scattering observed by X-rays incident on crystalline structures.
Thus, while there have been shown, described, and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions, substitutions, and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the invention. For example, it is expressly intended that all combinations of those elements and/or steps which perform substantially the same function, in substantially the same way, to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is also to be understood that the drawings are not necessarily drawn to scale, but that they are merely conceptual in nature. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
All patents, publications, and applications mentioned above are hereby incorporated by reference.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/738,923, filed on Dec. 15, 2000, now U.S. Pat. No. 6,818,193 which claims the benefit of U.S. Provisional Application No. 60/171,198, filed Dec. 15, 1999, and U.S. Provisional Application No. 60/171,324, filed Dec. 21, 1999; and this application claims the benefit of U.S. Provisional Application No. 60/316,058, filed on Aug. 29, 2001. All applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3594065 | Marks | Jul 1971 | A |
3948601 | Fraser et al. | Apr 1976 | A |
4147522 | Gonas et al. | Apr 1979 | A |
4357151 | Helfritch et al. | Nov 1982 | A |
4643876 | Jacobs et al. | Feb 1987 | A |
4698551 | Hoag | Oct 1987 | A |
4756882 | Jacobs et al. | Jul 1988 | A |
4818488 | Jacob | Apr 1989 | A |
4885074 | Susko et al. | Dec 1989 | A |
4898715 | Jacob | Feb 1990 | A |
4931261 | Jacob | Jun 1990 | A |
5033355 | Goldstein et al. | Jul 1991 | A |
5062708 | Liang et al. | Nov 1991 | A |
5084239 | Moulton et al. | Jan 1992 | A |
5115166 | Campbell et al. | May 1992 | A |
5178829 | Moulton et al. | Jan 1993 | A |
5184046 | Campbell | Feb 1993 | A |
5186893 | Moulton et al. | Feb 1993 | A |
5288460 | Caputo et al. | Feb 1994 | A |
5325020 | Campbell et al. | Jun 1994 | A |
5376332 | Martens et al. | Dec 1994 | A |
5387842 | Roth et al. | Feb 1995 | A |
5408160 | Fox | Apr 1995 | A |
5413758 | Caputo et al. | May 1995 | A |
5413759 | Campbell et al. | May 1995 | A |
5413760 | Campbell et al. | May 1995 | A |
5414324 | Roth et al. | May 1995 | A |
5451368 | Jacob | Sep 1995 | A |
5472664 | Campbell et al. | Dec 1995 | A |
5476501 | Stewart et al. | Dec 1995 | A |
5482684 | Martens et al. | Jan 1996 | A |
5498526 | Caputo et al. | Mar 1996 | A |
5549735 | Coppom | Aug 1996 | A |
5593476 | Coppom | Jan 1997 | A |
5593550 | Stewart et al. | Jan 1997 | A |
5593649 | Fisher et al. | Jan 1997 | A |
5594446 | Vidmar et al. | Jan 1997 | A |
5603895 | Martens et al. | Feb 1997 | A |
5620693 | Wensky et al. | Apr 1997 | A |
5637198 | Breault | Jun 1997 | A |
5645796 | Caputo et al. | Jul 1997 | A |
5650693 | Campbell et al. | Jul 1997 | A |
5667753 | Jacobs et al. | Sep 1997 | A |
5669583 | Roth | Sep 1997 | A |
5686789 | Schoenbach et al. | Nov 1997 | A |
5695619 | Williamson et al. | Dec 1997 | A |
5733360 | Feldman et al. | Mar 1998 | A |
5753196 | Martens et al. | May 1998 | A |
5872426 | Kunhardt et al. | Feb 1999 | A |
5939829 | Schoenbach et al. | Aug 1999 | A |
6005349 | Kunhardt et al. | Dec 1999 | A |
6007742 | Czernichowski et al. | Dec 1999 | A |
6016027 | De Temple et al. | Jan 2000 | A |
6027616 | Babko-Malyi | Feb 2000 | A |
6113851 | Soloshenko et al. | Sep 2000 | A |
6146724 | Roth | Nov 2000 | A |
6147452 | Kunhardt et al. | Nov 2000 | A |
6153062 | Saito et al. | Nov 2000 | A |
6170668 | Babko-Malyi | Jan 2001 | B1 |
6228330 | Herrmann et al. | May 2001 | B1 |
6232723 | Alexeff | May 2001 | B1 |
6245126 | Feldman et al. | Jun 2001 | B1 |
6245132 | Feldman et al. | Jun 2001 | B1 |
6255777 | Kim et al. | Jul 2001 | B1 |
6322757 | Cohn et al. | Nov 2001 | B1 |
6325972 | Jacobs et al. | Dec 2001 | B1 |
6333002 | Jacobs et al. | Dec 2001 | B1 |
6365102 | Wu et al. | Apr 2002 | B1 |
6365112 | Baboko-Malyi et al. | Apr 2002 | B1 |
6372192 | Paulauskas et al. | Apr 2002 | B1 |
6375832 | Eliasson et al. | Apr 2002 | B1 |
6383345 | Kim et al. | May 2002 | B1 |
6395197 | Detering et al. | May 2002 | B1 |
6399159 | Grace et al. | Jun 2002 | B1 |
6433480 | Stark et al. | Aug 2002 | B1 |
6451254 | Wang et al. | Sep 2002 | B1 |
6458321 | Platt et al. | Oct 2002 | B1 |
6475049 | Kim et al. | Nov 2002 | B1 |
6497839 | Kasegawa et al. | Dec 2002 | B1 |
6509689 | Kim et al. | Jan 2003 | B1 |
6545411 | Kim et al. | Apr 2003 | B1 |
6548957 | Kim et al. | Apr 2003 | B1 |
6570172 | Kim et al. | May 2003 | B1 |
6580217 | Kim et al. | Jun 2003 | B1 |
6598481 | Lin et al. | Jul 2003 | B1 |
6599471 | Jacobs et al. | Jul 2003 | B1 |
6627150 | Wang et al. | Sep 2003 | B1 |
6632323 | Kim et al. | Oct 2003 | B1 |
6635153 | Whitehead | Oct 2003 | B1 |
6673522 | Kim et al. | Jan 2004 | B1 |
6685523 | Kim et al. | Feb 2004 | B1 |
6818193 | Christodoulatos et al. | Nov 2004 | B1 |
20020011203 | Kim | Jan 2002 | A1 |
20020011770 | Kim et al. | Jan 2002 | A1 |
20020045396 | Kim | Apr 2002 | A1 |
20020092616 | Kim | Jul 2002 | A1 |
20020105259 | Kim | Aug 2002 | A1 |
20020105262 | Kim | Aug 2002 | A1 |
20020122896 | Kim et al. | Sep 2002 | A1 |
20020124947 | Kim | Sep 2002 | A1 |
20020126068 | Kim et al. | Sep 2002 | A1 |
20020127942 | Kim et al. | Sep 2002 | A1 |
20020139659 | Yu et al. | Oct 2002 | A1 |
20020144903 | Kim et al. | Oct 2002 | A1 |
20020148816 | Jung et al. | Oct 2002 | A1 |
20020187066 | Yu et al. | Dec 2002 | A1 |
20030003767 | Kim et al. | Jan 2003 | A1 |
20030015505 | Yu et al. | Jan 2003 | A1 |
20030035754 | Sias et al. | Feb 2003 | A1 |
20030048240 | Shin et al. | Mar 2003 | A1 |
20030048241 | Shin et al. | Mar 2003 | A1 |
20030062837 | Shin et al. | Apr 2003 | A1 |
20030070760 | Kim et al. | Apr 2003 | A1 |
20030071571 | Yu et al. | Apr 2003 | A1 |
20030085656 | Kunhardt et al. | May 2003 | A1 |
20030127984 | Kim et al. | Jul 2003 | A1 |
20030134506 | Kim et al. | Jul 2003 | A1 |
20030141187 | Sohn et al. | Jul 2003 | A1 |
20040022673 | Protic | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
1 084 713 | Mar 2001 | EP |
1 378 253 | Jan 2004 | EP |
WO-0144790 | Jun 2001 | WO |
WO-0249767 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
60171198 | Dec 1999 | US | |
60171324 | Dec 1999 | US | |
60316058 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09738923 | Dec 2000 | US |
Child | 10233176 | US |