The invention relates to liquid drug transfer devices suitable for use in Ready-To-Use (RTU) liquid drug transfer assemblages.
Ready-To-Use (RTU) liquid drug transfer assemblages include a liquid drug transfer device and at least one intact non-punctured injection vial attached thereto. Such RTU assemblages require a user actuation for puncturing an injection vial for enabling flow communication therewith. Such RTU assemblages can be generally classified into two types as follows: First, a liquid drug transfer device with a user removable injection vial. The liquid drug transfer device can be supplied with a pre-attached injection vial or alternatively a user attaches same in a telescopic snap fit mounting action as a prior step to user actuation for puncturing. And second, a liquid drug transfer device with an irremovable injection vial except by applying extreme force damaging the liquid drug transfer device and/or the injection vial. Such RTU arrangements are particularly beneficial for wide range of usage environments including inter alia home use, out-patient clinic use, and the like.
Commonly owned PCT International Application No. PCT/IL2010/000777 entitled Vial Assemblage with Vial and Pre-Attached Fluid Transfer Device and published under PCT International Publication No. WO 2011/039747 discloses RTU assemblages of the first type. The RTU assemblages include a fluid transfer device having a pre-attached removable injection vial for use with a needleless syringe. The fluid transfer devices include an elongated tubular flow member having a connector for sealing flow communication with a needleless syringe and a puncturing cannula for puncturing an injection. The puncturing cannula tip is embedded in an injection vial stopper. WO 2011/039747
Commonly owned PCT International Application No. PCT/IL2013/050721 entitled Liquid Drug Transfer Devices employing Manual Rotation for Dual Flow Communication Step Actuations and published under PCT International Publication No. WO 2014/033710 discloses RTU assemblages of both types for enabling flow communication between an injection vial and a liquid source in the form of another injection vial, an infusion liquid container, and the like. The RTU assemblages include liquid drug transfer devices employing different mechanical arrangements for converting manual rotation into a linear displacement for flow communication purposes. Suitable mechanical arrangements include inter alia a screw thread arrangement, a pin and track arrangement, and the like.
Commonly owned PCT International Application No. PCT/IL2014/050327 entitled Drug Container Closure for Mounting on Open-topped Drug Container to form Drug Reconstitution Assemblage for use with Needleless Syringe and published under PCT International Publication No. WO 2014/170888 discloses RTU assemblages of the second type for use with a needleless syringe. The RTU assemblages include a fluid transfer member with an integral needleless syringe connector and a puncturing cannula. The fluid transfer member is manually disposed along a diametric inverted L-shaped track pair from an initial non-puncturing position to a puncturing position. The inverted L-shaped track pair includes one-way snap fit members to prevent a user returning the fluid transfer member to an earlier position and indicating progress of the user activation.
The present invention is directed towards liquid drug transfer devices for use in Ready-To-Use (RTU) liquid drug transfer assemblages. The liquid drug transfer devices include an injection vial adapter for telescopic mounting on a non-punctured injection vial having an injection vial stopper and an uppermost injection vial surface without puncturing same. An injection vial adapter can be designed to either enable or prevent removal of an injection vial. The liquid drug transfer devices include a liquid source adapter intended for flow communication with a range of liquid sources. Suitable liquid sources include inter alia a needleless syringe with a male connector, an infusion liquid container, and the like.
A liquid source adapter is mounted on an injection vial adapter and configured for telescopically receiving the injection vial adapter therein on a manual linear sliding compaction of a liquid drug transfer device from an initial pre-actuated height H1 to a final actuated height H2 where H2<H1. The liquid drug transfer devices each include a dual ended liquid transfer member with a puncturing tip for puncturing an injection vial stopper. A dual ended liquid transfer member can be either integral formed with a liquid source adapter or a discrete component interdisposed between a liquid source adapter and an injection vial adapter depending on an intended liquid source. The puncturing tip is deployed above an uppermost injection vial surface in a pre-actuated state of a liquid drug transfer device and punctures through the injection vial stopper in the actuated state.
The liquid drug transfer devices include an integral safety catch mechanism for precluding inadvertent user actuation leading to inadvertent puncturing an intact non-punctured injection vial. The safety catch mechanism requires an initial manual linear sliding extension for imparting a short extension of the liquid source adapter from the injection vial adapter for priming the liquid drug transfer device ready for a subsequent manual linear sliding compaction whereupon the liquid source adapter snugly receives the injection vial adapter therein. The compaction stroke is necessarily longer than the extension stroke because the compaction stroke includes causing the puncturing tip to puncture the injection vial stopper. The liquid drug transfer devices include an extension limit arrangement for limiting the extension of the liquid source adapter from the vial injection adapter on priming the safety catch mechanism from its initial pre-actuated state. The liquid drug transfer device includes a snap fit securing arrangement for securing the liquid source adapter on the injection vial adapter in the actuated state.
In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:
The liquid drug transfer device 30A has a longitudinal device centerline 31 and includes an injection vial adapter 32 for telescopic snap fit mounting on the injection vial 10 and a liquid source adapter 33 initially mounted on the injection vial adapter 32 in a pre-actuated state. The liquid drug transfer device 30A includes a safety catch mechanism 34 for priming the liquid drug transfer device 30A ready for actuation thereby preventing inadvertent user actuation to puncture the intact non-punctured injection vial 10. The liquid drug transfer device 30A includes an extension limit arrangement 36 for limiting linear sliding extension of the liquid source adapter 33 from the vial injection adapter 32 on priming the liquid drug transfer device 30A. The liquid drug transfer device 30A includes a snap-fit securing arrangement 37 for securing the liquid source adapter 33 on the injection vial adapter 32 in an actuated state.
The injection vial adapter 32 includes a transverse injection vial adapter top surface 38 and a downward depending injection vial adapter skirt 39 for telescopic mounting on the vial crown 13. The downward depending injection vial adapter skirt 39 has a lowermost injection vial adapter skirt rim 39A. The injection vial adapter top surface 38 has a throughgoing injection vial adapter top surface aperture 41 overlying the uppermost injection vial surface 19. The injection vial adapter skirt 39 includes four longitudinal slits 42 forming a diametric resiliently flexible flex member pair 43. The injection vial adapter skirt 39 includes a diametric resiliently flexible longitudinal directed flex member pair 44 orthogonal to the flex member pair 43.
The flex member pair 43 each includes an inward directed protrusion 46 for snap fit under the vial crown 13. The flex member pair 43 each includes a longitudinal slit pair 47 forming a central longitudinal directed flex securing member 48 constituting a component of both the extension limit arrangement 36 and the snap fit securing arrangement 37. The flex securing members 48 each have a free end 49 flush with the injector vial adapter top surface 38. The free ends 49 are formed with an outward directed protrusion 51 having an inclined leading surface 52.
The diametric resiliently flexible longitudinal directed flex member pair 44 terminate at an inward directed hook 53 disposed toward the injection vial adapter top surface 38.
The liquid source adapter 33 includes a cap-like member 54 having a transverse liquid source adapter top surface 56 and a downward depending liquid source adapter skirt 57 for telescopically receiving the injection vial adapter 32 therein in an actuated state of the liquid drug transfer device 30A. The liquid source adapter 33 includes an integral dual ended liquid transfer member 58 having an upward liquid transfer member end 59 and terminating in a downward puncturing tip 61 for puncturing the injection vial stopper 18 for flow communication with the vial tube 12. The upward liquid transfer member end 59 is constituted by an upright liquid drug access port 62 protruding from the liquid source adapter top surface 56. The liquid drug access port 62 is preferably constituted by a female connector as shown for flow communication with a needleless syringe, a male connector, and the like.
The liquid source adapter skirt 57 has a lowermost liquid source adapter skirt rim 63 and is formed with a diametric cutaway pair 64 each with a resiliently flexible longitudinal directed flex member 66 terminating at an outward directed hook 67 adjacent with the liquid source adapter skirt rim 63. The safety catch mechanism 34 includes a diametric safety catch pair 68 each being constituted by an inward directed hook 53 and an outward directed hook 67.
The liquid source adapter skirt 57 includes a diametric extension limit aperture pair 69 adjacent the liquid source adapter skirt rim 63 and a diametric securing aperture pair 71 adjacent the liquid source adapter top surface 56. The extension limit aperture pair 69 each has an uppermost transverse rim 72 and a lowermost transverse rim 73.
The heights of the liquid drug transfer device 30A at its three different states: pre-actuated state, intermediate primed state and actuated state are indicated between the female connector 62 and the lowermost injection vial adapter skirt rim 39A. Accordingly, the liquid drug transfer device 30A has a pre-actuated height H1 (see
The liquid drug transfer device 30B includes a three component construction as opposed to the liquid drug transfer device 30A's two component construction. The liquid drug transfer device 30B includes an injection vial adapter 81, a liquid source adapter 82 and a discrete dual ended liquid transfer member 83 interdisposed between the injection vial adapter 81 and the liquid source adapter 82. The dual ended liquid transfer member 83 includes an upward liquid transfer member end 84 also terminating in a puncturing tip similar to the puncturing tip 61. The dual ended liquid transfer member 83 includes an intermediate circular flange 86.
The injection vial adapter 81 includes an upward sleeve 87 mounted on the injection vial adapter top surface 38 for supporting the circular flange 86 in the liquid drug transfer device 30B's pre-actuated state and the intermediate primed state. The upward sleeve 87 is formed with the diametric flex member pair 44 formed with the inward directed hooks 53 and the diametric flex securing member pair 48.
The liquid source adapter top surface 56 is formed with an injection port connector 89 for slidingly receiving the injection port 21 and a diametric inward directed injection port stopper pair 91 for stopping the insertion of the injection port 21 therein. The upward liquid transfer member end 84 underlies the injection port 21 in the liquid drug transfer device 30B's pre-actuated state.
The liquid drug transfer device 30B has a pre-actuated height H1, an actuated height H2 and an intermediate primed height H3 similar to the liquid drug transfer device 30A. The heights are indicated between the liquid source adapter top surface 56 and the lowermost injection vial adapter skirt rim 39A. The height difference H1−H2 equals the displacement that the liquid drug transfer device 30B has to compact from its pre-actuated state in which the puncturing tip 61 overlies the uppermost injection port surface 19 and the upward liquid transfer member end 84 underlies the injection port 21 to its actuated state in which the puncturing tip 61 protrudes through the injection vial stopper 18 and the upward liquid transfer member end 84 punctures through the injection port 21.
While particular embodiments of the present invention are illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
251458 | Mar 2017 | IL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2018/050336 | 3/23/2018 | WO | 00 |