Use of substitute 2,4-bis (alkylamino)pyrimidines

Abstract
The use of 2,4—bis(alkylamino)pyrimidines of formula (1) R1 is C1-C12alkyl or C6-C10laryl; R2 is hydrogen or C1-C12alkyl; or R1 and R2 together form a radical of formula (1a) R′ and R″ are each independently of the other hydrogen, C1-C6alkyl or C1-C6alkoxy, R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; R4 is C1-C20alkyl, unsubstituted phenyl, C6-C10aryl, C6-C10aryl—C1-C6alkyl, hydroxy—C1-C6alkyl, di—C1-C6al—ky—lamino—C 1-C6alkyl, mono—C1-C6alkylamino—C1-C6alkyl,—(CH2)2—(O—(CH2)2)1—4-OH or —(CH2)2-(O—(CH2)2)1—4-NH2; R6 is C1-C20alkyl, C6-C10aryl, C6-C10aryl—C1-C6alkyl, hydroxy—C1-C6alkyl, di—C1C6alkylamino—C1-C6alkyl, mono—C1-C6alkylamino—C1-C 6alkyl, —(CH2)2-(O—(CH2)2)1—4-OH or —(CH2)2-(O—(CH2)2)1—4-NH2; or R3 and R 4 and/or R5 and R6, together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring; in the antimicrobial treatment of surfaces.
Description

The present invention relates to the use of substituted 2,4-bis(alkylamino)pyrimidines in the antimicrobial treatment of surfaces and to the preparation of such compounds.


The present invention relates to the use of 2,4-bis(alkylamino)pyrimidines of formula
embedded image

wherein R1 is C1-C12alkyl or C6-C10aryl; R2 is hydrogen or C1-C12alkyl; or R1 and R2 together form a radical of formula
embedded image

wherein R′ and R′″ are each independently of the other hydrogen, C1-C6alkyl or C1-C6alkoxy; R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; R4 is C1-C20alkyl, unsubstituted phenyl, C6-C10aryl, preferred C7-C10aryl; C6-C10aryl—C-


C8alkyl, hydroxy—C1-C6alkyl, di—C1-C6alkylamino—C1-C6alkyl, mono—C1-C6alkylamino—C1-


C8alkyl, —(CH2)2-(O—(CH2)14-OH or —(CH2)2-(O—(CH2)2)14-NH2;


R6 is C1-C20alkyl, C8-C10aryl, C6-C10aryl—C1-C8alkyl, hydroxy—C1-Calkyl, di—C1-C8alkylamino—C1-Calkyl, mono—C1-C6alkylamino—C1-C6alkyl, —(CH2)2-(O—(CH2)2)14-OH or —(CH2)2-(O—(CH2)2)14-NH2; or R3 and R4 and/or R5 and R6 together form a pyrrolidine, piperidine, hexamethyleneimine or


morpholine ring; in the antimicrobial treatment of surfaces.


C1-C20Alkyl is straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, hexyl, isohexyl, heptyl, octyl, isooctyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl or eicosyl. C1-C12Alkyl is straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, seo-butyl, tert-butyl, amyl, isoamyl or tert-amyl, hexyi, isohexyl, heptyl, octyl, isooctyl, nonyl, decyl, undecyl or dodecyl.


C1-C6Alkyl is straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, isohexyl, hexyl, heptyl, octyl or isooctyl.


C1-C4Alkyl is straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl or tert-butyl.


C1-C8Alkyl is straight-chain or branched alkyl, e.g. n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, isohexyl, hexyl, heptyl, octyl or isooctyl, especially hexyl.


C1-6Alkyl is straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, amyl, isoamyl or tert-amyl, hexyl or isohexyl.


C1-C6Alkoxy is a straight-chain or branched radical, e.g. methoxy, ethoxy, propoxy, butoxy, pentyloxy or hexyloxy.


C6-C10Aryl denotes naphthyl and especially phenyl. C6-C10Aryl radicals may be unsubstituted or may carry one or more, for example one, two, three or four, identical or different substituents, which may be in any desired position(s). Examples of such substituents are C1-C4alkyl, halogen, hydroxy, C1-C4alkoxy, trifluoromethyl, cyano, hydroxycarbonyl, C1-C4—alkoxycarbonyl, aminocarbonyl, amino, C1-C4alkylamino, di—C1-C4alkylamino and C1-C4-alkylcarbonylamino.


Special preference is given to compounds of formula (1) wherein R1 is C1-C8alkyl or phenyl; or to compounds of formula (1) wherein R2 is hydrogen or C3-C8alkyl; or to compounds of formula (1) wherein R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; or to compounds of formula (1) wherein R4 is C1-C12alkyl, unsubstituted phenyl, C6-C10aryl—C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4-alkylamino—C1-C4alkyl,


mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or


—(CH2)2-(O—(CH2)2)1, 2-NH2; and R6 is C1-C12alkyl, C6-C10aryl, C6-C10aryl—C1C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1, 2-OH or —(CH2)2-(O—(CH2)2)1, 2-NH2; or to compounds of formula (1) wherein R3 and R4 and/or R6 and R6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.


Preference is given to the use according to the invention of compounds of formula
embedded image

wherein R′ is hydrogen, C1-C3alkyl or C1-C3alkoxy; R″ is C1-C3alkyl or C1-C3alkoxy; R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; and R4 and R6 are each independently of the other C1-C12alkyl, phenyl—C1-C3alkyl, hydroxy—C1-C6-alkyl


or di—C1-C6alkylamino—C1-C6alkyl, mono—C1-C6alkylamino—C1-C6alkyl, —(CH2)2-(O—(CH2)2)1—4OH or —(CH2)2-(O—(CH2)2)1—4-NH2; or R3 and R4 and/or R5 and R6 together form a pyrrolidine, piperidine, hexamethyleneimine or


morpholine ring.


Special preference is given to the use of compounds of formula (1) wherein R1 is C1-C8or phenyl; R2 is hydrogen or hexyl; or R1 and R2 together form a radical of formula (1a) wherein R′ is hydrogen, C1-C3alkyl or C1-C3alkoxy, and R″ is C1-C3alkyl or C1-C3alkoxy; R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; R4 is C1-C12alkyl, unsubstituted phenyl, C6-C10aryl—C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4-alkylamino—C



1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH


or —(CH2)2-(O—(CH2)2)1,2-NH2; and R6 is C1-C12alkyl, C6-C10aryl, C6-C10aryl-C1-C6alkyl, hydroxy—C2C6alkyl, di—C1-C4alkyl—amino—C1-C4alkyl,


mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—CH2)2)1,2-NH2; or R3 and R4 together, and R5 and R6 together, form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.


There are used especially compounds of formula (1) wherein R3 and R5 , and R4 and R6 , have the same meanings.


Espedally preferred compounds are those of the following formulae
embedded image


Examples of compounds used according to the invention are listed in Table 1:

TABLE 1CompoundPurityPurityof formulaStructureMassGC (%)LC (%)PY1 embedded image400 25 (GC)PY2 embedded image473 80 (GC)PY3 embedded image385 78 (GC)PY4 embedded image356100 (GC)PY5 embedded image34998 (GC)PY6 embedded image461 35 (GC)PY7 embedded image292100 (GC)PY8 embedded image304100 (GC)PY9 embedded image332100 (GC)PY10embedded image33997 (LC)PY11embedded image37550 (LC)Py12embedded image39870 (LC)PY13embedded image34194 (LC)PY14embedded image39790 (LC)PY15embedded image28296 (LC)PY16embedded image31882 (LC)PY17embedded image34160 (LC)PY18embedded image31298 (LC)PY19embedded image36984 (LC)PY20embedded image29097 (LC)PY21embedded image31285 (LC)PY22embedded image35289 (LC)PY23embedded image37696 (LC)PY24embedded image29099 (LC)PY25embedded image29292 (LC)PY26embedded image34988 (LC)PY27embedded image29293 (LC)PY28embedded image26477 (LC)PY29embedded image32193 (LC)PY30embedded image43368PY31embedded image37597PY32embedded image41126PY33embedded image43458PY34embedded image37784PY35embedded image43377PY36embedded image31999PY37embedded image35577PY38embedded image37873PY39embedded image37765PY40embedded image30632PY41embedded image33791PY42embedded image34990PY43embedded image40583PY44embedded image29099PY45embedded image32651PY46embedded image34972PY47embedded image27855PY48embedded image30890PY49embedded image41187PY50embedded image46790PY51embedded image35397PY52embedded image41294PY53embedded image37157PY54embedded image33585PY55embedded image45249PY56embedded image43040PY57embedded image33270PY58embedded image30478PY59embedded image31865PY60embedded image28448PY61embedded image40374PY62embedded image31078PY63embedded image40961PY64embedded image38756PY65embedded image44928PY66embedded image39193PY67embedded image33390PY68embedded image38390PY69embedded image36975PY70embedded image35194PY71embedded image34991PY72embedded image37887PY73embedded image41048PY74embedded image36792


The compounds used according to the invention are prepared according to methods known perse. The substituted 2,4-bis(alkylamino)pyrimidines are obtained by reacting the corresponding dichloropyrimidine compound (formula (1b)) with a primary or secondary amine—depending upon the meanings of the radicals R3 and R6 —in a suitable solvent, e.g. DMF, di—oxane, toluene, xylene, ethanol or butanol, and an auxiliary base, e.g. triethylamine, DIEA, sodium carbonate, potassium carbonate, etc., or using an excess of the amine compound, for a period of from 1 to 24 hours at 40-150° C. The reaction takes place according to the following Scheme (I):
embedded image

or the compounds used according to the invention are prepared by condensing a guanidine compound with a suitable β-keto ester using an auxiliary base, e.g. sodium carbonate, potassium carbonate, sodium ethanolate, sodium methanolate or potassium tert-butanolate, in a suitable solvent, e.g. methanol, ethanol, butanol, tert-butanol, tetrahydrofuran, dimethylformamide, acetonitrile, toluene or xyiene, for a period of from 1 hour to 24 hours at a temperature of from 40 to 150° C. The resulting 2-alkylamino-4hydroxy-pyrimidine is then converted into the corresponding 2-alkylamino-4-chloro-pyrimidine compound according to customary methods by means of phosphorus oxychloride. The substituted 2,4-alkylamino-pyrimidines are obtained by reacting the 2-alkylamino—4-chloro-pyrlmidine compound with a primary or secondary amine (R4R5NH) in a suitable solvent, e.g. methanol, ethanol, butanol, tetrahydrofuran, dimethylformamide, dioxane, toluene or xylene, and an auxiliary base, e.g. triethylamine, DIEA, sodium carbonate, potassium carbonate or an excess of amine, for a period of from 1 to 24 hours at a temperature of from 40 to 150° C. The reaction takes place according to the following Scheme (II):
embedded image

The 2,4-bis(alkylamino)pyrimidines used according to the invention exhibit a pronounced antimicrobial action, especially against pathogenic gram-positive and gram-negative bacteria and against bacteria of skin flora, and also against yeasts and moulds. They are therefore suitable especially in the disinfection, deodorisation and the general and antimicrobial treatment of the skin and mucosa and also of integumentary appendages (hair), more especially in the disinfection of the hands and of wounds.


They are therefore suitable as antimicrobial active ingredients and preservatives in personal care preparations, for example shampoos, bath additives, hair-care products, liquid and solid soaps (based on synthetic surfadtants and salts of saturated and/or unsaturated fatty adds), lotions and creams, deodorants, other aqueous or alcoholic solutions, e.g. cleansing solutions for the skin, moist deansing dloths, oils or powders.


The invention therefore relates also to a personal care preparation comprising at least one compound of formula (1) as well as cosmetically tolerable carriers or adjuvants. The personal care preparation according to the invention contains from 0.01 to 15 % by weight, preferably from 0.1 to 10 % by weight, based on the total weight of the composition, of a compound of formula (1) and cosmetically tolerable adjuvants.


Depending upon the form of the personal care preparation, it will comprise, in addition to the 2,4-bis(alkylamino)pyrimidine of formula (1), further constituents, for example sequestering agents, colourings, perfume oils, thickening or solidifying agents (consistency regulators), emollients, UV absorbers, skin-protective agents, antioxidants, additives that improve mechanical properties, such as dicarboxylic acids and/or Al, Zn, Ca and Mg salts of C14-C22 fatty acids, and optionally preservatives.


The personal care preparation according to the invention may be formulated as a water-in-oil or oil-in-water emulsion, as an alcoholic or alcohol-containing formulation, as a vesicular dispersion of an ionic or non-ionic amphiphilic lipid, as a gel, a solid stick or as an aerosol formulation.


As a water-in-oil or oil-in-water emulsion, the cosmetically tolerable adjuvant contains preferably from 5 to 50 % of an oily phase, from 5 to 20 % of an emulsifier and from 30 to 90 % water. The oily phase may contain any oil suitable for cosmetic formulations, e.g. one or more hydrocarbon oils, a wax, a natural oil, a silicone oil, a fatty acid ester or a fatty alcohol. Preferred mono- or poly-ols are ethanol, isopropanol, propylene glycol, hexylene glycol, glycerol and sorbitol.


Cosmetic formulations according to the invention may be used in a variety of fields. Especially the following preparations, for example, come into consideration:


skin-care preparations, e.g. skin-washing and cleansing preparations in the form of tablet-form or liquid soaps, synthetic detergents or washing pastes;


bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath preparations, e.g. bath cubes and bath salts;


skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils;


cosmetic personal care preparations, e.g. facial make-up in the form of day creams or powder creams, face powder (loose or pressed), rouge or cream make-up, eye-care preparations, e.g. eyeshadow preparations, mascara, eyeliner, eye creams or eye-fix creams; lip-care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;


intimate hygiene preparations, e.g. intimate washing lotions or intimate sprays;


foot-care preparations, e.g. foot baths, foot powders, foot creams or foot balsams, special deodorants and antiperspirants or callus-removing preparations;


light-protective preparations, such as sun milks, lotions, creams and oils, sun blocks or tropicals, pre-tanning preparations or after-sun preparations;


skin-tanning preparations, e.g. self-tanning creams;


depigmenting preparations, e.g. preparations for bleaching the skin or skin-lightening preparations;


insect-repellents, e.g. insect-repellent oils, lotions, sprays or sticks;


deodorants, such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons;


antiperspirants, e.g. antiperspirant sticks, creams or roll-ons;


preparations for cleansing and caring for blemished skin, e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks;


hair-removal preparations in chemical form (depilation), e.g. hair-removing powders, liquid hair-removing preparations, cream- or paste-form hair-removing preparations, hair removing preparations in gel form or aerosol foams;


shaving preparations, e.g. shaving soap, foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or after-shave lotons;


fragrance preparations, e.g. fragrances (eau de Cologne, eau de toilette, eau de parfum, parfum de toilette, perfume), perfume oils or cream perfumes;


dental-care, denture-care and mouth-mare preparations, e.g. toothpastes, gel toothpastes, tooth powders, mouthwash concentrates, anti-plaque mouthwashes, denture deaners or denture fixatives;


cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g. hair-waving preparations for permanent waves (hot wave, mild wave, cold wave), hair-straightening preparations, liquid hair-setting preparations, hair foams, hairsprays, bleaching preparations, e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders, bleaching pastes or oils, temporary, semi-permanent or permanent hair colourants, preparations containing seif-oxidising dyes, or natural hair colourants, such as henna or camomile.


An antimicrobial soap has, for example, the following composition: 0.01 to 5% by weight of a compound of formula (1) 0.3 to 1% by weight titanium dioxide 1 to 10% by weight stearic acid ad 100% soap base, e.g. the sodium salts of tallow fatty acid and coconut fatty acid or glycerol.


A shampoo has, for example, the following composition: 0.01 to 5% by weight of a compound of formula (1) 12.0% by weight sodium laureth-2-sulfate 4.0% by weight cocamidopropyl betaine 3.0% by weight NaCI and water ad 100%.


A deodorant has, for example, the following composition: 0.01 to 5% by weight of a compound of formula (1) 60% by weight ethanol 0.3% by weight perfume oil and water ad 100%.


The invention relates also to an oral composition containing from 0.01 to 15% by weight, based on the total weight of the composition, of a compound of formula (1) and orally tolerable adjuvants.


Example of an oral composition: 10% by weight sorbitol 10% by weight glycerol 15% by weight ethanol 15% by weight propylene glycol 0.5% by weight sodium lauryl sulfate 0.25% by weight sodium methyloocyl taurate 0.25% by weight polyoxypropylene/polyoxyethylene block copolymer 0.10% by weight peppermint flavouring 0.1 to 0.5% by weight of a compound of formula (1) and 48.6% by weight water.


The oral composition according to the invention may be, for example, in the form of a gel, a paste, a cream or an aqueous preparation (mouthwash).


The oral composition according to the invention may also comprise compounds that release fluoride ions which are effective against the formation of caries, for example inorganic fluoride salts, e.g. sodium, potassium, ammonium or calcium fluoride, or organic fluoride salts, e.g. amine fluorides, which are known under the trade name Olafluor.


The 2,4-bis(alkylamino)pyrimidines of formula (1) used according to the invention are also suitable for the treatment, especially preservation, of textile fibre materials. Such materials are undyed and dyed or printed fibre materials, e.g. of silk, wool, polyamide or polyurethanes, and especially cellulosic fibre materials of all kinds. Such fibre materials are, for example, natural cellulose fibres, such as cotton, linen, jute and hemp, as well as cellulose and regenerated cellulose. Preferred suitable textile fibre materials are made of cotton.


The 2,4-bis(alkylamino)pyrimidines according to the invention are also suitable for the treatment of plastics, especially for imparting antimicrobial properties to or preserving plastics, e.g. polyethylene, polypropylene, polyurethane, polyester, polyamide, polycarbonate, latex etc.. Fields of use therefor are, for example, floor coverings, plastics coatings, plastics container and packaging materials; kitchen and bathroom utensils (e.g. brushes, shower curtains; sponges, bathmats), latex, filter materials (air and water filters), plastics articles used in the field of medicine, e.g. dressing materials, syringes, catheters etc., so-called “medical devices”, gloves and mattresses.


Paper, for example papers used for hygiene purposes, may also be provided with anti-microbial properties using the 2,4-bis(alkylamino)pyrimidines of formula (1) according to the invention.


It is also possible for nonwovens, e.g. nappies/diapers, sanitary towels, panty liners, and doths for hygiene and household uses, to be provided with antimicrobial properties in accordance with the invention.


The 2,4-bis(alkylamino)pyrimidines of formula (1) are also used in washing and deaning formulations, e.g. in liquid and powder washing agents or softeners.


The 2,4-bis(alkylamino)pyrimidines of formula (1) may especially also be used in household and all-purpose cleaners for deaning and disinfecting hard surfaces.


A cleaning preparation has, for example, the following composition: 0.01 to 5% by weight of a compound of formula (1) 3.0% by weight octyl alcohol 4EO 1.3% by weight fatty alcohol C8-C10polyglucoside 3.0% by weight isopropanol ad 100% by weight water.


In addition to preserving cosmetic and household products, the preservation of technical products, the provision of technical products with antimicrobial properties and use as a biocide in technical processes are also possible, for example in paper treatment, especially in paper treatment liquors, in printing ink thickeners consisting of starch or of cellulose derivatives, in surface-coating compositions and in paints.


The 2,4-bis(alkylamino)pyrimidines of formula (1) are also suitable for the antimicrobial treatment of wood and for the antimicrobial treatment of leather, the antimicrobial preservation of leather and the provision of leather with antimicrobial properties.


The compounds according to the invention are also suitable for the protection of cosmetic products and household products from microbial spoilage.


In addition to their generally antimicrobial action, the 2,4bis(alkylamino)pyrImidlnes of formula (1) according to the invention are moreover capable of penetrating bloflims on living and non-living surfaces, of preventing the adhesion of bacteria to surfaces and any further build-up of the bloflim, of detaching such biofilm and/or inhibiting the further growth of the biofilm-forming micro-ogranisms in the biological matrix, or of killing such micro-organisms.


Biofilms are understood, very generally, to be aggregations of living and dead micro-organisms, especially bacteria, that adhere to living and non-living surfaces, together with their metabolites in the form of extracellular polymeric substances (EPS matrix), e.g. polysaccharides. The activity of antimicrobial substances that normally exhibit a pronounced growth-inhiblbng or lethal action with respect to planktonic cells may be greatly reduced with respect to microorganisms that are organised in bloflims, for example because of inadequate penetration of the active substance into the biological matrix.


In the present invention, this relates, very especially, to bioflims on human tooth surfaces and oral mucosa, which play a crucial role in the onset of degenerative diseases in the oral cavity, e.g. caries or periodontitis, as a result of the biofilm-forming micro-organisms or their metabolites.


The following Examples illustrate, but do not limit, the present invention.







IMPLEMENTATION EXAMPLES
Example 1
Preparation of N,N′-bis(2A-dioctvlamino—6-methyliprimidine (PY5)

8.15 g of 2,4-dichloro-6-methyl-pyrimidine (50 mmol) are heated with 19.39 g of octylamine (150 mmol) and 20.73 g of potassium carbonate (150 mmol) in 20 ml of dioxane for 16 hours at 1009°C. After cooling, the product is taken up in 300 ml of ethyl acetate and washed with 0.5 mol/litre of sodium hydroxide solution and saturated sodium chloride solution. The product is concentrated in vacuo and then octylamine is distilled off for 2 hours at 140° C. under a rotary slide valve vacuum. 12.95 g of N,N′—bis(2,4-dioctylamino)-6-methylpyrimidine (37.15 mmol, 74.3% of theory) are obtained. The end product is analysed by NMR, HPLC—MS, GC and HPLC. GC: 98% area M+1=349 NMR (1H in DMSO): 0.85, t, 6H; 1.25, m, 20H; 1.5, m, 4H; 2, s, 3H; 4.2, m, 4H; 5.5, s, 1 H; 6.2, s, 1H; 6.6; s, 1H.


Example 2
Preparation of N.N′—bis(2.4-dibenzylamino)-6-methylpyrimidine (PY8)

8.15 g of 2,4-dichloro-methyl-pyrimidine (50 mmol) are heated with 16 g of benzylamine (150 mmol) and 20.73 g of potassium carbonate (150 mmol) in 20 ml of dioxane for 16 hours at 100° C. After cooling, the product is taken up in 300 ml of ethyl acetate and washed with 0.5 mol/litre of sodium hydroxide solution and saturated sodium chloride solution. The product is concentrated in vacuo and then benzylamine is distilled off for 2 hours at from 105 to 120° C. under a rotary slide valve vacuum, and the product is recrystallised from isopropanol. N,N′—Bis(2,4-dibenzylamino)-6-methylpyrimidine is obtained in a yield of 76%. Purity: GC 100% NMR (1H in DMSO, ppm): 2, s, 3H; 4.45, m, 4H; 5.6, s, 1H; 6.95, s, 1H; 7.25, m, 11H.


Example 3
Preparaton of N,N′-bis(2.4-diphenylethyIamino)6-methylpyrimidine (PY9)

8.15 9 of 2,4-dichloro6-methyl-pyrimidine (50 mmol) are heated with 18.17 9 of phenyl-ethylamine (150 mmol) and 20.73 g of potassium carbonate (150 mmol) in 20 ml of dioxane for 16 hours at 100° C. After cooling, the product is taken up in 300 ml of ethyl acetate and washed with 0.5 mol/litre of sodium hydroxide solution and saturated sodium chloride solution. The product is concentrated in vacuo and then phenylethylamine is distilled off for 2 hours at 150° C. under a rotary slide valve vacuum and the product is recrystallised from isopropanol. N,N′-Bis(2,4-diphenylethylamino)-6-methylpyrlmidine is obtained in a yield of 98%. Purity: GC 100% HPLC 98% NMR (I1H in DMSO, ppm): 2, s, 3H; 2.9, t, 4H; 3.45, m, 4H; 5.6, 8, 1H; 6.45, 8, IH; 6.8, 8, 1-H; 7.25, m, 10OH.


Example 4
Preparatin of 4-hydroxv-2-phenylamino-6-phenvlpvrlmldine

7 g (20 mmol) of phenylguanidine carbonate are reacted in 5 ml of absolute ethanol with 27.2 9 (80 mmol) of a 20% sodium ethanolate solution. 11.5 9 of ethylbenzoyl acetate (59.8 mmol) are added dropwise thereto in the course of 15 minutes at 75° C. The reaction mass is then stirred for 15 hours at 70° C. and, after cooling, is extracted with 50 ml of di—chloromethane and washed three times with 40 ml of water/3 ml of acetic acid. The organic phase is dried over sodium sulfate and concentrated by evaporation. 5.86 9 (55.7% of theory) of 4-hydroxy-2-phenylamino-6-phenylpyrimidine are obtained.


NMR (1H in DMSO, ppm): 6.45, s,1H; 7.05, t, 1H; 7.4, t, 2H; 7.5, m, 3H; 7.75, d, 2H; 8, m, 2H;9,s, 11H; 11.05,s, 1H.


Example 5
Preparation of 4-chloro-2-phenvlamino-6-phenvlgvrimidlne

2 g (7.6 mmol) are reacted in 10 ml of toluene with 3.5 g of phosphorus oxychloride. The reaction mass is heated to 80° C and 1.53 g of triethylamine (15.1 mmol) are added dropwise thereto in the course of 20 minutes. After a reaction time of 2 hours at 800C, the mass is cooled in an ice bath and 28 ml of 4M sodium hydroxide solution are added dropwise thereto. The aqueous phase is extracted three times with ethyl acetate. After concentration of the organic phase by evaporation, 2.12 9 (99.1% of theory) of 4- chloro-2-phenyl-amino-6-phenylpyrimidine are obtained. NMR (1H in DMSO, ppm): 7, t, 1IH; 7.3, t, 2H; 7.55, m, 4H; 7.8, d, 2H; 8.2, m, 2H; 10.05, s, 11H.


Example 6
Reaction of 4-chloro-2-phenylamino—6-phenvylvrimidine with amines

The reactions are carried out in parallel robotically. 56.3 mg of 4-chlorm-2-phenylamino-6-phenylpyrimidine (0.2 mmol) are dissolved in 0.5 ml of dioxane. 38.7 mg of diisopropylamine (0.3 mmol) and 3 mmol of amine are added thereto and the reaction mixture is heated at 85° C. for 21 hours. After cooling, the mass is extracted with 2 ml of dichioromethane and washed three times with 1.125 ml of acetic add (13% in water) and 1.2 ml of sodium hydroxide solution. The organic phases are dried and lyophillsed.


The compounds (PY10) - (PY29) (see Table 1) are prepared according to this method. They were analysed by LC-MS.
embedded image


Example 7
Preparation of the compound of formula C

34.65 g of octylguanidine acetate A (0.15 mol) are reacted in 30 ml of ethanol with 102 g of 20% sodium ethanolate solution in ethanol (0.3 mol). The reaction mixture is heated to 75° C., and 26.15 g of methyl acetate B (0.22 mol) are added thereto in the course of one hour, and the mixture is stirred for 12 hours. After cooling, the reaction mass is diluted with dichloro-methane and washed three times with water/acetic add and twice with sodium hydroxide so- luton. The combined alkaline aqueous phases are adjusted to pH 6 with acetic acid and ex- tracted with dichloromethane, dried over sodium sulfate and concentrated by evaporation. 30.74 9 of compound C (87% of theory) are obtained. Purity in HPLC: 99% NMR (in CD2CI2 in ppm): 0.9, t, 3H; 1.3, m, 1 OH; 1.6, qt, 2H; 2.2, s, 3H; 3.35, m, 2H; 5.6, s, 1H; 6.7, s, IH.


Example 8
Preparation of the compound of formula D

18.96 g (0.08 mol) of the compound of formula C are reacted in 60 ml of toluene with 36.85 g of phosphorus oxychloride. The reaction mass is heated to 80° C. After a reaction time of 2 hours at 80° C., the mass is cooled in an Ice bath and 4M sodium hydroxide solution is added dropwise thereto. The aqueous phase is extracted three times with toluene. After concentration of the organic phase by evaporation, 20.04 g (98% of theory) of the compound of formula D are obtained. Purity in GC: 100% NMR (in CD2CI2 in ppm): 0.8, t, 3H; 1.3, m, 10H; 1.55, qt, 2H; 2.2, s, 3H; 3.3, q, 2H; 5.25, a, 1H; 6.35, s, 1H.


Example 9
Preparation of the compound of formula PY44

12.96 g of compound D (0.048 mol) are mixed with 6.19 g of di-isopropylamine (0.048 mol) in 60 ml of dioxane and heated at reflux. 4.9 g of pyrrolidine (0.057 mol) are added dropwise thereto in the course of 25 minutes and the reaction mixture is stirred at reflux for 29 hours. After cooling, the reaction mass is diluted with dichloromethane and washed three times with water/acetic acid and twice with sodium hydroxide solution. The organic phase is dried over sodium sulfate and concentrated by evaporation. 12.73 g of compound PY44 (91.4% of theory) are obtained. Purity in GC: 100% NMR (CD2CI2 in ppm): 0.8, t, 3H; 1.2, m, 10H; 1.45, qt, 2H; 1.85, m, 4H; 2, 5, 3H; 3.2—3.3, m (2 signals), 6H; 4.7, s, 1 H; 5.45 s, 1H.
embedded image


Example 10
Preparation of the compound of formula F

18.48 g of octylguanidine acetate A (0.08 mol) are reacted in 15 ml of ethanol with 54.4 g of 20% sodium ethanolate solution in ethanol (0.1 6 mol). The reaction mixture is then heated to 75° C and 24 9 of methyl 2-hexylacetoacetate E (0.12 mol) are added thereto in the course of 30 minutes, and the mixture is sUrred overnight. After cooling, the reaction mass is diluted with dichloromethane and washed twice with water/acetic acid. The organic phase is dried over sodium sulfate and concentrated by evaporation. The crude product is recrystallised from acetone. 14.86 g of compound F (57.9% of theory) are obtained. LC-MS: a compound having M =321.


Example 11
Preparation of the compound of formula G

13.16 g (0.041 mol) of a compound of formula F are reacted in 40 ml of toluene with 18.89 g of phosphorus oxychloride. The reaction mass is heated to 80° C. After a reaction time of 2 hours at 80° C., the mass is cooled in an ice bath and 4M sodium hydroxide solution is added dropwise thereto. The aqueous phase is extracted three times with toluene.


After concentration of the organic phase by evaporation, 13.65 g (98% of theory) of the compound of formula G are obtained. Purity in GC: 100% NMR (CD2CI2 in ppm): 0.9, m, 6H; 1.3, m, 18H; 1.5, m, 2H; 1.6, m, 2H; 2.4, 8, 3H; 2.6, t, 2H; 3.4, q, 2H; 5.6, s, 1H.


Example 12
Preparation of the compound of formula PY55

11.88 g of compound G (0.035 mol) are stirred with 51.87 g of 1,8-diamino—3, 6-dioxaoctane (0.35 mol) and 6.77 g of diisopropylamine (0.0525 mol) at 110° C. for 23 hours. After cooling, the reaction mass is diluted with dichloromethane and washed three times with water and twice with waterlacetic acid. The combined aqueous phases are adjusted to pH 9 with sodium hydroxide solution and extracted with dichloromethane, dried over sodium sulfate and concentrated by evaporation. 14.45 g of compound PY55 (64.6% of theory) are obtained. Purity in GC: 100% NMR (CD2CI2 in ppm): 0.9, m, 6H; 1.3, m, 20H; 1.55, m, 2H; 2.15, s, 3H; 2.3, t, 2H; 2.4, s, 2H; 2.8, t, 2H; 3.3, q, 2H; 3.45, t, 2H; 3.6, m, 8H; 5.1, s, 1H; 5.7, s, 1H.


Example 13
Determination of the minimum inhibiting concentration (MIC value) in microtitre plates

Nutrient medium: Casein/soybean flour peptone bouillon for the preparation of the precultures of the test bacteria and yeast.


Examples of test organisms:





    • Bacteria: Staphylococcus aureus ATCC 6583
      • Corynebacterium xerosis ATCC 373 (a)
      • Actinomyces viscosus ATTC 43146
      • Escherichia Coli ATTC 10536





Procedure:

The test substances are predissolved in dimethyl sulfoxide (DMSO) and tested in a serial dilution of 1:2.


Bacteria and yeast are cultured overnight in CASO bouillon.


All test organism suspensions are adjusted to an organism count of 1-5×108 CFU/ml with 0.85% sodium chloride solution. The test substances are prepipetted into microtitre plates in an amount of 8 μl per well.


The previously adjusted organism suspensions are diluted 1:100 in CASO bouillon and added to the test substances in an amount of 192 μl per well.


The test batches are incubated for 48 hours at 37° C. After incubation, the growth is deternined by reference to the turbidity of the test batches (optical density) at 620 nm in a microplate reader.


The minimum inhibiting concentration (MIC value) is the concentration of substance at which (compared with the growth control) an appreciable inhibition of the growth (≲20 % growth) of the test organisms is ascertained.


Three microtitre plates are used for each test organism and substance concentration.


Table 2 shows the microbiological test results:

TABLE 2Determination of the minimum inhibiting concentration in microtitre platesCompoundof formulaMIC saMIC ecMIC cxMIC av(PY1)11>12066(PY2)105>120<3.7526(PY3)43>1201111(PY4)79>1202020(PY5)<3.75>120<3.75<3.75(PY6)51>1201351(PY7)32>12048(PY8)173488(PY9)537<3.75<3.75(PY10)8>120<3.75(PY11)25>120<3.75(PY12)3264<3.75(PY13)9>120<3.75(PY14)5811629(PY15)15>1207(PY16)37>120<3.75(PY17)4>120<3.75(PY18)<3.75>120<3.75(PY19)3288(PY20)292915(PY21)<3.75>120<3.75(PY22)40>12020(PY23)160>12040(PY24)>120>12016(PY25)76>12010(PY26)>120>12015(PY27)>120>12060(PY28)4016010(PY29)10>120<3.75PY3016.5>12016.58.25PY31<3.75>120<3.75<3.75PY3219.5>120<3.75<3.75PY33<3.759.75<3.75<3.75PY348>120<3.75<3.75PY3517348.58.5PY36<3.75>120<3.75<3.75PY37<3.75>120<3.75<3.75PY3833668.258.25PY39<3.75>120<3.75<3.75PY409>120<3.75<3.75PY4164>1206464PY42<3.75>120<3.75<3.75PY43275413.56.75PY44<3.7530<3.75<3.75PY45<3.7558<3.75<3.75PY467.25>120<3.75<3.75PY47<3.7535<3.75<3.75PY483212888PY4964>1203216PY5064643216PY51>120>120<3.75<3.75PY529.259.25<3.75<3.75PY53108>120<3.75<3.75PY54<3.7536<3.75<3.75PY55<3.75<3.75<3.75<3.75PY5618.59.25<3.75<3.75PY579.5>120<3.75<3.75PY5817>120<3.75<3.75PY5919.5>1209.759.75PY6027>12013.56.75PY6118.5>1209.259.25PY6276>120199.5PY638.75>120<3.75<3.75PY6436>120<3.75<3.75PY65<3.75<3.75<3.75<3.75PY66<3.75>120<3.757PY67<3.75>120<3.75<3.75PY686.25>120<3.75<3.75PY69<3.75>120<3.75<3.75PY7031>120<3.75<3.75PY719>120<3.75<3.75PY723115.5<3.75<3.75PY731818<3.75<3.75PY7434>1208.58.5


Example 14
Determination of the minimum inhlbitina concentration MIC iooml of a broadened organism spectrum

Medium: Caseinisoybean flour peptone agar ( Merck) *Sabouraud 4% glucose agar (Merck)


Dilution medium: sterile 0.85% NaCI solution


Test organisms: Staphylococcus aureus ATCC 6853 and 9144

    • Staphylococcus epidermidis ATCC 12228
    • C. xerosis ATCC 373 **
    • C. minutissimum ATCC 23348
    • Proplonibacterium acnes ATCC 6919
    • Escherichia coli ATCC 10536 and NCTC 8196
    • Proteus vulgaris ATCC 6896
    • Klebsiella pneumoniae ATCC 4352
    • Salmonella choleraesuis ATCC 9184
    • Pseudomonas aeruginosa ATCC 15442
    • *Candida albicans ATCC 10231
    • *Aspergillus niger ATCC 6275


Incubation: 24 hours at 37° C.

    • *3 days at 28° C.


Test solution: 1% stock solutions of all the test substances in a suitable solvent are

    • prepared and diluted in serial dilutions (1:10, 1:100 and 1:1000 dilution),
    • where possible diluted to such an extent that the end concentrations
    • in agar are from 500 ppm to 10 ppm.


Test principle:


0.3 ml of the dilution stage in question is mixed with 15 ml of still-liquid nutrient medium. When the nutrient substrate has solidified, 10 μl portions of a suitable organism dilution of the test strains in 0.85% NaCI solution are spotted onto the agar medium:

TABLE 3Determination of the minimum inhibiting concentrationMIC [ppm] of a broadened organism spectrumCompound of formulaMicroorganism(PY5)(PY8)(PY9)Staphylococcus aureus ATCC 65383.9131.257.8Staphylococcus aureus ATCC 91443.9131.257.8Staphylococcus epidermidis ATCC 122283.9131.257.8C. xerosis ATCC 373**7.817.81.95C. minutissimum ATCC 233483.9115.633.9Propionibacterium acnes ATCC 6919***3.9131.257.8Escherichia coli NCTC 8196>100031.2515.63Escherichia coli ATCC 10536>100062.5250Proteus vulgaris ATCC 6896>1000>500>500Klebsiella pneumoniae ATCC 435225015.637.8Salmonella choleraesuis ATCC 9184>100062.5250Pseudomonas aeruginosa ATCC 15442>1000>500>500Candida albicans ATCC 10231>100025062.5Aspergillus niger ATCC 6275>1000250250









TABLE 3a










Determination of the minimum inhibiting concentration


MIC°[ppm] of a broadened organism spectrum











Microorganisms
(PY44)
(PY55)
















Staphylococcus aureus ATCC 6538

7.8
7.8




Staphylococcus aureus ATCC 9144

7.8
3.9




Staphylococcus epidermidis ATCC 12228

3.9
7.8




C. xerosis ATCC 373**

3.9
3.9




C. minutissimum ATCC 23348**

3.9
3.9




Propionibacterium acnes ATCC 6919***

3.9
3.9




Escherichia coli NCTC 8196

15.63
7.8




Escherichia coli ATCC 10536

62.5
7.8*




Proteus vulgaris ATCC 6896

>500
>500




Klebsiella pneumoniae ATCC 4352

7.8
15.63




Salmonella choleraesuis ATCC 9184

62.5
7.8




Pseudomonas aeruginosa ATCC 15442

>500
>500




Candida albicans ATCC 10231

250
125




Aspergillus niger ATCC 6275

500
500









*very slow growth, no growth in the next dilution stage






**3 days incubation,






***3 days incubation under anaerobic conditions







Example 15
Determination of the minimum inhibiting concentration MIC (ppm) of a broadened organism spectrum: oral organisms

Medium: thioglycolate bouillon with hemin and menadione

    • Columbia bouillon with hemin and menadione for P. gingivalis
    • and P. nigrescens


Dilution medium: the appropriate amount of the substances was pipetted directly into

    • the medium.


Test organisms: Actinobacillus actinomycetemoomitans ATCC 43718

    • Streptococcus gordonil ATCC 10558
    • Streptococcus mutans ATCC 33402
    • Actinomyces viscosus ATCC 43146
    • Fusobacterium nucleatum subsp. polymorphum ATCC 10953
    • Porphyromonas gingivalis ATCC 33277
    • Prevotella nigrescens ATCC 33563


Incubation: 7-10 days at 37° C anaerobic, or 24 hours aerobic with 10% CO2 for

      • Streptococci and A. actinomycetemcomitans


Test solution: Stock solutions of all the test substances in ethanol at 1500 ppm (w/w)

    • are used.


Test princlple:


Bacteria are removed from blood agar plates using cotton wool buds and a suitable optical density (McFarland 0.5) is adjusted in an appropriate medium; that solution is used undiluted for F. nucleatum and P. nigrescens, and in a dilution of 1:20 for the other strains. 0.1 ml of bacterial culture is added per 2 ml of active ingredient solution and incubation is carried out as described above.

TABLE 4Determination of the minimum inhibiting concentration MIC [ppm] ofa broadened organism spectrum: oral organismsCompound of formulaMicroorganism(PY5)(PY8)(PY9)A. actinomycetemcomitans ATCC43718>15>15>15S. gordonii ATCC 1055815>1515S. mutans ATCC 334023.75>1515A. viscosus ATCC 431463.753.753.75F. nucleatum subsp. Polymorphum>151515ATCC 10953P. gingivalis ATCC 32777.5157.5P. nigrescens ATCC 3356315157.5Microorganism(PY44)(PY55)A. actinomycetemcomitans ATCC 43718>1515S. gordonii ATCC 105587.53.8S. mutans ATCC 334027.57.5A. viscosus ATCC 431463.83.8F. nucleatum subsp. polymorphum3.87.5ATCC 10953P. gingivalis ATCC 32773.83.8P. nigrescens ATCC 335633.83.8

Claims
  • 1-21. (canceled)
  • 22. A method for the antimicrobial treatment of a surface, which comprises contacting said surface with an antimicrobially effective amount of a 2,4-bis(alkylamino)pyrimidine of formula
  • 23. A method according to claim 22, wherein R1 is C1-C8alkyl or phenyl.
  • 24. A method according to claim 22, wherein R2 is hydrogen or C3-C8alkyl.
  • 25. A method according to claim 22, wherein R3 and R5 are each independently of the other hydrogen or C1-C8alkyl.
  • 26. A method according to claim 22, wherein R4 is C1-Cl2alkyl, unsubstituted phenyl, C6-C10aryl-C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—(CH2)2)1,2-NH2; and R6 is C1-Cl2alkyl, C6-C10aryl, C6-C10aryl-C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1 2-OH or —(CH2)2-(O—(CH2)2)1 2-NH2.
  • 27. A method according to claim 22, wherein R1 is C1-C8alkyl or phenyl; R2 is hydrogen or hexyl; and R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; R4 is C1-Cl2alkyl, unsubstituted phenyl, C6-C10aryl-C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—(CH2)2)1,2-NH2; and R6 is C1-Cl2alkyl, C6-C10aryl, C6-C10aryl-C1-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—(CH2)2)1,2-NH2; or R3 and R4 and/or R5 and R6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.
  • 28. A method according to claim 22, relating to compounds of formula
  • 29. A method according to claim 22, wherein R1 is C1-C4alkyl or phenyl; R2 is hydrogen or hexyl; or R. and R2 together form a radical of formula (la) as defined in claim 22, wherein R′ is hydrogen, C1-C3alkyl or C1-C3alkoxy, and R″ is C1-C3alkyl or C1-C3alkoxy; R3 and R5 are each independently of the other hydrogen or C1-C8alkyl; R4 is C1-Cl2alkyl, unsubstituted phenyl, C6-Cl0aryl-C1-C6alkyl, hydroxy—C2-C6alkyl, di—C,-C4alkylamino—C,-C4alkyl, mono—C,-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—(CH2)2)1,2-NH2; and R6 is C1-Cl2alkyl, C6-Cl0aryl, C6-C10aryl-Cl-C6alkyl, hydroxy—C2-C6alkyl, di—C1-C4alkylamino—C1-C4alkyl, mono—C1-C4alkylamino—C1-C4alkyl, —(CH2)2-(O—(CH2)2)1,2-OH or —(CH2)2-(O—(CH2)2)1,2-NH2; or R3 and R4 together, and R5 and R6 together, form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.
  • 30. A method according to claim 22, wherein R3 and R5, and R4 and R6, have the same meanings.
  • 31. A method according to claim 22, wherein the 2,4-bis(alkylamino)pyrimidine is of the formula
  • 32. A process for the preparation of a compound of formula (1) according to claim 22, which comprises reacting a dichloropyrimidine compound of formula (1 b), wherein R1 and R2 are as defined in claim 22, with a primary or secondary amine, wherein R3, R4, R5 and R6 are as defined above in claim 22, in a suitable solvent and an auxiliary base or using an excess of amine to form a compound of formula (1) according to the following Scheme:
  • 33. A method according to claim 22, wherein the surface comprises textile fibre materials.
  • 34. A method according to claim 22, wherein the treatment with a compound of formula (1) results in preservation.
  • 35. A method according to claim 22, wherein a compound of formula (1) is incorporated into washing and cleaning formulations.
  • 36. A method according to claim 22 wherein a compound of formula (1) imparts antimicrobial properties to, and preserves, plastics, paper, nonwovens, wood or leather.
  • 37. A method according to claim 22, wherein a compound of formula (1) imparts antimicrobial properties to, and preserves, technical products selected from printing ink thickners consisting of starch or of cellulose derivatives, surface-coating compositions and paints.
  • 38. A method according to claim 22, wherein a compound of formula (1) functions as a biocide in technical processes.
  • 39. A method according to claim 22, wherein a compound of formula (1) is incorporated into a skin-care preparation or mouth-care preparation.
  • 40. A personal care preparation containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and a cosmetically tolerable adjuvant.
  • 41. An oral composition containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and an orally tolerable adjuvant.
  • 42. A skin-care preparation containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and adjuvants tolerated by the skin.
Priority Claims (1)
Number Date Country Kind
03102296.5 Jul 2003 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP04/51516 7/16/2004 WO 1/23/2006