This invention relates generally to infiltrated matrix drilling products including, but not limited to, matrix drill bits, bi-center bits, core heads, and matrix bodied reamers and stabilizers. More particularly, this invention relates to hard-faced infiltrated matrix drilling products and the methods of hard-facing such items.
The bit body 110 includes a plurality of blades 130 extending from the drill bit face 111 of the bit body 110 towards the threaded connection 116. The drill bit face 111 is positioned at one end of the bit body 110 furthest away from the shank 115. The plurality of blades 130 form the cutting surface of the infiltrated matrix drill bit 100. One or more of these plurality of blades 130 are either coupled to the bit body 110 or are integrally formed with the bit body 110. A junk slot 122 is formed between each consecutive blade 130, which allows for cuttings and drilling fluid to return to the surface of the wellbore (not shown) once the drilling fluid is discharged from the nozzles 114. A plurality of cutters 140 are coupled to each of the blades 130 and extend outwardly from the surface of the blades 130 to cut through earth formations when the infiltrated matrix drill bit 100 is rotated during drilling. The cutters 140 and portions of the bit body 110 deform the earth formation by scraping and/or shearing. The cutters 140 and portions of the bit body 110 are subjected to extreme forces and stresses during drilling which causes surface of the cutters 140 and the bit body 110 to wear. Eventually, the surfaces of the cutters 140 and the bit body 110 wear to an extent that the infiltrated matrix drill bit 100 is no longer useful for drilling and is either repaired for subsequent use or is disposed and replaced by another drill bit. Although one embodiment of the infiltrated drill bit has been described, other infiltrated drill bit embodiments known to people having ordinary skill in the art are applicable to exemplary embodiments of the present invention.
According to a typical casting apparatus and method as shown in
Once the mold 210 is fabricated, displacements are placed at least partially within the mold volume 214. The displacements are typically fabricated from clay, sand, graphite, or ceramic. These displacements consist of the center stalk 220 and the at least one nozzle displacement 222. The center stalk 220 is positioned substantially within the center of the mold 210 and suspended a desired distance from the bottom of the mold's interior surface 212. The nozzle displacements 222 are positioned within the mold 210 and extend from the center stalk 220 to the bottom of the mold's interior surface 212, which is where the nozzle 114 (
The blank 224 is a cylindrical steel casting mandrel that is centrally suspended at least partially within the mold 210 and around the center stalk 220. A tooling (not shown), which is known to people having ordinary skill in the art, is used to suspend the blank 224 within the mold 210. The blank 224 is hanged on the tooling and the tooling is lowered so that the blank 224 is positioned a predetermined distance down into the mold 210 and aligned appropriately therein as desired. An upper portion of the blank 224 forms the shank 115 (
Once the displacements 220, 222 and the blank 224 have been properly positioned within the mold 210, tungsten carbide powder 230 is loaded into the mold 210 so that it fills a portion of the mold volume 214 that includes an area around the lower portion of the blank 224, between the inner surfaces of the blank 224 and the outer surfaces of the center stalk 220, and between the nozzle displacements 222. Shoulder powder 234 is loaded on top of the tungsten carbide powder 230 in an area located at both the area outside of the blank 224 and the area between the blank 224 and the center stalk 220. The shoulder powder 234 can be made of tungsten powder. This shoulder powder 234 acts to blend the casting to the steel blank 224 during fabrication and is machinable. Once the tungsten carbide powder 230 and the shoulder powder 234 are loaded into the mold 210, the mold 210 is typically vibrated to improve the compaction of the tungsten carbide powder 230 and the shoulder powder 234. Although the mold 210 is vibrated after the tungsten carbide powder 230 and the shoulder powder 234 are loaded into the mold 210, the vibration of the mold 210 can be done as an intermediate step before the shoulder powder 234 is loaded on top of the tungsten carbide powder 230. Additionally, the vibration of the mold 210 can be done as an intermediate step before the shoulder powder 234 is loaded on top of the tungsten carbide powder 230 and after the shoulder powder 234 is loaded on top of the tungsten carbide powder 230.
The funnel 240 is a graphite cylinder that forms a funnel volume 244 therein. The funnel 240 is coupled to the top portion of the mold 210. A recess 242 is formed at the interior edge of the bottom portion of the funnel 240, which facilitates the funnel 240 coupling to the upper portion of the mold 210. Although one example has been provided for coupling the funnel 240 to the mold 210, other methods known to people having ordinary skill in the art can be used. Typically, the inside diameter of the mold 210 is similar to the inside diameter of the funnel 240 once the funnel 240 and the mold 210 are coupled together.
The binder pot 250 is a cylinder having a base 256 with an opening 258 located at the base 256, which extends through the base 256. The binder pot 250 also forms a binder pot volume 254 therein for holding a binder material 260. The binder pot 250 is coupled to the top portion of the funnel 240 via a recess 252 that is formed at the exterior edge of the bottom portion of the binder pot 250. This recess 252 facilitates the binder pot 250 coupling to the upper portion of the funnel 240. Although one example has been provided for coupling the binder pot 250 to the funnel 240, other methods known to people having ordinary skill in the art can be used. Once the down hole tool casting assembly 200 has been assembled, a predetermined amount of binder material 260, which is ascertainable by people having ordinary skill in the art, is loaded into the binder pot volume 254. The typical binder material 260 is a copper or copper alloy, but can be a different metal or metal alloy, such a nickel or nickel alloy.
The down hole tool casting assembly 200 is placed within a furnace (not shown). The binder material 260 melts and flows into the tungsten carbide powder 230 through the opening 258 of the binder pot 250. In the furnace, the molten binder material 260 infiltrates the tungsten carbide powder 230. During this process, a substantial amount of binder material 260 is used so that it also fills at least a substantial portion of the funnel volume 244 located above the shoulder powder 234. This excess binder material 260 in the funnel volume 244 supplies a downward force on the tungsten carbide powder 230 and the shoulder powder 234. Once the binder material 260 completely infiltrates the tungsten carbide powder 230, the down hole tool casting assembly 200 is pulled from the furnace and is controllably cooled. The mold 210 is broken away from the casting. The casting then undergoes finishing steps which are known to people having ordinary skill in the art, including the addition of the threaded connection 116 (
Since drill bits are subjected to extreme forces and stresses during drilling which cause wear, manufacturers and/or users of drill bits and other downhole tools have attempted to reduce this wear by applying a hardfacing material directly on at least portions of the surface of the drill bit. The hardfacing material typically includes a first phase that exhibits relatively high hardness and a second phase that exhibits relatively high fracture toughness. The first phase is formed from tungsten carbide; however, other suitable materials can be used including, but not limited to, titanium carbide, tantalum carbide, titanium diboride, chromium carbides, titanium nitride, aluminum oxide, aluminum nitride, and silicon carbide. The second phase is a metal matrix material formed from cobalt or cobalt-based alloys; however, other suitable materials can be used including, but not limited to, iron-based alloys, nickel-based alloys, iron- and nickel-based alloys, cobalt- and nickel-based alloys, iron- and cobalt-based alloys, aluminum-based alloys, copper-based alloys, magnesium-based alloys, and titanium-based alloys. These hardfacing materials are typically brought to a high temperature so that the matrix material melts and bonds to the surface of the drill bit. However, these hardfacing materials do not successfully bond directly to the surface of the infiltrated matrix drill bit 100 because of the presence of the binder material 260 within the infiltrated matrix drill bit 100. Therefore, manufacturers and/or users of drill bits applied the hardfacing material directly onto the surface of a sintered matrix drill bit (not shown), which does not include the binder material 260 that is present within the infiltrated matrix drill bit 100, as described above. A sintered matrix drill bit is fabricated differently than the infiltrated matrix drill bit 100 and is known to people having ordinary skill in the art.
The foregoing and other features and aspects of the invention will be best understood with reference to the following description of certain exemplary embodiments of the invention, when read in conjunction with the accompanying drawings, wherein:
This invention relates generally to down hole tools and methods for manufacturing such items. More particularly, this invention relates to infiltrated matrix drilling products including, but not limited to, matrix drill bits, bi-center bits, core heads, and matrix bodied reamers and stabilizers, and the methods of manufacturing such items. Although the description provided below is related to an infiltrated matrix drill bit, exemplary embodiments of the invention relate to any infiltrated matrix drilling product.
Referring to
Referring back to
After step 420, the intermediate base coat 510 is applied onto at least a portion of the heated infiltrated matrix downhole tool at step 430. According to certain exemplary embodiments, the intermediate base coat 510 is a metal carbide powder that is applied onto portions of the heated infiltrated matrix downhole tool 100 using a flame spray torch (not shown). Although a flame spray torch is used to apply the intermediate base coat 510, other devices and/or methods are used to apply the intermediate base coat 510 without departing from the scope and spirit of the exemplary embodiment. One example of the intermediate base coat 510 is TPMB 40 Technopowder®, which is manufactured by Technogenia Inc. The TPMB 40 Technopowder® is composed of tungsten carbide and copper. However, according to other exemplary embodiments, other suitable materials capable of bonding to both the surface of the infiltrated matrix downhole tool 100 and the hardfacing material, described in further detail below, is used without departing from the scope and spirit of the exemplary embodiment. In some exemplary embodiments, the intermediate base coat 510 is applied onto at least portions of the blades 130 that include the face of the blade 130 and the area on the blades 130 between the cutters 140. Additionally, in certain exemplary embodiments, the intermediate base coat 510 also is applied onto other portions of the bit body 110 that exhibit erosion during drilling operations, such as the leading edge 530 of the blade 130.
After step 430, the heated infiltrated matrix downhole tool 100 is allowed to cool to a second temperature at step 440. According to some exemplary embodiments, the heated infiltrated matrix downhole tool 100 is cooled to the second temperature during application of the intermediate base coat 510 onto the surface of at least portions of the heated infiltrated matrix downhole tool 100. The second temperature is about 600 degrees Fahrenheit according to some exemplary embodiment; however, the second temperature ranges from about 400 degrees Fahrenheit to about 600 degrees Fahrenheit. According to alternative exemplary embodiments, the heated infiltrated matrix downhole tool 100 is allowed to cool to ambient temperature after the intermediate base coat 510 has been applied onto the surface of at least portions of the heated infiltrated matrix downhole tool 100 and subsequently heated back up to about 400 degrees Fahrenheit to about 600 degrees Fahrenheit.
After step 440, the intermediate base coat 510 is bonded to at least a portion of the cooled infiltrated matrix downhole tool 100 at step 450. As previously mentioned, in certain exemplary embodiments, the intermediate base coat 510 includes copper which bonds to the copper, or other binder material 260 (
The intermediate base coat 510 prevents or reduces the formation of oxides at the surface of the base metal, or surface of the drill bit 500 according to certain exemplary embodiments. In certain exemplary embodiments, the intermediate base coat 510 prevents or reduces the migration of chromium to the surface, which may result in sticking. Further, the intermediate base coat 510 facilitates the deposition of hardfacing material according to certain exemplary embodiments. Moreover, in some exemplary embodiments, the intermediate base coat 510 provides higher thickness accuracy.
The intermediate base coat 510 is composed primarily of four elements, including nickel, chrome, silicon, and boron, according to certain exemplary embodiments. Also, additional components are included along with these four elements in certain exemplary embodiments. Silicon and boron are reducing agents, meaning that they reduce oxides of nickel, cobalt, chrome and iron. Further, the intermediate base coat 510, with the silicon and boron additions, is said to be “ self fluxing.” With the reduction of oxides, it is possible to better control surface tension and fluidity. To a welder, or hardfacer, this means that it is easier to lay down a hardfacing material because the hardfacing material will easily wet the oxide free base metal. Therefore, instead of balling up, the metal lays down and easily wets the surface. Hence, it is said to” lay down smoothly.” The hardfacing material 710 (
Referring to
Referring to
After step 630, the hardfacing material 710 is applied onto at least a portion of the intermediate base coat 510 bonded to the intermediately coated infiltrated matrix drill bit 500 (
After step 640, the hardfacing material is allowed to cool and bond to the intermediate base coat at step 650. The hardfacing material 710 includes tungsten carbide, carbon and copper, which bonds to the tungsten and copper disposed in the intermediate base coat 510. As seen in
Although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention will become apparent to persons skilled in the art upon reference to the description of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. It is therefore, contemplated that the claims will cover any such modifications or embodiments that fall within the scope of the invention.
This patent application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/547,328, entitled “Use Of Tungsten Carbide Tube Rod To Hard-Face PDC Matrix” filed on Oct. 14, 2011, the entire content of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61547328 | Oct 2011 | US |