The invention relates to a hearing aid, in particular to a medical hearing aid, comprising a means for compensating for noises. Preferably, the hearing aid compensates for amblyacousia. The invention further relates to a corresponding method for operating and adjusting a hearing aid according to the invention.
The medical demand for hearing aids is high and increases constantly and the available devices cover a broad range from simple broadband amplifiers to be worn behind the ear to highly-developed and considerably miniaturised devices fitting into the auditory canal of the user.
An essential quality feature of hearing aids of any miniaturising level is the adaptability of the amplification factor and the frequency response of the internal amplifiers to the individual hearing defect of the user. In practice, there are a lot of different types of hearing defects (apart from complete deafness, which, however, cannot be corrected with the hearing aids described herein) so that a corresponding adaptability of the hearing aid is required for the correction of a defective hearing. If this adaptation is omitted and sound is only uniformly amplified in the entire processible frequency range, it leads to the fact that sounds in frequency regions in which the user still hears well are amplified too much and, in the worst case, the hearing is even further damaged. However, in the frequency regions concerned, in which a greater amplification would be necessary, the broadband amplification is usually too low considering the undamaged ranges of the spectra.
The adjustment of the amplification of a hearing aid according to the prior art is performed by a hearing aid audiologist on the basis of an audiogram, which was ascertained from the patient before-hand by himself or an otorhinolaryngologist. To this end various sounds are played to the patient by means of calibrated earphones with increasing loudness, wherein the patient is to indicate from which loudness on a sound is audible. Thus, the individual frequency response, in particular the lower auditory threshold of the patient's hearing is ascertained at various frequencies. The more different frequencies are used, the higher is the spectral resolution of the audiogram; and the more often the measurement with the same sound is repeated, the higher is the statistical confidence level for this measurement value. The thus ascertained audiogram informs about the regions of the auditory spectrum in which an amplification is necessary for the patient; and the hearing aid audiologist then accordingly adjusts the amplification of the hearing aid for different spectral regions. Subsequently, an audiogram with the hearing aid should be recorded for controlling purposes to keep records of its purpose and to check its adjustment. In the ideal case, this new audiogram corresponds to that of an average normal hearing. This ideal, however, is rarely achieved since the adjustments of an acoustician are usually not precise enough and most hearing aids do not allow for a sufficiently high enough adjustment of the frequency response of the amplification. Most of the devices used have only three regions to be adjusted separately for high, middle and low frequencies, wherein the hearing aid audiologist is forced to accept considerable compromises in his work.
Besides the compensation of the auditory curve of the patient, the “pain threshold” of the patient has to be taken into consideration upon adjustment of the hearing aid. Even an amplification which is perfectly adapted to the hearing defect of the patient but linear would lead to the fact that the patient can hear talk in a low voice, however, loud sounds are amplified to such a great extent that painful or even harmful loudness is the result. This is in particular relevant when the loudness regarded as painful is lowered due to the illness of the hearing. The prior art usually solves this problem in that the maximum output loudness of a hearing aid is limited due to its design. The maximum loudness is limited by nature due to the small size and the limited electrical energy. Moreover, even the simplest devices usually have a volume control with which the user can adapt the volume of its hearing aid, e.g., to different environmental situations. High-quality hearing aids automatically perform such an adjustment dependent on the situation and do not only alter the volume but also optimise the individual frequency response with regard to the specific situation (e.g., talk, music, street noise). However, such an adaptation dependent on the situation, be it automatically or manually, goes beyond the medical aspect of the re-establishment of a normal hearing.
The decisive data for the analytical characterisation of a hearing defect are given by means of the audiogram and the loudness pain threshold. The data about syllable articulation (e.g., Freiburg word test) often additionally acquired by the otorhinolaryngologist or the hearing aid audiologist during an audiometry are prior art but may well be considered to be superfluous with regard to the possibilities and limits of a hearing aid.
A further technical problem which is independent of the hearing defect of the patient arises in that there is—in particular in highly-integrated devices—only a limited spatial distance between sound recording (microphone) and sound generation (miniature loudspeaker, often called “transducer” in the hearing aid, in the following always simply called “loudspeaker”). Thus, there is the risk that for individual frequencies the closed-loop gain between loudspeaker and microphone is greater than 1 thus leading to acoustic feedback howling. This problem is often solved in that critical frequencies are dampened with additional narrow-band filters (“notch filter”). Thus, the acoustic feedback or the tendency to oscillate of the system can be suppressed, however, these additional filters influence the frequency response in an undesired manner, in particular they possibly thwart the actually required high amplification in the regions of the spectrum in which the patient hears badly.
Regarding hearing aids of the highest price range, the prior art discloses further methods of the digital signal processing going beyond the described methods. Thus, one tries, e.g., to make a difference between voice and noise components in the sound signal in order to remove the latter or at least to reduce it. However, in such methods of noise suppression also known from other fields of application, various side effects have to be taken into account. In some methods, e.g., the damping of the noise also entails an alienation of the useful sound, e.g., of the language, and the sound of the dampened noises is considerably changed. Furthermore, some methods cause a signal delay, which can be accepted to a very limited extent only in a hearing aid since otherwise the things seen and heard are no longer chronologically synchronous, which may lead to distortions of perception of the user of the hearing aid.
The object of the invention is to provide an improved hearing aid which overcomes the above-mentioned disadvantages. In particular, a hearing aid is to be provided with an improved noise suppression and which is preferably adjustable in interaction with the user. Further a corresponding method is to be provided.
The object is achieved with the features of the claims.
According to the invention, parameters of an adjustable filter are modified such by means of a noise estimation that a noise suppression can be effected which leads to a real acoustic perceptual image for the user of a hearing aid. To this end, damping factors can be ascertained, e.g., at certain time intervals or continuously. The parameters of an optional hearing defect compensation and a noise suppression can be combined such that the signal to be processed is adapted in one calculation step per frequency band or discrete frequency.
According to an embodiment of the invention, in interaction with the user, an audiogram, i.e., the spectral characteristics of the hearing ability of the user is to be ascertained automatically during an initialising phase and the internal signal processing, preferably a digital signal processing, such as, e.g., multiband equalizer as well as limiter/compressor, is to be adapted with the obtained data such that an ideal compensation of the individual hearing defect is achieved. The ascertained data, i.e., correction factors for compensating the hearing defect are stored, preferably in a non-volatile storing medium. Preferably the user may conduct the ascertainment of an audiogram any time again or optimise existing data. The correction factors may be already fixed or predetermined, e.g., by a physician or hearing aid audiologist as starting basis for an adjustment of the audiogram by the user.
The audiometry, i.e., the ascertainment of the audiogram of a patient, may take place in the hearing aid itself. Thus, it is rendered possible that the hearing aid automatically adjusts the frequency response of its amplification in a closed system and no audiogram is interpreted by a hearing aid audiologist. Thus, the individual hearing defect of a patient can be exactly compensated for since the parameters of the internal signal processing are determined by the hearing aid itself in an initialising mode, which is different from the mode of operation in which the parameters are used. The hearing aid emits test signals in the initialising mode; signals recorded by the own microphone are preferably at least partially not supplied to the sound emission of the hearing aid. No calibrated measurement devices as necessary for a classical audiometry are required; a previous calibration of the hearing aid as such is not necessary either and the influence of the physical presence of the hearing aid in the auditory canal on the hearing is intrinsically taken into account.
The mode of operation of the hearing aid and the corresponding method are described in the following by means of preferred embodiments with reference to the Figures. They show:
a a schematic representation of a first embodiment of a noise suppression in a hearing module according to
b a schematic representation of a second embodiment of a noise suppression in a hearing module according to
In a schematic representation,
It is pointed out that the initialising module 2 and the control device 5 are optional features of the hearing aid according to the invention.
The hearing module 3 comprises a means for noise suppression conducting a noise estimation for determining the parameters of a filter depending on a signal.
An initialising is carried out to optionally adjust the hearing module 3 of the hearing aid to the individual defective hearing of a user—i.e., the deviation from the normal auditory curve—by a correspondingly amplified loudspeaker output of the sound recorded by the microphone 1. To this end an interaction between user and hearing aid is provided according to an embodiment, which takes place through operating elements at the hearing aid itself or a wireless or wired connection to an operation auxiliary means, e.g., a personal computer; this operation auxiliary means is generally described as control device 5 in the following. The control device at least comprises an actuating device comprising a switch and/or a push-button.
The signal flow in the hearing aid is as follows: The microphone signal sM(t) is preferably discretized and digitised by an analogue-digital converter 6 and supplied to the hearing module 3 and the initialising module 2 where the signal processing, preferably a digital signal processing, takes place. Subsequently, in case of a digital signal processing, a digital-analogue converter 7 generates an output signal sL(t) with which the ear of the user is treated with sound through a loudspeaker 4.
In the following the components and the function of the hearing module 3 shown in
The hearing module 3 receives the digital microphone signal sM(t) and adds the negative pseudo feedback sF(t) which is calculated by means of the impulse response of the feedback path h(t) as discrete convolution with the loudspeaker signal SL(t) to sF(t)=h(t)*sL(t) to remove the feedback of the loudspeaker signal in the microphone 1 from the microphone signal and to thus prevent a feedback howling. Subsequently, the optional auditory curve correction 33, as shown in more detail in
The optional auditory curve correction in the hearing module 3 is performed by a series of independent filters, preferably IIR filters. The individual adjustment of the V(fi) values for the correction of the hearing defect is effected by means of the initialising module 2.
After the optional auditory curve correction 33, a first embodiment of a noise suppression 34 as shown in
Instead of by means of IIR filters the optional auditory curve correction can be alternatively also realised as filter in the spectrum, as will be shown in the following with reference to a second embodiment according to
Preferably the correction factors K(f) correspond to the amplification values V(fi). This embodiment can be advantageously combined with the application of a noise suppression. To this end the signal spectrum is additionally multiplied with damping factors (gain factors) G(f) dependent on signal and noise. The damping factors are preferably determined from a noise estimation R(f) and the current signal spectrum S(f), e.g., as G(f)=1−R(f)/S(f). The noise estimation is formed from the signal spectrum by being averaged over those time intervals where the signal basically only consists of background noise and there is no or only insignificant wanted signal proportion (language). For example, a good noise estimation can be performed in a speech pause where no wanted signal proportion is present.
It is pointed out that the auditory curve correction is optional and the corresponding device feature and the method step may be omitted.
The signal processing as shown in
The damping factors G(f) are determined based on the noise estimation R(f) which is renewed preferably at certain intervals and/or adaptively in order to be able to account for a change in the noise surroundings. Adaptively means a continuous automatic noise estimation. Besides fixed time intervals dynamic factors can be also used triggering a new noise estimation. A dynamic trigger factor can be a manual user input. A user preferably chooses a moment where there is as little wanted signal as possible. Further, the user may pre-select the surroundings with a subsequent optimisation of the noise estimation. Fixed time intervals to determine a new noise estimation can be combined with dynamic trigger factors.
The damping factors can be also applied only in part or not at all, i.e., changed. Here the formula indicated in
The last step of the signal processing in the hearing module 3 prior to the output of the signal to the digital-analogue converter 7 and the loudspeaker 4 is the limitation of the maximum output volume to a maximum value M in order to not exceed the individual pain threshold of the user. To this end preferably a characteristic curve as shown in
According to the invention the individual adjustment of the parameters of the hearing module 3 is performed for the ideal compensation of the personal hearing deficit of the user by means of the optional initialising module 2. Here the optional control device 5 is used with which the user interacts with the initialising module 2. As is schematically shown in
In the initialising mode according to an embodiment of the invention, the initialising module 2 outputs a series of electrical signals to the loudspeaker 4 which are transformed into acoustic signals, wherein the acoustic signals are used for measuring the auditory curve of the user. The acoustic signals have a certain frequency or a certain frequency spectrum with a certain centre frequency to determine a lower auditory threshold level of the user depending on the respective frequency. In a preferred embodiment, the transmission from microphone 1 to loudspeaker 4 is interrupted while the initialising module 2 is operated to measure the auditory curve of the user.
Preferably, the hearing aid according to the invention further comprises a comparator for comparing a lower auditory threshold level of a user at a certain centre frequency with a stored lower auditory threshold level of a user with normal hearing ability and an adjustment means for adjusting an amplification at the respective frequency in order to compensate a hearing defect of the user.
In order to determine a pain threshold of the user, i.e., a maximally acceptable volume, which is outputted to the loudspeaker 4, the initialising module 2 emits electrical signals, preferably according to a predetermined program, which is explained in more detail with reference to
The number of test tones or acoustic signals of the series of electrical signals for measuring the auditory curve of the user is preferably between 4 and 128 or between 8 and 64 or between 16 and 48 and particularly preferably 32 different tones, i.e., frequencies f1 to f32 are measured with the particularly preferred number of tones 32. The amplitude of a tone becoming louder during measurement of the auditory curve of the user is, from a minimum volume to a maximum volume, preferably divided into 10 to 200 or 50 to 150 and particularly preferably into 100 amplitude values, i.e., that the amplitude of a tone becoming louder changes in the particularly preferred stage 100 times from the minimum to the maximum volume.
In a preferred embodiment the frequencies of the successive test tones or acoustic signals are changed during the measurement in a random order or defined pseudo random order.
Besides the optional correction of the personal auditory curve, a further element of the digital signal processing of the hearing aid is the limitation of the maximum output volume which is also individually adjusted to the hearing of the user.
The white noise preferably used for ascertaining the maximum volume is preferably outputted in a frequency band of 0-8 kHz from the initialising module 2 via the loudspeaker 4. The sampling rate used for ascertaining the feedback signal via the microphone 1 is higher than 16 kHz according to the Nyquist-Shannon sampling theorem.
The sampling rate of the use of the hearing aid after the initialising is preferably 16 kHz, i.e., a hearing deficit of a user is corrected in a frequency band of preferably 0 kHz to approximately 8 kHz.
Since the white noise is one of the most disagreeable sounds for the human hearing, it is to be assumed that all other sounds which are outputted with the ascertained maximum volume M are less critical. There is a further advantage by the use of (white) noise: the signal is very suitable for the determination of the impulse response of the feedback path h(t) which is used in the anti-feedback filter 32. To this end the microphone signal sM(t) is analysed, preferably while the outputted loudspeaker signal SL(t) consists, as described, of noise signals of various volumes to determine the maximum volume M. It is described, e.g., in detail in DE 101 40 523 or DE 100 43 064 how the impulse response h(t) of the acoustic path between loudspeaker 4 and microphone 1—i.e., the feedback path—can be deduced from the simultaneous analysis of microphone and loudspeaker signal.
After all desired individual parameters have been determined in the described manner, a change is performed from the initialising module 2 to the hearing module 3 and the wheel turns full circle: the impulse response h(t) last determined is required first of all in the digital signal processing of the hearing module 3. The control device 5 is not required by the hearing module 3 according to the invention after the initialising, however, it can be used for trivial interactions not described in further detail in this context, e.g., for the user-operated volume change or a situation-depending equalizer choice.
This invention has been described by means of examples. It has to be pointed out in this context that individual features, examples and embodiments can be optionally combined and thus further preferred features, examples and embodiments can be achieved.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 033 484 | Jul 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/059415 | 7/17/2008 | WO | 00 | 1/15/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/010572 | 1/22/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4425481 | Mansgold et al. | Jan 1984 | A |
5259033 | Goodings et al. | Nov 1993 | A |
7574012 | Eggers et al. | Aug 2009 | B2 |
Number | Date | Country |
---|---|---|
1542500 | Jun 2005 | EP |
1713302 | Oct 2006 | EP |
9603848 | Feb 1996 | WO |
9714267 | Apr 1997 | WO |
Entry |
---|
Yan Yan; Communication Invention Examination Department—State Intellectual Property Office of P.R.C.; Search Report for Serial No. 200880025072.4, filed Jul. 17, 2008; Ruwisch, Dietmar. |
Number | Date | Country | |
---|---|---|---|
20100183177 A1 | Jul 2010 | US |