User behavior segmentation using latent topic detection

Information

  • Patent Grant
  • 11010345
  • Patent Number
    11,010,345
  • Date Filed
    Monday, March 18, 2019
    5 years ago
  • Date Issued
    Tuesday, May 18, 2021
    3 years ago
  • CPC
  • Field of Search
    • CPC
    • G06F16/1744
    • G06F16/285
    • G06F40/216
    • G06Q20/38
  • International Classifications
    • G06F16/00
    • G06F16/174
    • G06F16/28
    • G06Q20/38
    • G06F40/216
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      72
Abstract
The features relate to artificial intelligence directed compression of user event data based on complex analysis of user event data including latent feature detection and clustering. Further features are described for reducing the size of data transmitted during event processing data flows and devices such as card readers or point of sale systems. Machine learning features for dynamically determining an optimal compression as well as identifying targeted users and providing content to the targeted users based on the compressed data are also included.
Description
BACKGROUND
Field

The present development relates to applying topic discovery algorithms, such as a latent dirichlet allocation algorithm, to reduce the dimensionality of event data to develop segmentations based on user n behavior indicated by the event data.


Description of Related Art

With the advent of modern computing devices, the ways in which users use electronic devices to interact with various entities has dramatically increased. Each event a user performs, whether by making a small purchasing at a grocery store, logging into a web-site, checking a book out of a library, driving a car, making a phone call, or exercising at the gym, the digital foot print of the users interactions can be tracked. The quantity of event data collected for just one user can be immense. The enormity of the data may be compounded by the number of users connected and the increasing number of event types that are made possible through an increasing number of event sources and entities. To understand a particular user, one can provide large swaths of the user's event history, but there are several obstacles which make this difficult if not impossible. To ensure a full picture of the user is provided, all event data would need to be considered. As mentioned, this can include providing many megabytes, if not gigabytes of data, for one user. This may pose a problem in limited resource environments such as mobile computing or networked system. In the mobile world, mobile computing devices typically have constraints on the memory, power, and processing capabilities. To provide a lot of data to the device could drain these precious resources. In the networked systems, one concern is network utilization. Providing all of a user's event data for each event could increase the traffic flowing through the network and thus adversely impact the overall performance.


One solution could be to take a snapshot of a user's events. However, this method fails to consider longer term trends by making an arbitrary cutoff to the data. The cutoff may be based on date, event source, or other criteria to limit the event data that would be transmitted for a user. This can lead to inaccurate assumptions about the user based on the limited view of their historical events. Making sense of the collected event data and providing usable forms of the data.


Accordingly, improved systems, devices, and methods for compressing event data to reduce its dimensionality and then placing users into segments with similar behavior without losing descriptive details of the underlying set of event data set are desirable.


SUMMARY

Various systems and methods are disclosed which include features relating to artificial intelligence directed compression of user event data based on complex analysis of user event data including latent feature detection and clustering. Further features are described for reducing the size of data transmitted during event processing data flows and devices such as card readers or point of sale systems. Machine learning features for dynamically determining an optimal compression as well as identifying targeted users and providing content to the targeted users based on the compressed data are also included.


The systems, methods, and devices of the disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.


In one innovative aspect, a method of artificial intelligence guided segmentation of event data is provided. The method includes accessing, from a data store, a set of event records associated with respective users of a group of users. A first set of event records is associated with a first user is stored using a first quantity of storage. The method also includes accessing an event categories data structure indicating a set of event categories and, for each event category, attribute criteria usable to identify events associated with respective event categories. For the event records, the method includes identifying one or more attributes of the event record, comparing the identified one or more attributes of the event record to the attribute criteria of respective event categories, and based on said comparing, assigning, to the event record, an event category having attribute criteria matching the identified one or more attributes of the event record. The method also includes generating, for the first user, first compressed event data using the event records associated with the first user and a latent feature identification model such as a dirichlet allocation model. The latent feature identification model takes the event records for the first user and the event categories assigned thereto as inputs. The first compressed event data associated with the first user is stored using a second quantity of storage that is less than the first quantity of storage for storing the event records of the first user. The method also includes assigning each user to one of the data clusters included in a clustering model using respective first compressed event data for the user. The method further includes generating, for the first user, second compressed event data using a comparison between the first compressed event data for the first user and an average latent feature identification value for a latent feature included in the data cluster to which the first user has been assigned. The second compressed event data associated with the first user is stored using a third quantity of storage that is less than the second quantity of storage.


In some implementations of the method, assigning a user to one of the data clusters includes identifying center points for each data cluster included in the clustering model. In such implementations, the method may also include generating an association strength for each latent feature included in the first compressed event data for the users for each data cluster. The association strength may indicate a degree of association between the first compressed event data for a user and respective data cluster center points. The method may also include identifying the one of the data clusters as having the highest association strength for the user from amongst the data clusters included in the clustering model.


In some implementations, generating the association strength for a user includes comparing a latent feature identification value included in the first compressed event record for a latent feature for the user to the center point.


Generating the second compressed event data, may in some implementations, include calculating a secondary center point for a secondary data cluster using first compressed event data for each user assigned to the secondary data cluster. In such implementations, the method may include generating a secondary association strength for each latent feature included in the first compressed event data for a user assigned to the data cluster. The secondary association strength may indicate a secondary degree of association between the first compressed event data for the user assigned to the data cluster and the secondary center point of the secondary data cluster to which the user is not assigned. The second compressed event data may include an identifier for the secondary data cluster and the generated secondary association strengths.


In some implementations, the method may include accessing content data including a content identifier and an indication of a target data cluster of the data clusters. The method may also include identifying a group of users assigned to the target data cluster and selecting a target group of users having second compressed event data including generated association strengths indicating a threshold degree of association to the center point of the target data cluster. An electronic communication may be generated to provide to the target set of user profiles, the electronic communication including content indicated by the content identifier.


In some implementations, the method may include training the latent feature identification model through probabilistic analysis of a plurality of historical event records to identify a target number of topics. The method may also include training the clustering model using a desired compression level indicating a number of data clusters for the clustering model. Training the clustering model may include generating a center point for each data cluster using topically compressed historical event data.


In another innovative aspect, a method of compressing transaction data is provided. The method includes receiving a set of transaction records each identifying a transaction by one of a group of users. The method further includes assigning a category to each of the set of transaction records. The method also includes generating first compressed transaction records using a latent feature identification model. The method includes identifying a clustering compression model for the one of the group of users. The method further includes generating second compressed transaction records using the first compressed transaction records and the clustering compression model.


In some implementations, generating a first compressed transaction record for a user includes receiving association strengths for each topic identified by the latent feature identification model for a set of transactions for the user.


Some implementations of the method may include receiving a compression configuration indicating a target number of features to identify for an end user and training a latent dirichlet allocation model to identify the target number of features using the received set of transaction records. The latent feature identification model may include the latent dirichlet allocation model trained.


Each data cluster included in the clustering compression model may be associated with at least one latent feature identifiable by the latent feature identification model. In such implementations, generating the second compressed transaction records may include assigning each user to one of the data clusters using the first compressed transaction records. Generating the second compressed transaction records may also include generating the second compressed transaction records for each user using a comparison between the first compressed transaction data for a user and the center point for the cluster to which the user is assigned.


In some implementations, generating the second compressed transaction records may include calculating a secondary center point for a secondary data cluster using first compressed transaction data for each user assigned to the secondary data cluster, and generating a secondary association strength for each latent feature included in the first compressed transaction data for a user assigned to the data cluster. The secondary association strength may indicate a secondary degree of association between the first compressed transaction data for the user assigned to the data cluster and the secondary center point of the secondary data cluster to which the user is not assigned. The second compressed transaction data may include an identifier for the secondary data cluster and the generated secondary association strengths.


In some implementations, the method includes training a clustering model using the desired compression level and at least a portion of the set of transaction records.


In some implementations, the method includes receiving, from a transaction terminal, a pending transaction record for a user included in the group of users. The pending transaction record is not included in the set of transaction records. The method may also include retrieving a second compressed transaction record for the user using an identifier of the user included in the pending transaction record. The method may further include transmitting the second compressed transaction record to the transaction terminal.


A content element may be selected for presentation to the user during or after the current transaction using the second compressed transaction record.


The content element may be provided to a content delivery system configured to transmit the content element to the user.


In another innovative aspect, a transaction data compression system is provided. The system includes a data preparation module configured to access transaction data associated with a group of users. For a set of transactions in the transaction data, the data preparation module is configured to assign a transaction category based on one or more attributes of the transaction, and normalize a level of the transaction based on spend levels of individual users.


The system includes a compression module configured to generate, for each user, first compressed transaction data using the transaction categories assigned to the transaction records for a respective user and a latent feature identification model. The first compressed transaction data associated with the one of the respective users is stored using a second quantity of storage that is less than the first quantity of storage. The compression module is further configured to identify a clustering compression model for users included in the plurality of users. The compression module may be further configured to assign each of the users to one of a set of data clusters included in the respective clustering compression model using respective first compressed transaction data for the user, and generate, for each user, second compressed transaction data using a comparison between the first compressed transaction data for a user and an average for the data cluster to which the user has been assigned. The second compressed transaction data may be stored using a third quantity of storage that is less than the second quantity of storage.


In some implementations, the system may include a profile targeting module. The profile targeting module may be configured to access content data including a content identifier and an indication of a target data cluster of the data clusters. The profile targeting module may be further configured to identify a group of users assigned to the target data cluster. The profile targeting module may be further configured to select a target group of users having second compressed transaction data including generated association strengths indicating a threshold degree of association to the center point of the target data cluster. The profile targeting module may also be configured to generate an electronic communication to provide to the target set of user profiles, the electronic communication including content indicated by the content identifier.


A content generation module may be included in the system. The content generation module may be configured to access the target group of users and identify a target device for a user included in the target group of users. In some implementations, the content generation module may be configured to provide the electronic communication to the target device.


A card reader may be included in some implementations of the system. The card reader may include a payment information detector configured to detect payment information for a transaction for a user. The card reader may further include a targeted content generator configured to receive compressed transaction data during the transaction for the user, and identify content stored by the card reader using a comparison between a content selection rule and the compressed transaction data, the content for presentation via the card reader. The card reader may also include a display configured to present the content to the user.


A compression model generator may be included in the system. The compression model generator may be configured to generate at least one of the latent feature identification model and a clustering model identifying the set of data clusters for the set of transaction records.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a functional block diagram of an example of a user behavior segmentation system.



FIG. 2 shows a functional block diagram of an example of a process to train a user behavior segmentation system.



FIG. 3 shows a process flow diagram of example method of transaction data compression with machine learning.



FIG. 4 shows a functional block diagram of an example of the user behavior segmentation system generating segments for users using trained models.



FIG. 5 shows a process flow diagram of an example method of reducing the dimensionality of transaction data.



FIG. 6 shows a process flow diagram of an example of a method of segmenting user by using topically compressed user records.



FIG. 7 is a plot diagram showing an example visualization of data clusters with center points.



FIG. 8 shows a process flow diagram of an example method of providing content using segmentation.



FIG. 9 shows a data flow diagram for an example dimension reduction and segmentation assignment for transaction data.



FIG. 10 shows some sample user behavior segments generated from transaction data.



FIG. 11 shows a message flow diagram of an example transaction with transaction data compression and content provided based on the compressed transaction data.



FIG. 12 shows a message flow diagram of an example batch transaction processing with transaction data compression and content provided based on the compressed transaction data.



FIG. 13 shows a schematic perspective view an example card reader.



FIG. 14 shows a functional block diagram of the card reader of FIG. 13.



FIG. 15 is a block diagram showing example components of a transaction analysis processing system.





DETAILED DESCRIPTION

Disclosed herein are system and methods of analyzing, processing, and manipulating large sets of event data of users in order to provide various visualizations, alerts, and other actionable intelligence to users, merchants, and others. The event data may include, for example, specific transactions on one or more credit cards of a user, such as the detailed transaction data that is available on credit card statements. Transaction data may include transaction-level debit information also, such as regarding debit card or checking account transactions. The transaction data may be obtained from various sources, such as from credit issuers (e.g., financial institutions that issue credit cards), transaction processors (e.g., entities that process credit card swipes at points of sale), transaction aggregators, merchant retailers, and/or any other source. Transaction data may also include non-financial exchanges. For example, login in activity, Internet search history, Internet browsing history, posts to a social media platform, or other interactions between communication devices. In some implementations, the users may be machines interacting with each other (e.g., machine to machine communications).


This disclosure describes several unique uses of such transaction data. In general, the features relate to compression of user transaction database on complex analysis of user transaction data including latent feature detection and clustering. Further features are described for including these features in transaction processing data flows and devices such as card readers or point of sale systems. Features for identifying targeted users and providing content to the targeted users based on the detected behavioral segmentation are also included. The identification may also be used for login authentication, fraud detection, or activity alerting. For example, the compressed user transaction data may provide a transaction “fingerprint” for a user. Using the fingerprint, a requested transaction may be analyzed to determine a likelihood that the transaction was initiated by the user. Where the transaction is a login in attempt, the authentication may include this likelihood in considering whether to authenticate the user. Where the transaction is an exchange, the authorization of the exchange may consider the likelihood in making the authorization decision.


Each of the processes described herein may be performed by a transaction analysis processing system (also referred to as simply “the system,” “the transaction analysis system,” or “the processing system” herein), such as the example transaction analysis system illustrated in FIG. 15 and discussed below. In other embodiments, other processing systems, such as systems including additional or fewer components than are illustrated in FIG. 15 may be used to perform the processes. In other embodiments, certain processes are performed by multiple processing systems, such as one or more servers performing certain processes in communication with a user computing device (e.g., mobile device) that performs other processes.


As noted above, in one embodiment the transaction analysis processing system accesses transaction data associated with a plurality of users in order to segment the users into groups. This transaction based segmentation provides advantages over other segmentation systems that make use of demographic information to find groups of “like” individuals, some of which are discussed below. Furthermore, it may be desirable to provide accurate information about a user during a transaction. Such “real-time” data allows the user to receive relevant information at a specific point in time.


Exemplary Definitions

To facilitate an understanding of the systems and methods discussed herein, a number of terms are defined below. The terms defined below, as well as other terms used herein, should be construed to include the provided definitions, the ordinary and customary meaning of the terms, and/or any other implied meaning for the respective terms. Thus, the definitions below do not limit the meaning of these terms, but only provide exemplary definitions.


Transaction data (also referred to as event data) generally refers to data associated with any event, such as an interaction by a user device with a server, website, database, and/or other online data owned by or under control of a requesting entity, such as a server controlled by a third party, such as a merchant. Transaction data may include merchant name, merchant location, merchant category, transaction dollar amount, transaction date, transaction channel (e.g., physical point of sale, Internet, etc.) and/or an indicator as to whether or not the physical payment card (e.g., credit card or debit card) was present for a transaction. Transaction data structures may include, for example, specific transactions on one or more credit cards of a user, such as the detailed transaction data that is available on credit card statements. Transaction data may also include transaction-level debit information, such as regarding debit card or checking account transactions. The transaction data may be obtained from various sources, such as from credit issuers (e.g., financial institutions that issue credit cards), transaction processors (e.g., entities that process credit card swipes at points-of-sale), transaction aggregators, merchant retailers, and/or any other source. Transaction data may also include non-financial exchanges, such as login activity, Internet search history, Internet browsing history, posts to a social media platform, or other interactions between communication devices. In some implementations, the users may be machines interacting with each other (e.g., machine-to-machine communications). Transaction data may be presented in raw form. Raw transaction data generally refers to transaction data as received by the transaction processing system from a third party transaction data provider. Transaction data may be compressed. Compressed transaction data may refer to transaction data that may be stored and/or transmitted using fewer resources than when in raw form. Compressed transaction data need not be “uncompressible.” Compressed transaction data preferably retains certain identifying characteristics of the user associated with the transaction data such as behavior patterns (e.g., spend patterns), data cluster affinity, or the like.


A model generally refers to a machine learning construct which may be used by the segmentation system to automatically identify the latent topics in the transaction data and to generate segments for each user based on their transaction behavior as indicated by their transaction data. A model may be trained. Training a model generally refers to an automated machine learning process to generate the model. A model may be represented as a data structure that identifies, for a given value, one or more correlated values. For example, a topic identification data structure may include data indicating, for a candidate list of transactions, one or more topics.


A topic generally refers to a theme or common behavior exhibited in transaction data. Topics can be learned by examining the transaction behavior of users we are interested in analyzing. Each topic may be defined by a subset of merchant categories or other information included in the transaction data. The topics may be learned such that they closely reproduce the observed behaviors in the transaction data set. For example, a set of transaction may be analyzed to determine what transaction aspects (e.g., transaction category, merchant, amount, location, time and/or day of the week of the transaction) are represented across a significant number of transactions. These aspects may be included as topics describing, in general terms, what the set of transactions are directed to.


A segment (also referred to herein as a “data cluster”) generally refers to a group of users where each user is associated with one or more topics within a set of topics with different weights. A segment generally indicates a collection of users with similar topic distribution in their transaction behavior. For example, a segment identifying a lifestyle of “sports fan” may include a user having transactions identified in the topics of “athletic events,” “sporting goods,” “physical fitness,” and “sports bar.”


The term machine learning generally refers to automated processes by which received data is analyzed to generate and/or update one or more models. Machine learning may include artificial intelligence such as neural networks, genetic algorithms, clustering, or the like. Machine learning may be performed using a training set of data. The training data may be used to generate the model that best characterizes a feature of interest using the training data. In some implementations, the class of features may be identified before training. In such instances, the model may be trained to provide outputs most closely resembling the target class of features. In some implementations, no prior knowledge may be available for training the data. In such instances, the model may discover new relationships for the provided training data. Such relationships may include similarities between data elements such as transactions or transaction categories as will be described in further detail below.


A message encompasses a wide variety of formats for communicating (e.g., transmitting or receiving) information. A message may include a machine readable aggregation of information such as an XML document, fixed field message, comma separated message, or the like. A message may, in some implementations, include a signal utilized to transmit one or more representations of the information. While recited in the singular, a message may be composed, transmitted, stored, received, etc. in multiple parts.


The terms determine or determining encompass a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing, and the like.


The term selectively or selective may encompass a wide variety of actions. For example, a “selective” process may include determining one option from multiple options. A “selective” process may include one or more of: dynamically determined inputs, preconfigured inputs, or user-initiated inputs for making the determination. In some implementations, an n-input switch may be included to provide selective functionality where n is the number of inputs used to make the selection.


The terms provide or providing encompass a wide variety of actions. For example, “providing” may include storing a value in a location for subsequent retrieval, transmitting a value directly to a recipient, transmitting or storing a reference to a value, and the like. “Providing” may also include encoding, decoding, encrypting, decrypting, validating, verifying, and the like.


A user interface (also referred to as an interactive user interface, a graphical user interface or a UI) may refer to a web-based interface including data fields for receiving input signals or providing electronic information and/or for providing information to the user in response to any received input signals. A UI may be implemented in whole or in part using technologies such as HTML, Flash, Java, .net, web services, and RSS. In some implementations, a UI may be included in a stand-alone client (for example, thick client, fat client) configured to communicate (e.g., send or receive data) in accordance with one or more of the aspects described.


Example Transaction Data Compression System


FIG. 1 shows a functional block diagram of an example of a user behavior segmentation system. The system 100 shown can process transaction data from a variety of sources. As shown, transaction data may be received from a credit bureau repository 102 or one or more financial institutions 104. However, as discussed above, transaction data may be received from a user's car, a gym, a library, a merchant, or other system whereby the user interacts to perform a transaction.


The transaction data may be received by a segmentation service 120. Although FIG. 1 shows a direct connection between the segmentation service 120 and the sources of transaction data, it will be understood that other intermediate systems may be used during transmission. The segmentation service 120 is responsible for reducing the dimensionality of the transaction data such that user behavior-based segmentation can be performed effectively and accurately. As discussed above, the transaction data dimension reduction may be particularly useful to allow accurate user profiling based on large volumes of transaction data. In some implementations, the large volume of transaction data may also be from disparate sources. Accordingly, the segmentation service 120 is provided to compress transaction data while retaining meaningful profiling data for each account holder.


The segmentation service 120 includes a data preparation module 130. The data preparation module is provided to ensure transaction data is uniformly organized prior to dimension reduction. A transaction data collection service 132 is included to receive the transaction data from the transaction data sources. The transaction data may be received via wire, wireless, or hybrid wired and wireless means. The transaction data collection service 132 may collect data by requesting transaction data from a data source. In some implementations, the collection service 132 may receive transaction data from a transaction data source such as according to a schedule.


The transaction data received from a transaction data source may be stored in a raw transaction data store 134. The raw transaction data store 134 may be a specialized data store device configured to handle large volumes of data.


The data preparation module 130 shown in FIG. 1 includes a normalization and codification device 136 which may be implemented using a processor specially programmed with executable instructions to generate normalized and codified transaction data. The normalization process may include normalizing the format of the data such that transaction data from different sources each appear in a uniform record. For example, the system 100 may have a target record type and include one or more conversions to map a value from the raw transaction record to a field of the target record type.


The instructions may further cause the device 136 to categorize or codify the transaction data. In some implementations, the set of all users is run through one or more models, such as a latent dirichlet allocation (LDA) algorithm, which was originally designed to discover topics in text documents. In this approach each user is treated as a document, and each transaction is converted to a “word” by codification. These “words,” which are analogous to the “categories” discussed herein, may be included in the raw transaction data. In some implementations, the categories may be added to the raw transaction data by the device 136. The category or “word” assigned to a particular transaction may be determined by the device 136 using the transaction data such as an item identifier, an item name, merchant name, a merchant code, or a merchant category code or merchant location, or transaction amount, or transaction time, or combinations of the above. For example, the segmentation service 120 may be segmenting the data for identifying users to whom the system 100 will be providing specific content, such as health and safety information. As such, it may be desirable to categorize the transactions in a variety of health and safety categories. The categories may be provided as a configuration to the segmentation service 120 such that the same raw transaction data may be compressed in different ways. The configuration may identify the available categories and transaction data that cause the categorization device 136 to assign the associated category or word.


The normalization and codification device 136 is in data communication with a codified transaction data store 138. The codified transaction data store 138 is a specially configured transaction data storage device capable of handling large volumes of data (e.g., hundreds of millions of records). Illustratively, the system 100 may include hundreds of millions, or billions of transaction records. Advantageously, the system 100 is able to process these records in a duration of a few hours, whereas if such processing were to be performed manually by humans, it could take days, weeks, months, or years, depending on the number of human resources applied to the processing task. In some implementations, the codified transaction data store 138 may be commonly implemented with the raw transaction data store 134. However, in some implementations, such as when the segmentation service 120 provides segmentation data for different end uses, it may be desirable maintain separate data stores to ensure the security of the categorized or codified data for each end user.


The segmentation service 120 includes a dimension reduction module 150. The dimension reduction module 150 is in data communication with the codified transaction data store 138. The dimension reduction module 150 may be configured to generate compressed transaction records. To reduce the dimensions of the normalized transaction records, the dimension reduction module 150 may include a latent topic compression unit 152. The latent topic compression unit 152 may be configured to analyze transaction data for a group of users and identify latent features, such as topics, included in the transaction data. One example of latent topic identification may include a latent dirichlet allocation (LDA) model. The topic identification information can be a compressed representation of the normalized transaction data for a user. The topic identification information may include, for each topic modeled by the latent feature model used by the latent topic compression unit 152, an association value. The association value may indicate how closely the user is associated with each of the topics modeled. The topic identification information may be stored in a topic compressed data store 182.


The dimension reduction module 150 may include a segment generator 154. The latent topic compression unit 152 may provide the topic compressed data to the segment generator 154. In some implementations, the latent topic compression unit 152 may transmit a message including an identifier for the topic compressed data. The segment generator 154 may use the identifier to obtain the topically compressed transaction records from the topic compressed data store 182. Once obtained, the segment generator 154 may assign each user to a data cluster or segment. The assignment information may be stored in a segment assignment data store 184. Although topic compressed data store 182 and the segment assignment data store 184 are shown as separate data storage devices, it will be understood that all or some portion of these may be commonly implemented on a single data storage device.


As discussed above, the topic and/or segmentation compression may be performed using models. The models may be generated by a compression model generator 200.


Example Training Phase

To train models for transaction data compression, the transaction analysis system may collect, for each entity (e.g., individual users), transaction data over a certain period of time (for example one year). Each user may be represented by a list of all of their transactions during the designated time period and each transaction may be converted to a “word” by means of categorical description of the type of transaction. For example, a particular card transaction may be associated with a category of “Restaurant,” or more specifically “Chinese Restaurant”


In some implementations, the set of all users is run through one or more models, such as a latent dirichlet allocation (LDA) algorithm, which was originally designed to discover topics in text documents. In this approach each user is treated as a document, and each transaction is converted to a “word” by codification. The transaction to word conversion can be based on merchant category code (MCC) or merchant name, or merchant location, or transaction amount, or transaction time, or combinations of the above. Transaction at restaurant, restaurant transaction with transaction amount larger than $100, restaurant transaction from 6 pm to 9 pm and with transaction amount larger than $100 are examples of valid conversions. Transaction codification or conversion is a crucial step in transaction data compression by using latent topic discovery algorithm such as LDA. Different codification will lead to different results and optimal codification is problem dependent. The optimal codification for fraud detection may not be optimal for extracting insights from transaction data for marketing optimization. After codification transactions are treated as words that make up the documents. Each document (a proxy for the user) may be represented by a collection of words. The words may be derived from transaction MCCs or merchant names or merchant location or transaction amount or transaction time or combination of the above for transactions performed by the user. The latent topic identification model may be configured to discover a set of statistical properties common in the dataset and creates topics which describe various archetypes of spend patterns. The number of spend patterns to be discovered can be set manually or discovered automatically. The output of this model may be a series of parameters describing the topics which may be referred to in this example as “Model A.”


In addition to creating “Model A”, each user may be assigned a likeness measure to each of the topics discovered by “Model A.” In one embodiment, this measure represents the weight of a particular topic in order to most accurately represent the user's spending behavior. The result of this step is a set of users which are each represented by a vector of the length of the number of topics which may be referred to in this example as “Vector A.”


“Vector A” can be used to assign each user to one or more segments in a variety of ways such as, for example, by assigning the user to the segment which represents the largest in the vector (e.g., strongest association) or assigning the user to all segments above a particular threshold. It is also possible to use “Vector A” as in input to additional algorithms which can be used to further classify a user. In addition, “Vector A” is itself a potential output of the system which describes the user's transactional behavior in a compressed manner.


“Vector A” may then be used as an input to a clustering algorithm, such as k-means clustering in order to produce clustering results, which will be referred to as “Model B.” In one embodiment, the clustering algorithm returns the location of the center of a preset number of clusters in the same space as “Vector A”. A segment can then be assigned to a user by measuring the distance from “Vector A” to each of the points described in “Model B.” This system may then, optionally, generate a second vector, “Vector B” which measures the distances of the given data point (user) to the center point of each cluster in the topic space. “Vector B” is of the same dimension as the number of clusters produced by “Model B” and can be used in a similar manner to “Vector A.”



FIG. 2 shows a functional block diagram of an example of a process to train a user behavior segmentation system. A set of user level normalized and codified transaction data 202 may be provided for training the models. A topic compression model generator 208 may receive the user level normalized and codified transaction data 202. The topic compression model generator 208 may then generate a topic compression model 210. The model 210 may be generated by iteratively analyzing the user level records to generate a model that accurately compresses the user data records into smaller, compressed records. For example, when generating a latent topic model, the iterations may adjust the number of topics to identify a model that meets specific criteria such as a target number of topics or a target “goodness-of-fit” measure.


In some embodiments, the topic compression model generator 208 may automatically determine an optimal number of topics to learn during the training phase. For example, the topic compression model generator 208 may divide the population into two pieces referred to as “Train and Test” groups. The topic compression model generator 208 may then execute the training algorithm described above multiple times with a variety number of topics in order to learn using the “Train” data. As a side-benefit of the training phase, a total probability of the dataset may be produced. This can be thought of as a goodness of fit measure. In general the more topics developed off of the training set the higher the total probability will be on the training data set. The “Test” data may then be run through the generated models (e.g., topic compression model). Finally, the topic compression model generator 208 may measure the total probability for the “Test” data for each model and select the model with the highest “Test” probability.



FIG. 3 shows a process flow diagram of an example method of transaction data compression with machine learning. The method 300 shown in FIG. 3 may be implemented in whole or in part by one or more of the devices described in this application such as FIG. 1 or 2. FIG. 3 summarizes some of the aspects of model generation discussed with reference to FIG. 2.


A network of card readers 302 may provide transaction data 304 for transactions processed via a reader. In this example, the transaction data may be obtained from a point of sale transaction processor, such as an entity that is the intermediary between the point-of-sale and the credit card issuer, which may be referred to herein as a transaction processor.


The transaction data 304 may include merchant name, merchant location, merchant category, transaction dollar amount, transaction date, and an indicator as to whether or not the card was present for the transaction.


At block 306, the number of dimensions of information represented by the transaction data may be reduced using latent topic detection techniques. Once the clustering is performed, at block 308, data clusters indicative of behavior segments may be generated. The clustering at block 308 may produce an interface, or underlying data for generating the interface, shown in FIG. 10.


At block 308, the transaction data may be further processed, such as by the transaction analysis system using machine learning to a large set of transaction data associated with multiple users, to determine behavior segments associated with respective users. The behavior segments may be selected based on such transaction data and/or compressed transaction data to provide a different segmentation than is possible using traditional user information alone such as demographic data of users. Depending on the embodiment, a user can be associated of more than one segment.


Returning to FIG. 2, once an optimal topic model is identified, the topic compression model generator 208 may output a topic compressed transaction data 212 including the topic compressed transaction data for each user. A clustering compression model generator 214 may also be included. The clustering compression model generator 214 may obtain the topic compressed transaction data 212 and generate a clustering compression model 216. The generation of the clustering compression model 216 may be an iterative process for generating an appropriate clustering compression model. For example, the clustering compression model generator 214 may iteratively identify center points for clusters. For each iteration, how compressed user records are assigned to clusters may be evaluated as a criteria for determining whether the model is suitable. The evaluation may include density of users within the clusters, number of clusters, center points for a cluster, average distance to a center point for each cluster, and other similar information that may be identified from the cluster and/or transaction data for users assigned to the cluster.


In one example, the clustering compression model generator 214 may compare the topically compressed user records to each other to identify clusters of compressed user records. The data clusters may be determined using an automated, machine-driven approach, without manually-driven rules. It may not be clear given the quantity of transactions and compressed transaction data records how users can be grouped to form data clusters. In one embodiment, the clustering compression model generator 214 may automatically group “like” users to indicate affinity groups. The grouping may be based on transaction data and/or topically compressed transaction data for the users. For example, data clusters may be identified using spend categories for a set of users. The clustering compression model generator 214 may process the transaction data and/or compressed transaction data to determine likely data clusters within the data set. It may be desirable to direct the comparison such that a predetermined number of clusters are identified. For example, some end users may wish to selectively provide content to ten different clusters of users. In such implementations, the identification of clusters may be guided such that the number of clusters identified matches the target number of clusters (e.g., in this example, ten clusters). In some embodiments, multiple techniques may be applied to identify clusters, such as combining traditional clustering algorithms with machine-learning based techniques, such as topic modeling.


The topic compression model 210 and the clustering compression model 216 may be provided to the compression module 150 and used to compress subsequently received transaction data as described above and in further detail below.


The models generated by the compression model generator 200 shown in FIG. 2 may be used by different end users. As such, the compression model generator 200 may receive a training configuration to generate models for specific end users. For example, the number of topics, specific topics, compression ratios, data cluster size, data cluster density, transaction categorization rules, and the like may be provided as the training configuration. In such implementations, the models generated may include an identifier indicating the end user and/or training configuration used to generate the model. This allows the compression model generator 200 to use the same structures to generate different models for compressing transaction data.


The behavior segmentation systems and methods described herein may group like sets of users into overlapping groups based on their transactional behavior. This differs from other traditional transaction based segmentation in a variety of ways. One way is that the described features may include a latent topic identification model, such as a model generated via a latent dirichlet allocation (LDA) algorithm, to uncover spending patterns among the population automatically. Unlike other methods, LDA does not require grouping merchants either manually using ad hoc rules or statistically by counting co-occurrence as in content vector approach. It operates directly on the collection of transactions over many users and allows users to belong to multiple groups. This makes particular sense when thinking about transactional behavior as each transaction may be driven by different characteristics about the user. For instance, some spend may be driven by necessity, e.g., grocery shopping, whereas other types of spend may be hobby driven, e.g., photography or entertainment.


As noted above, the behavior segments may be determined using an automated, machine-driven approach, without manually-driven rules. In one embodiment, clustering algorithms automatically group “like” individuals by their spend. In some embodiments, multiple techniques may be applied to develop more optimized data clusters, such as combining clustering algorithms with machine-learning based techniques, such as topic modeling. In some embodiments, a clustering output maps distance of users to the developed segment centers. Thus, a user may be assigned to a segment they are closest to along with distance measurements that show the user's proximity to other (possibly all) segments. This creates opportunities to consider multiple types of transaction behavior of the user in assessing how their behavior (such as spending patterns) is unique from other users in the population and target content accordingly.


In some embodiments, the segmentation methodology is data driven with a few parameters that can be tuned to produce different model outputs.


Example Computing Phase

The compression models may be used to compress transaction data. Transaction data for users may be initially prepared in the same manner as described in FIG. 1 discussed above. For example, the transaction analysis system 100 may collect (or otherwise accesses) transaction data for users over a certain period of time. The system 100 may then use “Model A” as computed during the training phase to compute the equivalent of “Vector A” for the data used in the testing phase. If there is a “Model B”, the series of parameters describing the segments may be used to generate the equivalent of “Vector B” for the data used in the computing phase.



FIG. 4 shows a functional block diagram of an example of the user behavior segmentation system generating segments for users using trained models. The compression module 150 may be similar that shown and described above, such as with reference to FIG. 1. User level normalized and codified transaction data 406 may be provided to the compression module 150. The compression module 150 shown in FIG. 4 also receives the trained compression models. As shown in FIG. 4, the compression module 150 receives a topic compression model 410 and a clustering compression model 416. The compression models may be provided to the compression module 150 such as via a message from the compression model generator 200. In some implementations, the compression module 150 may request a model from the compression model generator 200 or a data storage device configured to store models generated thereby. Such model requests may include one or more of: an end user identifier, a model identifier, a model type identifier, a security/authorization token to ensure the requesting device is authorized to access the requested model, or the like.


The latent topic compression 152 may be configured to generate topic compressed transaction data 412 using the user level normalized transaction data 406 and the topic compression model 410. The topic compressed transaction data 412 may include, for each user, an indication of how closely the transaction data for the user is associated with the topics identified by the model. As noted above, the topic compressed transaction data 412 may be stored using a quantity of storage resources that are less than the storage resources used to store the user level normalized transaction data 406.


The compression segment generator 156 included in the compression module 150 may be similarly configured to obtain the clustering compression model 416. Using the topic compressed transaction data 1012 and the clustering compression model 416, the compression segment generator 156 may generate cluster compressed transaction data 418 for the users. As noted above, the cluster compressed transaction data 418 may be stored using a quantity of storage resources that are less than the storage resources used to store the topic compressed transaction data 412.


Example Uses of Compressed Transaction Data

Returning to FIG. 1, the system 100 may also include elements configured to utilize the compressed transaction data. As shown in FIG. 1, a profile target service 110 is provided. The profile target service 110 may use the user segmentation data to identify users to target to receive specific content. The profile target service 110 may access content data including a content identifier and an indication of a target data cluster of the data clusters. The target data cluster may identify the segment to which the content is to be provided. In some implementations, the profile target service 110 may identify a plurality of users assigned to the target data cluster. The profile target service 110 may also select a target set of users including generated association strengths that indicate a threshold degree of association to the center point of the target data cluster. The profile target service 110 may then generate an electronic communication to provide to the target set of user profiles, the electronic communication including content indicated by the content identifier. In some implementations, the profile target service 110 may provide an indication of the set of users to another aspect of the system 100, such as a content generation server 170, to generate and communicate the identified content to the identified target.


In implementations where the profile target service 110 generates an electronic communication to provide to the target set of user profiles, the electronic communication may be implemented as or included within a message transmitted via a communication channel such as a wireless communication channel to a wireless device of a targeted user. The message may cause the wireless device to activate and/or initiate an application that is configured to acquire content for the user based on the segment identified for the user. In some implementations, the application may be initiated on the user device and, upon receipt of the message, the interface of the application may be adjusted using the received message. For example, a card issuer may provide an interactive application for managing a user account. As a user device operates the interactive application, a message including segmentation information may be received. This message may cause the interactive application to adjust one or more functions using the segmentation information. For example, the segmentation information may indicate the user has a disability. In such instances, a prompt may be presented via the interactive application, asking whether the user would like to switch to a high contrast mode. Content may also be selected for presentation using data provided in the message as selection criteria. Because the application may be initiated or adjusted upon receipt of the message, additional attributes may be identified at or near the same time the message is provided. These additional attributes may include location of the wireless device, power mode of the wireless device, connectivity of the wireless device (e.g., WiFi, cellular, USB tether), other applications executing on the wireless device (e.g., music, photos, movies, Internet browsing), or the like. These attributes may also be used in conjunction with the segmentation data to provide a contextually relevant interactive application adjustments and/or content to the user.


To support these features of the profile target service 110, a targeting rules data store 111 may be provided. The targeting rules data store 111 may include the targeting goals to be achieved by the profile target service 110. A targeting rule may identify an assigned segment, association strengths to the assigned segment, association strengths to a non-assigned segment, or other transaction data that can be used to determine which users should receive the content.


A segment selector 112 may be included to compare the segment assignment data with one or more targeting rule to select a portion of the users which are associated with a desired target segment. A profile selection engine 114 may then narrow the users identified by the segment selector 112 to focus on a particular set of the users to target. For example, the profile selection engine 114 may identify users having a certain distance to the center point of the assigned cluster. The distance may be a short distance, which would indicate a group of users who are strongly identified with the cluster. Such strong affinity can be useful in providing specific content of interest to those within the cluster. The distance may be larger distance, which would indicate a group of users who are identified, but not as strongly as others, with the cluster. Such loose affinity can be useful in providing specific content to increase a user's affinity with the assigned segment.


As noted above, the profile selection engine 114 may also consider relationships between the users assigned to the target cluster and another data cluster to which the users have not been assigned. Such relationships may indicate that while a user is strongly affiliated with the assigned cluster, there may be some interest in another cluster. Such relationships may indicate that a user has a very strong distaste for a very distant cluster. These valuable insights may be determined using the smaller compressed records for the users quickly and with efficient use of system resources.


Similar to the profile selection engine 114, a profile exclusion engine 116 may be included to filter out selected target users. Using targeting rules, the automatically generated target set of users can be further processed to ensure accurate and timely selection. For example, it may be desirable to exclude targeting of a user who has transaction data indicating a recent illness or death (e.g., transactions at a hospital, funeral home, or pharmacy). As another example, it may be desirable to avoid targeting of a user for an end user who is already a loyal customer of a merchant identified in a user's transaction data. For instance, a new user incentive need not be provided to a long time user of a service.


The profile target service 110 may store information for the identified target users in a selected profiles data store 118. The selected profiles data store 118 may be access by the content generation service 170 to generate and deliver the content to each of the identified target users. To generate the content, a targeted content generator 172 may be included in the content generation service 170. The targeted content generator 172 may be configured to format the targeted content element for each user. For example, different targeted users may use different devices to receive content. In such instance, the targeted content generator 172 may adjust, reformat, convert, or otherwise change the targeted content so that a registered user device for a targeted user can receive the content. The targeted content generator 172 may also dynamically adjust content to include targeted user specific information in the content such as the user's name, home town, or other user or transaction information available to the content generation service. The targeted content generator 172 may also prepare printable materials for mailing to the user.


Once the targeted content is prepared, a communication service 174 is included to communicate the generated content to the targeted users. As shown in FIG. 1, the communication service 174 provides the content to user devices 190. In some implementations, the content may be provided to a bulk printing service for physical print and mailing to the targeted users. The communication service 174 may be configured to control the timing of the content delivery. For example, the communication service 174 may transmit the content during a period of time (e.g., at night) when the network for the system 100 is experiencing slow traffic and may have available resources or when the cost of transmitting the content is lower than other times (e.g., nights and weekends). This can also help reduce the resource strain on the network in providing the transaction data targeting.



FIG. 5 shows a process flow diagram of an example method of reducing the dimensionality of transaction data. The method 500 shown in FIG. 5 may be implemented in whole or in part by one or more of the devices described in this application such as FIG. 1 or 4. The dimension reduction described in FIG. 5 may be achieved, in part, by mapping the transaction data to latent topics. The mapping via the latent topics provides a more focused representation of the transaction data over fewer dimensions.


At block 502, raw transaction data is received from a transaction data source such as a financial institution or credit data repositories. As discussed above, the data may be received in batch mode. The data may be pushed from the source to the transaction data processing system. The data may be requested by the system 100 from a source. In some implementations, some data may be pushed and some may be requested.


At block 504, raw transaction data may be categorized or codified using one or more transaction attributes. The transaction attributes that may be used to categorize transactions include merchant name, merchant category code, transaction amount, transaction channel (online versus off-line), or the like. The categorization may utilize match rules which identify transaction data attribute and values therefor that match a given category.


At block 506, the transaction data may be normalized. For example, the normalization may be performed to ensure transaction data from different sources are represented in a consistent format.


At block 508, latent topics for the codified transaction data are identified. The latent topics may be identified using latent topic detection which may include, in some implementations, an LDA model. The topics may be identified by training an LDA model using previous transaction data. For example, the training may reveal that a set of transactions are each related to a transaction topic such as traveling.


At block 510, a compressed record of the user is generated. The compressed record may be generated using the latent topics identified at block 508. To generate the compressed record, for an identified latent topic for a given user's transaction data, a value may be generated. The value may indicate how closely a specific user's transactions match an identified topic. In implementations where multiple topics are identified, values for each topic may be generated. The values may be expressed as an ordered vector of match values. Each match value may indicate how closely the user matches the associated topic. The match value may be expressed as an integer number or decimal number depending on the target compression level. For example, in some implementations, it may be desirable to provide a binary indication as to whether a topic applied to a given user. In such implementations, the values may be 1 or 0. In some implementations, it may be desirable to provide a decimal value where 0 is no match and 1 is a perfect match. The decimal values between 0 and 1 identify the degree of matching for a given value.


Having generated compressed transaction data using topics, it may be desirable perform a segmentation based on the topically compressed user records. The segmentation provides further summarization the behavior of a user. This can be useful in implementations where users with similar behavior patterns will be analyzed or provided content in similar fashions. This summary may also be useful to reduce the amount of data transmitted for a user such as in environments where resources are limited for exchanging, storing, and processing transaction data such as via mobile devices.



FIG. 6 shows a process flow diagram of an example of a method of segmenting users by using topically compressed user records. The method 600 shown in FIG. 6 may be implemented in whole or in part by one or more of the devices described in this application such as FIG. 1 or 4.


At block 602, the topically compressed user records are received. The records may be received via wired, wireless, or hybrid wired-wireless means. In some implementations, the segment generator 154 may receive the records.


At block 604, a cluster compression model for the compressed user records is received. The cluster compression model may be received along with the user records. In some implementations, the cluster compression model may be received from a model storage device such as in response to a query. The query may include information to identify the model of interest. For example, the query may indicate a target entity for which the compression is being performed, such as a bank or credit card issuing company.


At block 606, statistical information (e.g., an association strength) for each topic (e.g., latent feature) included in the compressed transaction data for the users is generated. The cluster compression model may include one or more center points for each cluster included in the model. Where the compressed transaction data is used for clustering, the center point of a cluster may identify a point within the data cluster that is most centrally located to represent an average topic match value for each topic included in the data cluster.


The statistical information generated at block 606 may indicate how well the compressed user record matches to the respective cluster. In some embodiments, a clustering output maps distance of users to the modeled segment centers. The association strength may indicate a degree of association between a topic in the topically compressed transaction data for a user and the center point of a data cluster included in the cluster compression model.



FIG. 7 is a plot diagram showing an example visualization of data clusters with center points. The diagram 700 shows compressed data for two topics. The x-axis shows the match value for topic 1 and the y-axis shown the match value for topic 2. Twenty-one compressed transaction records are shown. The process of identifying data clusters included a configuration to identify three clusters. A first cluster 702, a second cluster 704, and a third cluster 706 have been identified and are shown in the diagram 700. Each data cluster includes a center point (e.g., 708, 710, and 712). For the first cluster 702, the distances to the center point 408 are shown. These distances identify how far a given user record is from the “ideal” compressed record for the data cluster. The center point may indicate an average topic match value taken from compressed transaction records to be included in the cluster.


In FIG. 7, a distance 750 is shown between a compressed user record 720 included in the first data cluster 702 and the center point 710 of the second data cluster 704. In some implementations, it may be desirable to ensure a user record is at least a certain distance from another data cluster. Because the topics and clusters are generated through machine learning, preferences for edge records (e.g., records which may lie at the boundary of a data cluster) may be difficult to predict. Accordingly, it may be desirable to identify those records for further analysis or exclusion from, say, content delivery.


Returning to FIG. 6, the statistical information based on, for example, the distance information, indicates how well a compressed user record matches each cluster included in the model. In some embodiments, a clustering output maps distance of users to the developed segment centers expressed in the cluster compression model. Thus, at block 608, a user may be assigned to a data cluster they are closest to along with distance measurements that show the customer's proximity to other (possibly all) data cluster. The assignment may be based on the difference between topic match values for the record and the center points of the identified data clusters. Assigning users to one or more clusters creates opportunities to consider multiple types of behavior as expressed via transaction data of the user in assessing how their behavior(s) is/are unique from other users in the population. The clustering also allows targeting of products, offers, or other messaging according to the assigned cluster and/or relationship to other non-assigned clusters.


Thus, a user may be assigned to a data cluster they are closest to along with distance measurements that show the customer's proximity to other (possibly all) data cluster. This creates opportunities to consider multiple types of behavior of the user in assessing how their behavior is unique from other users in the population and target products, offers or messaging accordingly.



FIG. 8 shows a process flow diagram of an example method of providing content using segmentation. The method 800 shown in FIG. 8 may be implemented in whole or in part by one or more of the devices described in this application such as FIG. 1.


At block 802, content to provide to users associated with a predetermined cluster is received. The content may be received via wired, wireless, or hybrid wired and wireless means. The content may be received in a machine readable message. The content may include audio, video, text, graphic, olfactory, or haptic content.


At block 804, content access information for a set of users for content associated with a data cluster is received. The content access information may indicate which users within a data cluster should have access to the content. The content access information may include compression values for a given user record such as topic association strengths. For example, a content element may be accessed if, for a given data cluster, the association strength for a first topic is greater than a first threshold and the association strength for a second topic is less than a second threshold. In some implementations, the compression information for association strength with non-assigned data clusters may be specified in the content access information. The content access information may be received via wired, wireless, or hybrid wired and wireless means. The content access information may also include time information indicating when access to the content should be granted. For example, the time may be specified as a date range during which a particular video should be available for access. The content access information may be received in a machine readable message. The content access information may be received together with the content or in a separate message.


At block 806, a compressed user record for each user included in the set of users is received. The compressed user records may be received via wired, wireless, or hybrid wired and wireless means. The compressed user records may be received in a machine readable message. The compressed user records may include topically compressed transaction data and/or clustered compressed data. The compressed user records may be received from a transaction processing system.


At block 808, the compressed user records are filtered. The filtering may be applied using the content access information in comparison to the compressed user records. For example, a record may be filtered out of consideration if the compression information for the record includes an association strength with a non-assigned data cluster at or above a threshold value. Accordingly, the filtering may use statistical information for the compressed user record indicating a relative match level for another identified cluster to which the compressed user record has not been assigned.


At block 810, a subset of the filtered user records are selected as candidates to receive the content based on the statistical information for the compressed user record indicating a relative match level for the predetermined data cluster. In some implementations, it may be desirable to target only a portion of the filtered user records to receive the content. The selection may be based on a comparison of the content access information with the compressed user record. For example, a comparison of topic match level to a threshold may be performed to determine whether a user record should be included in the subset of the filtered user records.


At block 812, a content message is generated and provided to at least a portion of the candidates. The content message includes the content. The content message may include a dynamic portion of content generated based on compressed user records for each candidate. This provides a second level of tailoring and access control for the content. The content message may be provide via wired or wireless means to a device of the user. In some implementations, the content may be provided to a fulfillment device such as a bulk mail generator for printing and shipping to one or more of the candidate users. In such implementations, the content may be provided with shipping information or an identifier that can be used to obtain the shipping information for the content.


In certain implementations, one or more of the content messages are operable to automatically activate a user communication service program on the user device 190 or a client service system (not shown). The activated user communication service program automatically generates one or more communications directed to the user for whom at least one of the content messages was transmitted. Generation of the user communications can be informed by informational included in the content message. The user communications are then automatically transmitted to the user in one or more modes of communication, such as, for example, electronic mail, text messaging, and regular postal mail, to name a few. In certain modes of communication to the user, the user communication may be configured to automatically operate on the user device 190. For example, a user's mobile device may, upon receipt of the transmitted user communication, activate a software application installed on the user's mobile device to deliver the user communication to the user. Alternatively, the user communication may activate a web browser and access a web site to present the user communication to the user. In another example, a user communication may be transmitted to a user's email account and, when received, automatically cause the user's device, such as a computer, tablet, or the like, to display the transmitted user communication. In another example, the user may receive from the client service system a coupon/discount offer in various manners, such as in a billing statement delivered via postal or other delivery service, in a text message to the user's mobile device, and in an email message sent to one or more of the user's email accounts. When a content message is transmitted to the client in response to a transaction, such offers may be effective because they are provided at or near a time that the product or service may be purchased by the user.



FIG. 9 shows a data flow diagram for an example dimension reduction and segmentation assignment for transaction data. The data flow 900 begins with an initial set of transaction data 902 for multiple users. Each transaction may be categorized or codified (e.g., clothing, auto, coffee). The initial transaction data 902 may be parsed to identify only those transactions for a specific user. A set of user transaction data 910 for a user (e.g., “Sara Smith”) is shown in FIG. 9. It will be appreciated that additional sets may be identified for other users and processed in a similar manner.


A topic identification model 914 may be used in conjunction with the set of user transaction data 910 to generate first compressed user transaction data 916. One example topic identification model 914 is a latent feature model such as an LDA model. The latent feature model may be used to discover the behavior topic and to reduce dimensionality of the transaction data. The discovery via the latent feature model is probabilistic based on identified connections between transaction data elements.


The first compressed user transaction data 916 may include a list of values indicating how closely the transaction data matches a given topic. The values are generated by the topic identification model. As shown in FIG. 9, each topic is included as a row in a vector representation of the first compressed data. It will be understood that the representation may be different (e.g., string of characters, binary encoded value, XML, or other machine readable format).


Transactional data for one user or a group of users may then be provided to a cluster identifier 920. This allows the cluster identifier to group the transaction data for the users based on the intrinsic similarities of their transaction data in the topic space.


The cluster identifier 920 may obtain a set of data clusters 930 for the transaction data 902. The set of data cluster 930 may provide as a segmentation model (e.g., “Model B”). The cluster identifier 920 may generate association strength values for transaction data for a user with one or more data clusters included in the data clusters 930. The association strength values for a given user may represent the distance of the user to a center point of a data cluster, such as the center point shown in FIG. 7. Users may be assigned to one or more clusters and a second compressed transaction data record 940 (e.g., the user segmentation) may be generated. As shown in FIG. 9, the user (e.g., “Sara Smith”) has the smallest distance to the center point of cluster 2 therefore she may be assigned to data cluster 2. The second compressed transaction data record 940 includes a row for each cluster included in the set of data clusters. The rows may include a distance value to the center point of the respective data cluster. In some implementations, the row may simply include the topic association strength values for the cluster included in the data clusters to which the user record was assigned. As shown, an indicator that the user associated with the second compressed transaction data record 940 is assigned to data cluster 2 may be included. This may further reduce the amount of data needed to represent the transactions for the user.



FIG. 10 shows some sample user behavior segments generated from transaction data. The interface 1000 includes four clusters 1002, 1004, 1006, and 1008. As shown in FIG. 10 the data clusters are presented as segments. For each cluster, topic summaries may be presented to indicate the characteristics of users assigned to the cluster. For example, for the first cluster 1002, a first indicator 1010 may be included to identify that the users assigned to the first data cluster 1002 spend 5 times more than the average user on child and infant-wear. A second indicator 1012 may be included to indicate the users assigned to the first cluster 1002 spend only 20 percent of the average on nightclubs and bars. The interface diagram may be generated using the identified data clusters and the center point information. The interface 1000 may be useful to help quickly assess the types of users present within a set of transaction data. The assessment may be for the purposes of providing content. As such, it may be desirable to provide an accurate but abbreviated view of a data cluster rather than generating specific views for each user.


Example Transaction Processing with Compression


FIG. 11 shows a message flow diagram of an example transaction with transaction data compression and content provided based on the compressed transaction data. A merchant system 1110 may include a card reader 1102 and a point of sale system 1104. The card reader 1102 may be configured to receive card or other payment information from a user. The card reader 1102 may be in data communication with the point of sale system 1104 to receive information collected by the card reader 1102 and other equipment at the merchant site such as a cash register, product scanner, receipt printer, display terminal, and the like. The merchant system 1110 may communicate with an acquisition server 1112. The acquisition server 1112 may be configured to determine, for payment tendered for a transaction, which issuer is responsible for the payment presented. In the case of credit cards, the issuer may be a card issuer 1114.


The message flow 1100 shown in FIG. 11 provides a simplified view of messages that may be exchanged between the entities shown for gathering, processing, and compressing transaction data as well as providing content based on the compressed transaction data for a user. It will be understood that additional entities may mediate one or more of the messages shown in FIG. 11.


The message flow 1100 may begin with a card swipe detection by the card reader 1102 based on a message 1120. The message 1120 may include the payment information read from the card such as from a magnetic strip, an embedded memory chip, a near-field communication element, or other information source included on the card. Via message 1122, the card information may be transmitted from the card reader 1102 to the point of sale system 1104. The point of sale system 1104 may determine that the card is a credit card and identify the acquisition server 1112 as a source for determining whether the payment is authorized.


The point of sale system 1104 may transmit a message 1124 to the acquisition server 1112 including the card information and merchant information. The merchant information may include a merchant identifier, merchant transaction information (e.g., desired payment amount), or other information available to the merchant for the transaction. The acquisition service 1112 may identify the card issuer based on the card information received and transmit a message 1126 to the card issuer 1114. The message 1126 may include the card information and merchant information received via message 1124. The message 1126 may also include information about the acquisition server 1112. The card issuer 1114 may then authorize the requested payment amount via message 1128. The authorization of payment is known in the field of payment processing. The authorization determines whether or not the requested payment for the transaction is to be honored. The card issuer 1114 also knows one of their users is at a payment terminal trying to make a purchase. This can be a desirable moment to interact with the customer to provide additional content to the customer, such as content selected by the card issuer or by the merchant. To select content however, an accurate record of the user may be needed to provide relevant content for the specific user involved in the transaction. As such, via message 1130, one or more compressed transaction records may be generated by the card issuer 1114.


It will be understood that the compression may be performed by a third-party system, such as the system 100 shown in FIG. 1. It will also be understood that transaction data may be stored, and thus compressed, by any of the entities shown in FIG. 11. For example, the acquisition server 1112 or the merchant system 1110 may store and compress transaction data. Furthermore, any of the systems or servers through which the transaction data is passed may serve as a transaction data source for the system 100 shown in FIG. 1.


Via message 1132, the authorization decision and compressed user data may be transmitted back to the merchant system 1110 via the acquisition server 1112. Because the compressed user data may be represented using a relatively small quantity of resources, this data may be easily included in the current messaging used to authorize transactions. The point of sale system 1104 may use the authorization information to determine whether or not to allow the transaction to proceed. If the authorization is negative, then the point of sale system 1104 may request alternate payment from the user. As shown in FIG. 11, the compressed user data may be transmitted to the card reader 1102 via message 1136. The merchant may desire to present content relevant to the tastes of the user. In such implementations, the card reader 1102 may be configured to select content via message 1138. The content or indicators therefor (e.g., file names, network locations, uniform resource locators, etc.) may be stored at the card reader along with selection criteria. The card reader 1102 may compare the compressed user data to the selection criteria for the content stored at the card reader 1102. For example, the compressed user data may include data cluster compressed user data indicating an association strength to a particular topic such as “business travel.” A content element discussing a business service may be relevant to business travelers. As such, this content element may have a selection criteria such that a user having an association strength to the topic of “business travel” that exceeds a threshold value is eligible to receive the content. The identified content may be provided to the card reader (e.g., a display, a printer, a speaker) via message 1140. The card reader 1102 may then render the content for presentation to the user. As noted above, the entities processing the transaction may store and/or compress the transaction data. As shown in FIG. 11, the point of sale system 1104 may store the transaction data via message 1142. The storage of the transaction data may be performed to allow the merchant to submit all transactions in batch for processing at a later time or date, such as shown in FIG. 12.


In some implementations, the user data may be transmitted via a message 1144 to a card holder device 1116. The card holder device 1116 is an electronic communication device associated with a user who has been issued a payment card or otherwise accesses the system to perform a transaction. As shown in FIG. 11, the user data may be sent from the card issuer 1114, however, it will be appreciated that the user data may be transmitted to the card holder device 1116 from any of the entities shown in FIG. 11 with access to the user data. The message 1144 may cause the card holder device 1116 to initiate an application that is configured to acquire content for the user based on the segment identified for the user. In some implementations, the application may be initiated on the card holder device 1114 and, upon receipt of the message 1144, the interface of the application may be adjusted using the received message. The application, via message 1146, may cause selection of content to provide to the user via the card holder device 1114. The selection may further consider information available to the card holder device 1114 such as location, other installed applications, other executing applications, resource availability, resource level, etc.). Once identified, the content may be provided via message 1148. As discussed above, the content may be provided via the card holder device 1114 during or proximate to the time of the transaction involving the card swipe at message 1120.



FIG. 12 shows a message flow diagram of an example batch transaction processing with transaction data compression and content provided based on the compressed transaction data. Some of the entities shown in FIG. 12 overlap with those shown in FIG. 11. Added to FIG. 12 is a card network server 1202. The card network server 1202 is an electronic device operated by the credit card network to which a given card belongs such as VISA.


The merchant system 1110 may transmit a batch of transaction data for multiple transactions with multiple users via message 1220. The batch of transaction data from a single merchant may include hundreds, thousands, or millions of individual transaction records. The merchant system 1110 may transmit the message 1220 to the acquisition server 1112 to initiate payment for the transactions. The acquisition server 1112, via message 1222, may transmit those transactions from a specific card network to the card network server 120 to request payment from the specific network. Because a single card network may have multiple card issuers (e.g., banks, credit unions, etc.), the card network server 1202 splits the batch of transactions by card issuer. The transactions for a specific issuer are transmitted via message 1224 to, as shown in FIG. 12, the card issuer 1114. The card issuer 1114 stores the transaction data. Because new information is now available, the card issuer 1114 may also initiate a recompression of the transaction data in light of the new transactions. The storage and recompression may be performed via message 1226.


The new transaction data may also indicate that the models used to compress the transaction data should be retrained. For example, if the new transactions represent a significant percentage of the overall transaction data stored by the system 100, the retraining of the models may be desirable to ensure an accurate and current view of the users. The retraining may also be needed to account for new transactions for new users who were previously not included in the training process.


Via message 1230, the card issuer 1114 may initiate a transfer of funds to settle one or more of the transactions included in the transaction data batch. As shown in FIG. 12, the card network server 1202, via message 1232, may also store and compress transaction data. The card network server 1202 may also initiate a transfer of funds to settle one or more of the transactions included in the transaction data batch via message 1234 and, ultimately, to transfer funds to the merchant system 1110 via message 1236.


The card issuer 1114 may interface with the card holder. For example, the card issuer 1114 may provide an interactive application for reporting transaction information to the card holder such as via the card holder device. Using the compressed transaction records, users may be identified to receive particular content. In some implementations, the profile target service 110 shown in FIG. 1 may perform the selection of users and/or content to be provided. Via message 1240, the selected content may be provided to the identified user. The content may be provided to the card holder device 1116 by the content generating service 170 shown in FIG. 1.


The card issuer 1114 may interface via mail such as by printing and mailing content to the card holder. In such implementations, the content included in the message 1240 may be provided to a fulfillment server responsible for printing and mailing the content to the card holder.


Example Point-of-Sale Card Reader


FIG. 13 shows a schematic perspective view of an example card reader. As seen in FIG. 13, there is provided a point-of-sale card reader 1300 including a housing 10. The housing 10 may enclose transaction circuitry (not shown) and other electronic components to implement one or more of the transaction data compression features described.


The point-of-sale card reader 1300 includes a keypad 16, which interfaces with the point-of-sale transaction circuitry to provide input signals indicative of transaction or event events at or near the point-of-sale card reader 1300. The point-of-sale card reader 1300 also includes a magnetic card reader 18 and a smart card reader 20, which may be adapted to receive a smart card 22.


The point-of-sale card reader 1300 also includes a display 24 and a printer 26 configured to provide output information prior to, during, or after a transaction. The content may include single media or multimedia content. The content may be static (e.g., a movie, a text, an image, and/or audio) or dynamically generated. For example, using the compressed transaction data, the card swiped may be identified with a data cluster for sports fans. In such an implementation, the content may be adapted to include sports-centric information such as inserting a team logo into the presented content.



FIG. 14 shows a functional block diagram of the exemplary card reader of FIG. 13. A controller 40 which interfaces with the keypad 16, the display 24, the printer 26, and with a targeted content generator 60 are shown. The controller 40, which may include card reader and/or point-of-sale terminal functionality may interface with the magnetic card reader 18 and, when available, the smart card reader 20. The controller 40 also interfaces with a mobile computing communication device 41 and may interface with an optional modem 42. The mobile computing communication device 41 and the modem 42 may be used by the reader 1300 to communicate messages such as with a point-of-sale system or other merchant transaction processing equipment.


The card reader 900 shown in FIG. 14 includes a wireless modem 43 and various types of communications points such as an RF port 44, and IR port 46, a serial port 48, and a USB port 50. The communication ports may also be used by the reader 1300 to communicate messages as described in this application. A removable media adapter 52 may also interface with the transaction circuitry 12. Removable media may be employed for storage, archiving, and processing of data relevant to the reader 1300 functionality. For example, transaction data may be stored on removable media for transfer, at a later time, to merchant transaction processing equipment.


The targeted content generator 60 may be configured to obtain content and compressed transaction data. Using the compressed transaction data, the targeted content generator 60 may identify one or more elements of obtained content for presentation via one or more of the outputs of the card reader. For example, the display 24 may be used to show content to a user who presented a card at the card reader. During the transaction, such as part of the authorization process, a compressed transactional record for the user may be received by the card reader 1300 and processed by the targeted content generator 60. By comparing at least a portion of the compressed data to selection criteria associated with the obtained content, the targeted content generator 60 may identify a relevant content element for presentation and cause it to be presented.


Example System Implementation and Architecture


FIG. 15 is a block diagram showing example components of a transaction data processing system 1500. The processing system 1500 includes, for example, a personal computer that is IBM, Macintosh, or Linux/Unix compatible or a server or workstation. In one embodiment, the processing system 1500 includes a server, a laptop computer, a smart phone, a personal digital assistant, a kiosk, or a media player, for example. In one embodiment, the processing system 1500 includes one or more central processing unit (“CPU”) 1505, which may each include a conventional or proprietary microprocessor specially configured to perform, in whole or in part, one or more of the transaction data compression features described above. The processing system 1500 further includes one or more memory 1532, such as random access memory (“RAM”) for temporary storage of information, one or more read only memory (“ROM”) for permanent storage of information, and one or more mass storage device 1522, such as a hard drive, diskette, solid state drive, or optical media storage device. A specially architected transaction data store 1508 may be provided. The transaction data store 1508 may be optimized for storing raw and/or compressed transaction data as described above. In some implementations, the transaction data store 1508 may be designed to handle large quantities of data and provide fast retrieval of the records. To facilitate efficient storage and retrieval, the transaction data store 1508 may be indexed using compressed transaction data, such as those described above.


Typically, the components of the processing system 1500 are connected using a standards-based bus system 1590. In different embodiments, the standards-based bus system 1590 could be implemented in Peripheral Component Interconnect (“PCI”), Microchannel, Small Computer System Interface (“SCSI”), Industrial Standard Architecture (“ISA”) and Extended ISA (“EISA”) architectures, for example. In addition, the functionality provided for in the components and modules of processing system 1500 may be combined into fewer components and modules or further separated into additional components and modules.


The processing system 1500 is generally controlled and coordinated by operating system software, such as Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, UNIX, Linux, SunOS, Solaris, iOS, Blackberry OS, Android, or other compatible operating systems. In Macintosh systems, the operating system may be any available operating system, such as MAC OS X. In other embodiments, the processing system 1500 may be controlled by a proprietary operating system. The operating system is configured to control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface, such as a graphical user interface (“GUI”), among other things.


The processing system 1500 may include one or more commonly available input/output (I/O) devices and interfaces 112, such as a keyboard, mouse, touchpad, and printer. In one embodiment, the I/O devices and interfaces 1512 include one or more display devices, such as a monitor, that allows the visual presentation of data to a user. More particularly, a display device provides for the presentation of GUIs, application software data, and multimedia presentations, for example. The processing system 1500 may also include one or more multimedia devices 1542, such as speakers, video cards, graphics accelerators, and microphones, for example.


In the embodiment of FIG. 15, the I/O devices and interfaces 1512 provide a communication interface to various external devices. The processing system 1500 may be electronically coupled to one or more networks, which comprise one or more of a LAN, WAN, cellular network, satellite network, and/or the Internet, for example, via a wired, wireless, or combination of wired and wireless, communication link. The networks communicate with various computing devices and/or other electronic devices via wired or wireless communication links, such as the credit bureau data source and financial information data sources.


In some embodiments, information may be provided to the processing system 1500 over a network from one or more data sources. The data sources may include one or more internal and/or external data sources that provide transaction data, such as credit issuers (e.g., financial institutions that issue credit cards), transaction processors (e.g., entities that process credit card swipes at points of sale), and/or transaction aggregators. The data sources may include internal and external data sources which store, for example, credit bureau data (for example, credit bureau data from File OneSM) and/or other user data. In some embodiments, one or more of the databases or data sources may be implemented using a relational database, such as Sybase, Oracle, CodeBase and Microsoft® SQL Server as well as other types of databases such as, for example, a flat file database, an entity-relationship database, and object-oriented database, and/or a record-based database.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, or any other tangible medium. Such software code may be stored, partially or fully, on a memory device of the executing computing device, such as the processing system 1500, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage.


In the example of FIG. 15, the modules 1510 may be configured for execution by the CPU 1505 to perform, in whole or in part, any or all of the process discussed above, such as those shown in FIGS. 3, 5, 6, 8, 9, 11, and/or 12.


ADDITIONAL EMBODIMENTS

Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The code modules may be stored on any type of non-transitory computer-readable medium or computer storage device, such as hard drives, solid state memory, optical disc, and/or the like. The systems and modules may also be transmitted as generated data signals (for example, as part of a carrier wave or other analog or digital propagated signal) on a variety of computer-readable transmission mediums, including wireless-based and wired/cable-based mediums, and may take a variety of forms (for example, as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). The processes and algorithms may be implemented partially or wholly in application-specific circuitry. The results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, for example, volatile or non-volatile storage.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


All of the methods and processes described above may be embodied in, and partially or fully automated via, software code modules executed by one or more general purpose computers. For example, the methods described herein may be performed by a processing system, card reader, point of sale device, acquisition server, card issuer server, and/or any other suitable computing device. The methods may be executed on the computing devices in response to execution of software instructions or other executable code read from a tangible computer readable medium. A tangible computer readable medium is a data storage device that can store data that is readable by a computer system. Examples of computer readable mediums include read-only memory, random-access memory, other volatile or non-volatile memory devices, compact disk read-only memories (CD-ROMs), magnetic tape, flash drives, and optical data storage devices.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments. It will be appreciated, that no matter how detailed the foregoing appears in text, the systems and methods can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the systems and methods should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the systems and methods with which that terminology is associated.

Claims
  • 1. A computer-implemented method of artificial intelligence guided segmentation of event data, the method comprising: accessing an event categories data structure indicating a plurality of event categories and, for each individual event category of the plurality of event categories, attribute criteria usable to identify events associated with the individual event category;for each of a plurality of event records associated with a first user, assigning, to the event record, an event category of the plurality of event categories having the attribute criteria that matches one or more attributes of the event record;generating, for the first user associated with a first set of event records of the plurality of event records, first compressed event data using the first set of event records associated with the first user and a latent feature identification model that takes the first set of event records and the event categories assigned thereto as an input and provides association values for the first user, wherein the association values indicate associations between the first user and topics modeled by the latent feature identification model;assigning the first user to one of a plurality of data clusters included in a clustering model using the first compressed event data for the first user; andgenerating, for the first user, second compressed event data using a comparison between the first compressed event data for the first user and an average latent feature identification value for a latent feature included in the data cluster to which the first user has been assigned.
  • 2. The computer-implemented method of claim 1, wherein assigning the first user to one of the data clusters comprises: identifying center points for each data cluster included in the clustering model;generating an association strength for each latent feature included in the first compressed event data for the first user for each data cluster, the association strength indicating a degree of association between the first compressed event data for the first user and respective data cluster center points; andidentifying the one of the data clusters as having the highest association strength for the first user from amongst the data clusters included in the clustering model.
  • 3. The computer-implemented method of claim 2, wherein generating the association strength for the first user comprises comparing a latent feature identification value included in the first compressed event record for a latent feature for the first user to the center point.
  • 4. The computer-implemented method of claim 2, wherein generating the second compressed event data further comprises: generating a secondary association strength for each latent feature included in the first compressed event data for the first user assigned to the data cluster, the secondary association strength indicating a secondary degree of association between the first compressed event data for the first user assigned to the data cluster and the secondary center point of the secondary data cluster to which the first user is not assigned, wherein the second compressed event data comprises an identifier for the secondary data cluster and the generated secondary association strengths.
  • 5. The computer-implemented method of claim 2, further comprising: accessing content data including a content identifier and an indication of a target data cluster of the data clusters;identifying a plurality of users assigned to the target data cluster;selecting a target set of users having second compressed event data including generated association strengths indicating a threshold degree of association to the center point of the target data cluster; andgenerating an electronic communication to provide to the target set of user profiles, the electronic communication including content indicated by the content identifier.
  • 6. The computer-implemented method of claim 1, further comprising: training the latent feature identification model through probabilistic analysis of a plurality of historical event records to identify a target number of topics; andtraining the clustering model using a desired compression level indicating a number of data clusters for the clustering model, wherein training the clustering model includes generating a center point for each data cluster using topically compressed historical event data.
  • 7. The computer-implemented method of claim 1, wherein the latent feature identification model comprises a latent dirichlet allocation model.
  • 8. A computer-implemented method of compressing transaction data, the method comprising: receiving a plurality of transaction records identifying transactions associated with a first user;generating first compressed transaction records using a latent feature identification model, wherein the latent feature identification model provides association values for the first user for respective topics identified in first compressed event data based on the received plurality of transaction records and categories assigned thereto, wherein each of the association values indicate an association between the first user and a respective topic modeled by the latent feature identification model;identifying a clustering compression model for the first user; andgenerating second compressed transaction records using the first compressed transaction records and the clustering compression model.
  • 9. The computer-implemented method of claim 8, wherein generating first compressed transaction records comprises receiving association strengths for each topic identified by the latent feature identification model for a set of transactions for the first user.
  • 10. The computer-implemented method of claim 8, further comprising: receiving a compression configuration indicating a target number of features to identify for an end user; andtraining a latent dirichlet allocation model to identify the target number of features using the transaction records, wherein the latent feature identification model comprises the latent dirichlet allocation model.
  • 11. The computer-implemented method of claim 8, wherein each data cluster included in the clustering compression model is associated with at least one latent feature identifiable by the latent feature identification model, and wherein generating the second compressed transaction records comprises: assigning the first user to one of the data clusters using the first compressed transaction records; andgenerating the second compressed transaction records for the first user using a comparison between the first compressed transaction data for the first user and the center point for the cluster to which the first user is assigned.
  • 12. The computer-implemented method of claim 11, where generating the second compressed transaction records further comprises: calculating a secondary center point for a secondary data cluster using first compressed transaction data for the first user assigned to the secondary data cluster; andgenerating a secondary association strength for each latent feature included in the first compressed transaction data for the first user assigned to the data cluster, the secondary association strength indicating a secondary degree of association between the first compressed transaction data for the first user assigned to the data cluster and the secondary center point of the secondary data cluster to which the first user is not assigned, wherein the second compressed transaction data comprises an identifier for the secondary data cluster and the generated secondary association strengths.
  • 13. The computer-implemented method of claim 8, further comprising training a clustering model using the desired compression level and at least a portion of the plurality of transaction records.
  • 14. The computer-implemented method of claim 8, further comprising: receiving, from a transaction terminal, a pending transaction record for the first user, wherein the pending transaction record is not included in the plurality of transaction records;retrieving a second compressed transaction record for the first user using an identifier of the first user included in the pending transaction record; andtransmitting the second compressed transaction record to the transaction terminal.
  • 15. The computer-implemented method of claim 14, further comprising: selecting a content element for presentation to the first user during or after the pending transaction using the second compressed transaction record; andproviding the content element to a content delivery system configured to transmit the content element to the first user.
  • 16. A system comprising: one or more computer processors configured to execute processor-executable instructions; anda non-transitory tangible storage device storing the processor-executable instructions executable by the one or more hardware processors to at least: for each of a plurality of transactions in transaction data associated with a first user: assign a transaction category; andassign a transaction category level for the transaction category;generate, for the first user, first compressed transaction data using the transaction categories assigned to the transaction records for the first user and a latent feature identification model, wherein the latent feature identification model provides association values for the first user, wherein the association values indicate associations between the first user and topics modeled by the latent feature identification model;assign the first user to one of a plurality of data clusters included in a respective clustering compression model using respective first compressed transaction data for the first user; andgenerate, for the first user, second compressed transaction data using a comparison between the first compressed transaction data for the first user and an average for the data cluster to which the first user has been assigned.
  • 17. The system of claim 16, wherein the processor-executable instructions are further executable by the one or more hardware processors to at least: access content data including a content identifier and an indication of a target data cluster of the data clusters;identify a plurality of users assigned to the target data cluster;select a target set of users having second compressed transaction data including generated association strengths indicating a threshold degree of association to the center point of the target data cluster; andgenerate an electronic communication to provide to the target set of user profiles, the electronic communication including content indicated by the content identifier.
  • 18. The system of claim 16, further comprising a card reader including: one or more computer processors configured to execute software instructions;a non-transitory tangible storage device storing the software instructions executable by the one or more computer processors to cause the card reader to at least: detect payment information for a transaction for the first user; receive compressed transaction data during the transaction for the first user; andidentify content stored by the card reader using a comparison between a content selection rule and the compressed transaction data, said content for presentation via the card reader; anda display configured to present the content to the first user.
  • 19. The system of claim 16, wherein the processor-executable instructions are further executable by the one or more hardware processors to at least generate at least one of the latent feature identification model and a clustering model identifying the plurality of data clusters for the plurality of transaction records.
  • 20. The computer-implemented method of claim 1, wherein the association values represent how closely the first user is associated with each of the topics modeled by the latent feature identification model.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application and claims the benefit under 35 U.S.C. § 120 of U.S. application Ser. No. 14/975,654, filed on Dec. 18, 2015, entitled “USER BEHAVIOR SEGMENTATION USING LATENT TOPIC DETECTION,” which claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/094,819, filed on Dec. 19, 2014, entitled “SYSTEMS AND INTERACTIVE USER INTERFACES FOR DATABASE ACCESS AND APPLICATION OF RULES TO DETERMINE RECOMMENDATIONS FOR USER ACTIONS,” the disclosure of which is hereby incorporated herein by reference in its entirety. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 C.F.R. § 1.57. This application is also related to U.S. application Ser. No. 14/975,536 filed on Dec. 18, 2015, entitled “ENTITY RECOMMENDATION SYSTEMS AND METHODS,” the disclosure of which is hereby incorporated herein by reference in its entirety. This application is also related to U.S. application Ser. No. 14/975,440 filed on Dec. 18, 2015, entitled “SYSTEMS AND METHODS FOR DYNAMIC REPORT GENERATION BASED ON AUTOMATIC MODELING OF COMPLEX DATA STRUCTURES,” the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (1647)
Number Name Date Kind
3316395 Lavin et al. Apr 1967 A
4305059 Benton Dec 1981 A
4371739 Lewis et al. Feb 1983 A
4398055 Ijaz et al. Aug 1983 A
4578530 Zeidler Mar 1986 A
4617195 Mental Oct 1986 A
4672149 Yoshikawa et al. Jun 1987 A
4736294 Gill Apr 1988 A
4754544 Hanak Jul 1988 A
4774664 Campbell et al. Sep 1988 A
4775935 Yourick Oct 1988 A
4827508 Shear May 1989 A
4868570 Davis Sep 1989 A
4872113 Dinerstein Oct 1989 A
4876592 Von Kohorn Oct 1989 A
4895518 Arnold Jan 1990 A
4935870 Burk, Jr. et al. Jun 1990 A
4947028 Gorog Aug 1990 A
5025138 Cuervo Jun 1991 A
5025373 Keyser, Jr. et al. Jun 1991 A
5034807 Von Kohorn Jul 1991 A
5056019 Schultz et al. Oct 1991 A
5060153 Nakagawa Oct 1991 A
5148365 Dembo Sep 1992 A
5201010 Deaton et al. Apr 1993 A
5220501 Lawlor et al. Jun 1993 A
5247575 Sprague et al. Sep 1993 A
5259766 Sack Nov 1993 A
5262941 Saladin Nov 1993 A
5274547 Zoffel et al. Dec 1993 A
5297031 Gutterman et al. Mar 1994 A
5325509 Lautzenheiser Jun 1994 A
5336870 Hughes et al. Aug 1994 A
5341429 Stringer et al. Aug 1994 A
5454030 de Oliveira et al. Sep 1995 A
5468988 Glatfelter et al. Nov 1995 A
5504675 Cragun et al. Apr 1996 A
5528701 Aref Jun 1996 A
5555409 Leenstra, Sr. et al. Sep 1996 A
5563783 Stolfo et al. Oct 1996 A
5583763 Atcheson et al. Dec 1996 A
5590038 Pitroda Dec 1996 A
5592560 Deaton et al. Jan 1997 A
5611052 Dykstra et al. Mar 1997 A
5615408 Johnson Mar 1997 A
5621201 Langhans et al. Apr 1997 A
5629982 Micali May 1997 A
5630127 Moore et al. May 1997 A
5640551 Chu et al. Jun 1997 A
5640577 Scharmer Jun 1997 A
5655129 Ito Aug 1997 A
5659731 Gustafson Aug 1997 A
5666528 Thai Sep 1997 A
5679176 Tsuzuki et al. Oct 1997 A
5689651 Lozman Nov 1997 A
5696907 Tom Dec 1997 A
5704029 Wright, Jr. Dec 1997 A
5732400 Mandler Mar 1998 A
5737732 Gibson et al. Apr 1998 A
5739512 Tognazzini Apr 1998 A
5745654 Titan Apr 1998 A
5748098 Grace May 1998 A
5754938 Herz et al. May 1998 A
5768423 Aref et al. Jun 1998 A
5771562 Harvey et al. Jun 1998 A
5774692 Boyer et al. Jun 1998 A
5774868 Cragun et al. Jun 1998 A
5774883 Andersen Jun 1998 A
5778405 Ogawa Jul 1998 A
5793972 Shane Aug 1998 A
5797136 Boyer et al. Aug 1998 A
5802142 Browne Sep 1998 A
5812840 Shwartz Sep 1998 A
5819226 Gopinathan et al. Oct 1998 A
5822410 McCausland et al. Oct 1998 A
5822750 Jou et al. Oct 1998 A
5822751 Gray et al. Oct 1998 A
5825884 Zdepski et al. Oct 1998 A
5828833 Belville et al. Oct 1998 A
5835915 Carr et al. Nov 1998 A
5844218 Kawan et al. Dec 1998 A
5848396 Gerace Dec 1998 A
5864830 Armetta et al. Feb 1999 A
5870721 Norris Feb 1999 A
5875108 Hoffberg et al. Feb 1999 A
5875236 Jankowitz Feb 1999 A
5878403 DeFrancesco Mar 1999 A
5881131 Farris et al. Mar 1999 A
5884287 Edesess Mar 1999 A
5884289 Anderson et al. Mar 1999 A
5893090 Friedman et al. Apr 1999 A
5905985 Malloy et al. May 1999 A
5912839 Ovshinsky et al. Jun 1999 A
5915243 Smolen Jun 1999 A
5924082 Silverman et al. Jul 1999 A
5926800 Baronowski et al. Jul 1999 A
5930764 Melchione et al. Jul 1999 A
5930774 Chennault Jul 1999 A
5930776 Dykstra et al. Jul 1999 A
5940812 Tengel et al. Aug 1999 A
5950172 Klingman Sep 1999 A
5950179 Buchanan et al. Sep 1999 A
5956693 Geerlings Sep 1999 A
5963932 Jakobsson et al. Oct 1999 A
5966695 Melchione et al. Oct 1999 A
5974396 Anderson et al. Oct 1999 A
5978780 Watson Nov 1999 A
5995947 Fraser et al. Nov 1999 A
6009415 Shurling et al. Dec 1999 A
6014688 Venkatraman et al. Jan 2000 A
6018723 Siegel et al. Jan 2000 A
6021362 Maggard et al. Feb 2000 A
6026368 Brown et al. Feb 2000 A
6029139 Cunningham et al. Feb 2000 A
6029149 Dykstra et al. Feb 2000 A
6029154 Pettitt Feb 2000 A
6038551 Barlow et al. Mar 2000 A
6044357 Garg Mar 2000 A
6058375 Park May 2000 A
6061658 Chou et al. May 2000 A
6061691 Fox May 2000 A
6064973 Smith et al. May 2000 A
6064987 Walker May 2000 A
6064990 Goldsmith May 2000 A
6070141 Houvener May 2000 A
6070142 McDonough et al. May 2000 A
6073140 Morgan et al. Jun 2000 A
6073241 Rosenberg et al. Jun 2000 A
6088686 Walker et al. Jul 2000 A
6094643 Anderson et al. Jul 2000 A
6098052 Kosiba et al. Aug 2000 A
6105007 Norris Aug 2000 A
6115690 Wong Sep 2000 A
6115693 McDonough et al. Sep 2000 A
6119103 Basch et al. Sep 2000 A
6121901 Welch et al. Sep 2000 A
6128599 Walker Oct 2000 A
6128602 Northington et al. Oct 2000 A
6128603 Dent Oct 2000 A
6128624 Papierniak et al. Oct 2000 A
6134548 Gottsman et al. Oct 2000 A
6144957 Cohen et al. Nov 2000 A
6151601 Papierniak et al. Nov 2000 A
6154729 Cannon et al. Nov 2000 A
6178442 Yamazaki Jan 2001 B1
6182060 Hedgcock et al. Jan 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6202053 Christiansen et al. Mar 2001 B1
6208979 Sinclair Mar 2001 B1
6223171 Chaudhuri et al. Apr 2001 B1
6226408 Sirosh May 2001 B1
6233566 Levine et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6239352 Luch May 2001 B1
6249770 Erwin et al. Jun 2001 B1
6254000 Degen et al. Jul 2001 B1
6256630 Gilai et al. Jul 2001 B1
6263334 Fayyad et al. Jul 2001 B1
6263337 Fayyad et al. Jul 2001 B1
6266649 Linden et al. Jul 2001 B1
6278055 Forrest et al. Aug 2001 B1
6285983 Jenkins Sep 2001 B1
6285987 Roth et al. Sep 2001 B1
6289252 Wilson et al. Sep 2001 B1
6304860 Martin et al. Oct 2001 B1
6304869 Moore et al. Oct 2001 B1
6307958 Deaton et al. Oct 2001 B1
6311169 Duhon Oct 2001 B2
6324524 Lent et al. Nov 2001 B1
6330546 Gopinathan et al. Dec 2001 B1
6330575 Moore et al. Dec 2001 B1
6334110 Walter et al. Dec 2001 B1
6339769 Cochrane et al. Jan 2002 B1
6345300 Bakshi et al. Feb 2002 B1
6366903 Agrawal et al. Apr 2002 B1
6385594 Lebda et al. May 2002 B1
6393406 Eder May 2002 B1
6397197 Gindlesperger May 2002 B1
6405173 Honarvar Jun 2002 B1
6405181 Lent et al. Jun 2002 B2
6412012 Bieganski et al. Jun 2002 B1
6418436 Degen et al. Jul 2002 B1
6424956 Werbos Jul 2002 B1
6430539 Lazarus et al. Aug 2002 B1
6442577 Britton et al. Aug 2002 B1
6456979 Flagg Sep 2002 B1
6457012 Jatkowski Sep 2002 B1
6460036 Herz Oct 2002 B1
6496819 Bello et al. Dec 2002 B1
5870721 Norris Jan 2003 C1
6505176 DeFrancesco, Jr. et al. Jan 2003 B2
6513018 Culhane Jan 2003 B1
6523022 Hobbs Feb 2003 B1
6523041 Morgan et al. Feb 2003 B1
6532450 Brown et al. Mar 2003 B1
6542894 Lee et al. Apr 2003 B1
6543683 Hoffman Apr 2003 B2
6549919 Lambert et al. Apr 2003 B2
6567791 Lent et al. May 2003 B2
6574623 Laung et al. Jun 2003 B1
6597775 Lawyer et al. Jul 2003 B2
6598030 Siegel et al. Jul 2003 B1
6601234 Bowman-Amuah Jul 2003 B1
6611816 Lebda et al. Aug 2003 B2
6615193 Kingdon et al. Sep 2003 B1
6615247 Murphy Sep 2003 B1
6622266 Goddard et al. Sep 2003 B1
6623529 Lakritz Sep 2003 B1
6631496 Li et al. Oct 2003 B1
6640215 Galperin et al. Oct 2003 B1
6651220 Penteroudakis et al. Nov 2003 B1
6654727 Tilton Nov 2003 B2
6658393 Basch et al. Dec 2003 B1
6665715 Houri Dec 2003 B1
6687713 Mattson et al. Feb 2004 B2
6708166 Dysart et al. Mar 2004 B1
6714918 Hillmer et al. Mar 2004 B2
6735572 Landesmann May 2004 B2
6748426 Shaffer et al. Jun 2004 B1
6757740 Parekh et al. Jun 2004 B1
6766327 Morgan, Jr. et al. Jul 2004 B2
6801909 Delgado et al. Oct 2004 B2
6804346 Mewhinney Oct 2004 B1
6804701 Muret et al. Oct 2004 B2
6807533 Land et al. Oct 2004 B1
6823319 Lynch et al. Nov 2004 B1
6836764 Hucal Dec 2004 B1
6839682 Blume et al. Jan 2005 B1
6839690 Foth et al. Jan 2005 B1
6850606 Lawyer et al. Feb 2005 B2
6859785 Case Feb 2005 B2
6865566 Serrano-Morales et al. Mar 2005 B2
6873972 Marcial et al. Mar 2005 B1
6873979 Fishman et al. Mar 2005 B2
6901406 Nabe et al. May 2005 B2
6910624 Natsuno Jun 2005 B1
6915269 Shapiro et al. Jul 2005 B1
6925441 Jones, III et al. Aug 2005 B1
6925442 Shapira et al. Aug 2005 B1
6959281 Freeling et al. Oct 2005 B1
6965889 Serrano-Morales et al. Nov 2005 B2
6968328 Kintzer et al. Nov 2005 B1
6970830 Samra et al. Nov 2005 B1
6983379 Spalink et al. Jan 2006 B1
6983478 Grauch et al. Jan 2006 B1
6985882 Del Sesto Jan 2006 B1
6985887 Sunstein et al. Jan 2006 B1
6991159 Zenou Jan 2006 B2
6993493 Galperin et al. Jan 2006 B1
6993514 Majoor Jan 2006 B2
6999941 Agarwal Feb 2006 B1
7000199 Steele et al. Feb 2006 B2
7003504 Angus et al. Feb 2006 B1
7003792 Yuen Feb 2006 B1
7028052 Chapman et al. Apr 2006 B2
7031945 Donner Apr 2006 B1
7039176 Borodow et al. May 2006 B2
7039607 Watarai et al. May 2006 B2
7047251 Reed et al. May 2006 B2
7050982 Sheinson et al. May 2006 B2
7050986 Vance et al. May 2006 B1
7050989 Hurt et al. May 2006 B1
7054828 Heching et al. May 2006 B2
7069240 Spero et al. Jun 2006 B2
7072963 Anderson et al. Jul 2006 B2
7076462 Nelson et al. Jul 2006 B1
7076475 Honarvar et al. Jul 2006 B2
7082435 Guzman et al. Jul 2006 B1
7092898 Mattick et al. Aug 2006 B1
7117172 Black Oct 2006 B1
7130853 Roller et al. Oct 2006 B2
7133935 Hedy Nov 2006 B2
7136448 Venkataperumal et al. Nov 2006 B1
7139734 Nathans et al. Nov 2006 B2
7143063 Lent Nov 2006 B2
7152053 Serrano-Morales et al. Dec 2006 B2
7165036 Kruk et al. Jan 2007 B2
7165037 Lazarus et al. Jan 2007 B2
7184974 Shishido Feb 2007 B2
7185016 Rasmussen Feb 2007 B1
7191144 White Mar 2007 B2
7191150 Shao et al. Mar 2007 B1
7200602 Jonas Apr 2007 B2
7206768 deGroeve et al. Apr 2007 B1
7212995 Schulkins May 2007 B2
7222101 Bishop et al. May 2007 B2
7234156 French et al. Jun 2007 B2
7236950 Savage et al. Jun 2007 B2
7240059 Bayliss et al. Jul 2007 B2
7249048 O'Flaherty Jul 2007 B1
7249114 Burchetta et al. Jul 2007 B2
7263506 Lee et al. Aug 2007 B2
7275083 Seibel et al. Sep 2007 B1
7277869 Starkman Oct 2007 B2
7277875 Serrano-Morales et al. Oct 2007 B2
7277900 Ganesh et al. Oct 2007 B1
7283974 Katz et al. Oct 2007 B2
7296734 Pliha Nov 2007 B2
7308418 Malek et al. Dec 2007 B2
7313538 Wilmes et al. Dec 2007 B2
7313618 Braemer et al. Dec 2007 B2
7314166 Anderson et al. Jan 2008 B2
7314167 Kiliccote Jan 2008 B1
7324962 Valliani et al. Jan 2008 B1
7328169 Temares et al. Feb 2008 B2
7337133 Bezos et al. Feb 2008 B1
7343149 Benco Mar 2008 B2
7346551 Pe Jimenez et al. Mar 2008 B2
7346573 Cobrinik et al. Mar 2008 B1
7356503 Johnson et al. Apr 2008 B1
7360251 Spalink et al. Apr 2008 B2
7366694 Lazerson Apr 2008 B2
7367011 Ramsey et al. Apr 2008 B2
7370044 Mulhern et al. May 2008 B2
7373324 Engin et al. May 2008 B1
7376603 Mayr et al. May 2008 B1
7376618 Anderson et al. May 2008 B1
7376714 Gerken May 2008 B1
7379880 Pathria et al. May 2008 B1
7383215 Navarro et al. Jun 2008 B1
7383227 Weinflash et al. Jun 2008 B2
7386528 Maloche et al. Jun 2008 B2
7386786 Davis et al. Jun 2008 B2
7392203 Edison et al. Jun 2008 B2
7392216 Palmgren et al. Jun 2008 B1
7395273 Khan et al. Jul 2008 B2
7398225 Voltmer et al. Jul 2008 B2
7398226 Haines et al. Jul 2008 B2
7403923 Elliott et al. Jul 2008 B2
7403942 Bayliss Jul 2008 B1
7409362 Calabria Aug 2008 B2
7418431 Nies et al. Aug 2008 B1
7421322 Silversmith et al. Sep 2008 B1
7424439 Fayyad et al. Sep 2008 B1
7428498 Voltmer et al. Sep 2008 B2
7428509 Klebanoff Sep 2008 B2
7428519 Minsky et al. Sep 2008 B2
7428526 Miller et al. Sep 2008 B2
7433855 Gavan et al. Oct 2008 B2
7444302 Hu et al. Oct 2008 B2
7458508 Shao et al. Dec 2008 B1
7467096 Antonucci et al. Dec 2008 B2
7467127 Baccash et al. Dec 2008 B1
7467401 Cicchitto Dec 2008 B2
7472088 Taylor et al. Dec 2008 B2
7496524 Voltmer et al. Feb 2009 B2
7499868 Galperin et al. Mar 2009 B2
7505938 Lang et al. Mar 2009 B2
7509117 Yum Mar 2009 B2
7512221 Toms Mar 2009 B2
7516149 Motwani et al. Apr 2009 B2
7529698 Joao May 2009 B2
7536329 Goldberg et al. May 2009 B2
7536346 Aliffi et al. May 2009 B2
7536348 Shao et al. May 2009 B2
7542993 Satterfield et al. Jun 2009 B2
7546266 Beirne et al. Jun 2009 B2
7548886 Kirkland et al. Jun 2009 B2
7552089 Bruer et al. Jun 2009 B2
7556192 Wokaty, Jr. Jul 2009 B2
7562184 Henmi et al. Jul 2009 B2
7571139 Giordano et al. Aug 2009 B1
7575157 Barnhardt et al. Aug 2009 B2
7580856 Pliha Aug 2009 B1
7580884 Cook Aug 2009 B2
7581112 Brown et al. Aug 2009 B2
7584126 White Sep 2009 B1
7584146 Duhon Sep 2009 B1
7584149 Bishop et al. Sep 2009 B1
7590589 Hoffberg Sep 2009 B2
7593893 Ladd et al. Sep 2009 B1
7596512 Raines et al. Sep 2009 B1
7596716 Frost et al. Sep 2009 B2
7606778 Dewar Oct 2009 B2
7610216 May et al. Oct 2009 B1
7610243 Haggerty et al. Oct 2009 B2
7610257 Abrahams Oct 2009 B1
7610261 Maloche et al. Oct 2009 B2
7613628 Ariff et al. Nov 2009 B2
7613629 Antonucci et al. Nov 2009 B2
7613671 Serrano-Morales et al. Nov 2009 B2
7620592 O'Mara et al. Nov 2009 B2
7620596 Knudson et al. Nov 2009 B2
7623844 Herrmann et al. Nov 2009 B2
7624068 Heasley et al. Nov 2009 B1
7653592 Flaxman et al. Jan 2010 B1
7653593 Zarikian et al. Jan 2010 B2
7657471 Sankaran et al. Feb 2010 B1
7657540 Bayliss Feb 2010 B1
7668769 Baker et al. Feb 2010 B2
7668840 Bayliss et al. Feb 2010 B2
7672865 Kumar et al. Mar 2010 B2
7672870 Haines et al. Mar 2010 B2
7676410 Petralia Mar 2010 B2
7676418 Chung et al. Mar 2010 B1
7676751 Allen et al. Mar 2010 B2
7676756 Vedula et al. Mar 2010 B2
7686214 Shao et al. Mar 2010 B1
7689494 Torre et al. Mar 2010 B2
7689504 Warren et al. Mar 2010 B2
7689505 Kasower Mar 2010 B2
7689506 Fei et al. Mar 2010 B2
7690032 Peirce Mar 2010 B1
7693787 Provinse Apr 2010 B2
7698163 Reed et al. Apr 2010 B2
7702550 Perg et al. Apr 2010 B2
7702576 Fahner et al. Apr 2010 B2
7707059 Reed et al. Apr 2010 B2
7707102 Rothstein Apr 2010 B2
7708190 Brandt et al. May 2010 B2
7711635 Steele et al. May 2010 B2
7711636 Robida et al. May 2010 B2
7720846 Bayliss May 2010 B1
7725300 Pinto et al. May 2010 B2
7734522 Johnson et al. Jun 2010 B2
7734523 Cui et al. Jun 2010 B1
7734539 Ghosh et al. Jun 2010 B2
7739223 Vaschillo et al. Jun 2010 B2
7742982 Chaudhuri et al. Jun 2010 B2
7747480 Agresta et al. Jun 2010 B1
7747559 Leitner et al. Jun 2010 B2
7761379 Zoldi et al. Jul 2010 B2
7761384 Madhogarhia Jul 2010 B2
7769998 Lynch et al. Aug 2010 B2
7774272 Fahner et al. Aug 2010 B2
7778885 Semprevivo et al. Aug 2010 B1
7783515 Kumar et al. Aug 2010 B1
7783562 Ellis Aug 2010 B1
7788147 Haggerty et al. Aug 2010 B2
7788152 Haggerty et al. Aug 2010 B2
7792732 Haggerty et al. Sep 2010 B2
7792864 Rice et al. Sep 2010 B1
7793835 Coggeshall et al. Sep 2010 B1
7797252 Rosskamm et al. Sep 2010 B2
7801811 Merrell et al. Sep 2010 B1
7801828 Candella et al. Sep 2010 B2
7802104 Dickinson Sep 2010 B2
7805345 Abrahams et al. Sep 2010 B2
7805362 Merrell et al. Sep 2010 B1
7813955 Ariff et al. Oct 2010 B2
7813981 Fahner et al. Oct 2010 B2
7814004 Haggerty et al. Oct 2010 B2
7818231 Rajan Oct 2010 B2
7822665 Haggerty et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7831526 Crawford et al. Nov 2010 B1
7835932 Minsky et al. Nov 2010 B2
7835983 Lefner et al. Nov 2010 B2
7836111 Shan Nov 2010 B1
7840484 Haggerty et al. Nov 2010 B2
7844534 Haggerty et al. Nov 2010 B2
7848972 Sharma Dec 2010 B1
7848978 Imrey et al. Dec 2010 B2
7848987 Haig Dec 2010 B2
7849004 Choudhuri et al. Dec 2010 B2
7853518 Cagan Dec 2010 B2
7853541 Kapadia et al. Dec 2010 B1
7853998 Blaisdell et al. Dec 2010 B2
7856386 Hazlehurst et al. Dec 2010 B2
7856397 Whipple et al. Dec 2010 B2
7856494 Kulkarni Dec 2010 B2
7860782 Cash et al. Dec 2010 B2
7860786 Blackburn et al. Dec 2010 B2
7870078 Clark et al. Jan 2011 B2
7877304 Coulter Jan 2011 B1
7877320 Downey Jan 2011 B1
7877322 Nathans et al. Jan 2011 B2
7890367 Senghore et al. Feb 2011 B2
7890420 Haggerty et al. Feb 2011 B2
7899750 Klieman et al. Mar 2011 B1
7904366 Pogust Mar 2011 B2
7908242 Achanta Mar 2011 B1
7912770 Haggerty et al. Mar 2011 B2
7912842 Bayliss et al. Mar 2011 B1
7912865 Akerman et al. Mar 2011 B2
7925549 Looney et al. Apr 2011 B2
7925582 Kornegay et al. Apr 2011 B1
7925917 Roy Apr 2011 B1
7930196 Fung et al. Apr 2011 B2
7930242 Morris et al. Apr 2011 B2
7930285 Abraham et al. Apr 2011 B2
7937335 Crawford et al. May 2011 B2
7941363 Tanaka et al. May 2011 B2
7945516 Bishop et al. May 2011 B2
7949597 Zadoorian et al. May 2011 B2
7953695 Roller et al. May 2011 B2
7954698 Pliha Jun 2011 B1
7958126 Schachter Jun 2011 B2
7962404 Metzger, II et al. Jun 2011 B1
7966255 Wong et al. Jun 2011 B2
7970676 Feinstein Jun 2011 B2
7970698 Gupta et al. Jun 2011 B2
7970701 Lewis et al. Jun 2011 B2
7974860 Travis Jul 2011 B1
7983976 Nafeh et al. Jul 2011 B2
7991666 Haggerty et al. Aug 2011 B2
7991677 Haggerty et al. Aug 2011 B2
7991688 Phelan et al. Aug 2011 B2
7991689 Brunzell et al. Aug 2011 B1
7996320 Bishop et al. Aug 2011 B2
7996521 Chamberlain et al. Aug 2011 B2
8001042 Brunzell et al. Aug 2011 B1
8005712 von Davier et al. Aug 2011 B2
8005759 Hirtenstein et al. Aug 2011 B2
8006261 Haberman et al. Aug 2011 B1
8015045 Galperin et al. Sep 2011 B2
8019828 Cash et al. Sep 2011 B2
8019843 Cash et al. Sep 2011 B2
8024220 Ariff et al. Sep 2011 B2
8024245 Haggerty et al. Sep 2011 B2
8024263 Zarikian et al. Sep 2011 B2
8024264 Chaudhuri et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8025220 Zoldi et al. Sep 2011 B2
8027894 Feinstein et al. Sep 2011 B2
8036979 Torrez et al. Oct 2011 B1
8046271 Jimenez et al. Oct 2011 B2
8050968 Antonucci et al. Nov 2011 B2
8060424 Kasower Nov 2011 B2
8064586 Shaffer et al. Nov 2011 B2
8065182 Voltmer et al. Nov 2011 B2
8065233 Lee et al. Nov 2011 B2
8065234 Liao et al. Nov 2011 B2
8073752 Haggerty et al. Dec 2011 B2
8073768 Haggerty et al. Dec 2011 B2
8073785 Candella et al. Dec 2011 B1
8078453 Shaw Dec 2011 B2
8078524 Crawford et al. Dec 2011 B2
8078528 Vicente et al. Dec 2011 B1
8082202 Weiss Dec 2011 B2
8086509 Haggerty et al. Dec 2011 B2
8086524 Craig et al. Dec 2011 B1
8086525 Atwood et al. Dec 2011 B2
8090734 Maloche et al. Jan 2012 B2
8095443 DeBie Jan 2012 B2
8099356 Feinstein et al. Jan 2012 B2
8099376 Serrano-Morales et al. Jan 2012 B2
8103530 Quiring et al. Jan 2012 B2
8104671 Besecker et al. Jan 2012 B2
8104679 Brown Jan 2012 B2
8108301 Gupta et al. Jan 2012 B2
8121918 Haggerty et al. Feb 2012 B2
8126805 Sulkowski et al. Feb 2012 B2
8127982 Casey et al. Mar 2012 B1
8131614 Haggerty et al. Mar 2012 B2
8131639 Haggerty et al. Mar 2012 B2
8135642 Krause Mar 2012 B1
8145754 Chamberlain et al. Mar 2012 B2
8150744 Zoldi et al. Apr 2012 B2
8155999 de Boer et al. Apr 2012 B2
8160960 Fei et al. Apr 2012 B1
8161104 Tomkow Apr 2012 B2
8170938 Haggerty et al. May 2012 B2
8170958 Gremett et al. May 2012 B1
8175945 Haggerty et al. May 2012 B2
8180654 Berkman et al. May 2012 B2
8185408 Baldwin, Jr. et al. May 2012 B2
RE43474 Majoor Jun 2012 E
8195550 Haggerty et al. Jun 2012 B2
8200595 De Zilwa et al. Jun 2012 B1
8200609 Crawford et al. Jun 2012 B2
8200693 Steele et al. Jun 2012 B2
8204774 Chwast et al. Jun 2012 B2
8209250 Bradway et al. Jun 2012 B2
8214238 Fairfield et al. Jul 2012 B1
8214262 Semprevivo et al. Jul 2012 B1
8219464 Inghelbrecht et al. Jul 2012 B2
8219535 Kobori et al. Jul 2012 B1
8234209 Zadoorian et al. Jul 2012 B2
8234498 Britti et al. Jul 2012 B2
8237716 Kolipaka et al. Aug 2012 B2
8239130 Upstill et al. Aug 2012 B1
8255423 Ralph et al. Aug 2012 B2
8266090 Crawford et al. Sep 2012 B2
8271378 Chaudhuri et al. Sep 2012 B2
8271935 Lewis Sep 2012 B2
8280805 Abrahams et al. Oct 2012 B1
8280836 Kumar Oct 2012 B2
8281180 Roy Oct 2012 B1
8285577 Galperin et al. Oct 2012 B1
8285656 Chang et al. Oct 2012 B1
8290840 Kasower Oct 2012 B2
8296205 Zoldi Oct 2012 B2
8296213 Haggerty et al. Oct 2012 B2
8296229 Yellin et al. Oct 2012 B1
8301574 Kilger et al. Oct 2012 B2
8306890 Haggerty et al. Nov 2012 B2
8312389 Crawford et al. Nov 2012 B2
8315895 Kilat et al. Nov 2012 B1
8315933 Haggerty et al. Nov 2012 B2
8315942 Haggerty et al. Nov 2012 B2
8315943 Torrez et al. Nov 2012 B2
8321335 Bramlage et al. Nov 2012 B1
8326671 Haggerty et al. Dec 2012 B2
8326672 Haggerty et al. Dec 2012 B2
8326760 Ma et al. Dec 2012 B2
8340685 Cochran et al. Dec 2012 B2
8341073 Bramlage et al. Dec 2012 B1
8352343 Haggerty et al. Jan 2013 B2
8364518 Blake et al. Jan 2013 B1
8364582 Haggerty et al. Jan 2013 B2
8364588 Celka et al. Jan 2013 B2
8365212 Orlowski Jan 2013 B1
8386377 Xiong et al. Feb 2013 B1
8392334 Hirtenstein et al. Mar 2013 B2
8401889 Chwast et al. Mar 2013 B2
8401946 Zoldi et al. Mar 2013 B2
8401950 Lyons et al. Mar 2013 B2
8407137 Thomas Mar 2013 B2
8417587 Jimenez et al. Apr 2013 B2
8417612 Chatterji et al. Apr 2013 B2
8418254 Britti et al. Apr 2013 B2
8423488 Surpi Apr 2013 B2
8433512 Lopatenko et al. Apr 2013 B1
8438105 Haggerty et al. May 2013 B2
8458026 Voltmer et al. Jun 2013 B2
8458052 Libman Jun 2013 B2
8458074 Showalter Jun 2013 B2
8463595 Rehling et al. Jun 2013 B1
8468198 Tomkow Jun 2013 B2
8473354 Psota et al. Jun 2013 B2
8473380 Thomas et al. Jun 2013 B2
8478673 Haggerty et al. Jul 2013 B2
8489482 Haggerty et al. Jul 2013 B2
8494855 Khosla et al. Jul 2013 B1
8504470 Chirehdast Aug 2013 B1
8510184 Imrev et al. Aug 2013 B2
8510189 Imrey et al. Aug 2013 B2
8515828 Wolf et al. Aug 2013 B1
8515862 Zhang et al. Aug 2013 B2
8527596 Long et al. Sep 2013 B2
8533322 Chamberlain et al. Sep 2013 B2
8560434 Morris et al. Oct 2013 B2
8566029 Lopatenko et al. Oct 2013 B1
8566167 Munjal Oct 2013 B2
8589069 Lehman Nov 2013 B1
8589208 Kruger et al. Nov 2013 B2
8595101 Daukas et al. Nov 2013 B1
8595219 Thompson Nov 2013 B1
8600854 Mayr et al. Dec 2013 B2
8600870 Milana Dec 2013 B2
8606626 DeSoto et al. Dec 2013 B1
8606632 Libman Dec 2013 B2
8606666 Courbage et al. Dec 2013 B1
8620579 Upstill et al. Dec 2013 B1
8626560 Anderson Jan 2014 B1
8626582 Ariff et al. Jan 2014 B2
8626618 Psota et al. Jan 2014 B2
8626646 Torrez et al. Jan 2014 B2
8630929 Haggerty et al. Jan 2014 B2
8639568 de Boer et al. Jan 2014 B2
8639920 Stack et al. Jan 2014 B2
8660943 Chirehdast Feb 2014 B1
8666885 Bramlage et al. Mar 2014 B1
8682762 Fahner Mar 2014 B2
8682770 Haggerty et al. Mar 2014 B2
8694390 Imrey et al. Apr 2014 B2
8694403 Haggerty et al. Apr 2014 B2
8700597 Gupta et al. Apr 2014 B2
8706545 Narayanaswamy et al. Apr 2014 B2
8706596 Cohen et al. Apr 2014 B2
8706615 Merkle Apr 2014 B2
8719114 Libman May 2014 B2
8730241 Chhaparwal et al. May 2014 B2
8732004 Ramos et al. May 2014 B1
8732013 Senghore et al. May 2014 B2
8732073 Thomas May 2014 B2
8738435 Libman May 2014 B2
8738515 Chaudhuri et al. May 2014 B2
8738532 Ariff et al. May 2014 B2
8744944 Haggerty et al. Jun 2014 B2
8751378 Dornhelm et al. Jun 2014 B2
8751461 Abraham Jun 2014 B2
8762053 Lehman Jun 2014 B1
8768826 Imrey et al. Jul 2014 B2
8775290 Haggerty et al. Jul 2014 B2
8775291 Mellman et al. Jul 2014 B1
8775299 Achanta et al. Jul 2014 B2
8775301 Haggerty et al. Jul 2014 B2
8781877 Kruger et al. Jul 2014 B2
8781933 Haggerty et al. Jul 2014 B2
8781951 Lewis et al. Jul 2014 B2
8781953 Kasower Jul 2014 B2
8781975 Bennett et al. Jul 2014 B2
8788388 Chatterji et al. Jul 2014 B2
8805805 Kobori et al. Aug 2014 B1
8825544 Imrey et al. Sep 2014 B2
8843780 Roy Sep 2014 B1
8930251 DeBie Jan 2015 B2
8938432 Rossmark et al. Jan 2015 B2
8966649 Stack et al. Feb 2015 B2
8984022 Crawford et al. Mar 2015 B1
9026088 Groenjes May 2015 B1
9043930 Britti et al. May 2015 B2
9057616 Lopatenko et al. Jun 2015 B1
9057617 Lopatenko et al. Jun 2015 B1
9058340 Chamberlain et al. Jun 2015 B1
9063226 Zheng et al. Jun 2015 B2
9087335 Rane et al. Jul 2015 B2
9123056 Singh et al. Sep 2015 B2
9143541 Szamonek et al. Sep 2015 B1
9147042 Haller et al. Sep 2015 B1
9147152 Nack et al. Sep 2015 B2
9152727 Balducci et al. Oct 2015 B1
9213646 LaPanse et al. Dec 2015 B1
9251541 Celka et al. Feb 2016 B2
9256866 Pontious Feb 2016 B2
9292581 Thompson Mar 2016 B2
9292860 Singh et al. Mar 2016 B2
9318105 Khosla Apr 2016 B1
9329715 Schwarz et al. May 2016 B2
9378500 Jimenez et al. Jun 2016 B2
9483236 Yershov et al. Nov 2016 B2
9483606 Dean et al. Nov 2016 B1
9483727 Zhao et al. Nov 2016 B2
9489497 MaGill et al. Nov 2016 B2
9489614 Nack et al. Nov 2016 B2
9508092 De Soto et al. Nov 2016 B1
9509711 Keanini Nov 2016 B1
9553936 Dijk et al. Jan 2017 B2
9563916 Torrez et al. Feb 2017 B1
9576030 Kapczynski et al. Feb 2017 B1
9595051 Stack et al. Mar 2017 B2
9619579 Courbage et al. Apr 2017 B1
9632847 Raghavan et al. Apr 2017 B2
9652802 Kasower May 2017 B1
9660869 Ripley et al. May 2017 B2
9690575 Prismon et al. Jun 2017 B2
9704192 Ainsworth et al. Jul 2017 B2
9710663 Britti et al. Jul 2017 B2
9710841 Ainsworth, III et al. Jul 2017 B2
9721267 Fahner et al. Aug 2017 B2
9779187 Gao et al. Oct 2017 B1
9842345 Ariff et al. Dec 2017 B2
9870589 Arnold et al. Jan 2018 B1
9916596 DeSoto et al. Mar 2018 B1
9916621 Wasser et al. Mar 2018 B1
9990270 Ballal Jun 2018 B2
10019508 Kapczynski Jul 2018 B1
10078868 Courbage et al. Sep 2018 B1
10083263 Gao et al. Sep 2018 B2
10102536 Hickman et al. Oct 2018 B1
10121194 Torrez et al. Nov 2018 B1
10133562 Yershov et al. Nov 2018 B2
10133980 Turner et al. Nov 2018 B2
10140193 Roy Nov 2018 B1
10162630 Bouley et al. Dec 2018 B2
10178111 Wilson et al. Jan 2019 B1
10242019 Shan et al. Mar 2019 B1
10262362 Hu et al. Apr 2019 B1
10311466 DeSoto et al. Jun 2019 B1
10366342 Zhao et al. Jul 2019 B2
10380508 Prismon et al. Aug 2019 B2
10380619 Pontious Aug 2019 B2
10380654 Hirtenstein et al. Aug 2019 B2
10402901 Courbage et al. Sep 2019 B2
10423976 Walz Sep 2019 B2
10445152 Zhang et al. Oct 2019 B1
10460335 West Oct 2019 B2
10474566 Indurthivenkata et al. Nov 2019 B2
10482531 Drotos et al. Nov 2019 B2
10515412 Rocklitz Dec 2019 B2
10521735 Ballal Dec 2019 B2
10535009 Turner et al. Jan 2020 B2
10558913 Turner et al. Feb 2020 B1
10565178 Rajagopal Feb 2020 B1
10572891 Walz Feb 2020 B2
10580025 Hickman et al. Mar 2020 B2
10620944 Prismon et al. Apr 2020 B2
10643154 Litherland et al. May 2020 B2
10650449 Courbage et al. May 2020 B2
10671812 Bondugula et al. Jun 2020 B2
10678894 Yin et al. Jun 2020 B2
10692105 DeSoto et al. Jun 2020 B1
10713140 Gupta et al. Jul 2020 B2
10713596 Cozine et al. Jul 2020 B2
10726440 Bradford Jul 2020 B1
10789422 Banaszak et al. Sep 2020 B2
10810463 Min et al. Oct 2020 B2
20010013011 Day et al. Aug 2001 A1
20010014868 Herz et al. Aug 2001 A1
20010014878 Mitra et al. Aug 2001 A1
20010016833 Everling et al. Aug 2001 A1
20010027413 Bhutta Oct 2001 A1
20010029470 Schultz et al. Oct 2001 A1
20010034631 Kiselik Oct 2001 A1
20010037332 Miller et al. Nov 2001 A1
20010039523 Iwamoto Nov 2001 A1
20010049620 Blasko Dec 2001 A1
20020019804 Sutton Feb 2002 A1
20020023051 Kunzle et al. Feb 2002 A1
20020023143 Stephenson et al. Feb 2002 A1
20020026411 Nathans et al. Feb 2002 A1
20020029162 Mascarenhas Mar 2002 A1
20020035511 Haji et al. Mar 2002 A1
20020046096 Srinivasan et al. Apr 2002 A1
20020049626 Mathis et al. Apr 2002 A1
20020049701 Nabe et al. Apr 2002 A1
20020049738 Epstein Apr 2002 A1
20020052836 Galperin et al. May 2002 A1
20020052841 Guthrie et al. May 2002 A1
20020055869 Hegg May 2002 A1
20020069122 Yun et al. Jun 2002 A1
20020072927 Phelan et al. Jun 2002 A1
20020077964 Brody et al. Jun 2002 A1
20020082892 Raffel et al. Jun 2002 A1
20020087460 Hornung Jul 2002 A1
20020091706 Anderson et al. Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020099628 Takaoka et al. Jul 2002 A1
20020099641 Mills et al. Jul 2002 A1
20020099649 Lee et al. Jul 2002 A1
20020099824 Bender et al. Jul 2002 A1
20020099936 Kou et al. Jul 2002 A1
20020111845 Chong Aug 2002 A1
20020119824 Allen Aug 2002 A1
20020120504 Gould et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020128960 Lambiotte et al. Sep 2002 A1
20020128962 Kasower Sep 2002 A1
20020129368 Schlack et al. Sep 2002 A1
20020133444 Sankaran et al. Sep 2002 A1
20020138297 Lee Sep 2002 A1
20020138331 Hosea et al. Sep 2002 A1
20020138333 DeCotiis et al. Sep 2002 A1
20020138334 DeCotiis et al. Sep 2002 A1
20020138417 Lawrence Sep 2002 A1
20020143661 Tumulty et al. Oct 2002 A1
20020147623 Rifaat Oct 2002 A1
20020147669 Taylor et al. Oct 2002 A1
20020147695 Khedkar et al. Oct 2002 A1
20020156676 Ahrens et al. Oct 2002 A1
20020161496 Yamaki Oct 2002 A1
20020161664 Shaya et al. Oct 2002 A1
20020161711 Sartor et al. Oct 2002 A1
20020165757 Lisser Nov 2002 A1
20020169747 Chapman et al. Nov 2002 A1
20020173984 Robertson et al. Nov 2002 A1
20020173994 Ferguson, III Nov 2002 A1
20020184255 Edd et al. Dec 2002 A1
20020188544 Wizon et al. Dec 2002 A1
20020194099 Weiss Dec 2002 A1
20020194103 Nabe Dec 2002 A1
20020194140 Makuck Dec 2002 A1
20020198824 Cook Dec 2002 A1
20030000568 Gonsiorawski Jan 2003 A1
20030002639 Huie Jan 2003 A1
20030004787 Tripp et al. Jan 2003 A1
20030004855 Dutta et al. Jan 2003 A1
20030004865 Kinoshita Jan 2003 A1
20030009368 Kitts Jan 2003 A1
20030009393 Norris et al. Jan 2003 A1
20030009418 Green et al. Jan 2003 A1
20030009426 Ruiz-Sanchez Jan 2003 A1
20030018549 Fei et al. Jan 2003 A1
20030018578 Schultz Jan 2003 A1
20030018769 Foulger et al. Jan 2003 A1
20030023489 McGuire et al. Jan 2003 A1
20030033242 Lynch et al. Feb 2003 A1
20030033261 Knegendorf Feb 2003 A1
20030036996 Lazerson Feb 2003 A1
20030041031 Hedy Feb 2003 A1
20030046222 Bard et al. Mar 2003 A1
20030060284 Hamalainen et al. Mar 2003 A1
20030061132 Yu et al. Mar 2003 A1
20030061163 Durfield Mar 2003 A1
20030061233 Manasse et al. Mar 2003 A1
20030065563 Elliott et al. Apr 2003 A1
20030069839 Whittington et al. Apr 2003 A1
20030078877 Beirne et al. Apr 2003 A1
20030093289 Thornley et al. May 2003 A1
20030093311 Knowlson May 2003 A1
20030093366 Halper et al. May 2003 A1
20030097320 Gordon May 2003 A1
20030097342 Whittingtom May 2003 A1
20030097380 Mulhern et al. May 2003 A1
20030101111 Dang et al. May 2003 A1
20030105696 Kalotay et al. Jun 2003 A1
20030105728 Yano et al. Jun 2003 A1
20030110111 Nalebuff et al. Jun 2003 A1
20030110293 Friedman et al. Jun 2003 A1
20030113727 Girn et al. Jun 2003 A1
20030115080 Kasravi et al. Jun 2003 A1
20030115133 Bian Jun 2003 A1
20030120591 Birkhead et al. Jun 2003 A1
20030135451 O'Brien et al. Jul 2003 A1
20030139986 Roberts Jul 2003 A1
20030144950 O'Brien et al. Jul 2003 A1
20030149610 Rowan et al. Aug 2003 A1
20030158751 Suresh et al. Aug 2003 A1
20030158776 Landesmann Aug 2003 A1
20030163708 Tang Aug 2003 A1
20030164497 Carcia et al. Sep 2003 A1
20030167218 Field et al. Sep 2003 A1
20030167226 Britton et al. Sep 2003 A1
20030171942 Gaito Sep 2003 A1
20030182214 Taylor Sep 2003 A1
20030195830 Merkoulovitch et al. Oct 2003 A1
20030195859 Lawrence Oct 2003 A1
20030200151 Ellenson et al. Oct 2003 A1
20030205845 Pichler et al. Nov 2003 A1
20030208362 Enthoven et al. Nov 2003 A1
20030208428 Raynes et al. Nov 2003 A1
20030212618 Keyes et al. Nov 2003 A1
20030212654 Harper et al. Nov 2003 A1
20030216965 Libman Nov 2003 A1
20030219709 Olenick et al. Nov 2003 A1
20030225656 Aberman et al. Dec 2003 A1
20030225692 Bosch et al. Dec 2003 A1
20030225742 Tenner et al. Dec 2003 A1
20030229507 Perge Dec 2003 A1
20030229892 Sardera Dec 2003 A1
20030233278 Marshall Dec 2003 A1
20030233323 Bilski et al. Dec 2003 A1
20030233370 Barabas et al. Dec 2003 A1
20030233655 Gutta et al. Dec 2003 A1
20030236738 Lange et al. Dec 2003 A1
20040002916 Timmerman et al. Jan 2004 A1
20040006536 Kawashima et al. Jan 2004 A1
20040010443 May et al. Jan 2004 A1
20040019518 Abraham et al. Jan 2004 A1
20040023637 Johnson et al. Feb 2004 A1
20040024692 Turbeville et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040030649 Nelson et al. Feb 2004 A1
20040030667 Xu et al. Feb 2004 A1
20040033375 Mori Feb 2004 A1
20040034570 Davis et al. Feb 2004 A1
20040039681 Cullen et al. Feb 2004 A1
20040039688 Sulkowski et al. Feb 2004 A1
20040044615 Xue et al. Mar 2004 A1
20040044617 Lu Mar 2004 A1
20040046497 Shaepkens et al. Mar 2004 A1
20040049452 Blagg Mar 2004 A1
20040054619 Watson et al. Mar 2004 A1
20040059626 Smallwood Mar 2004 A1
20040059653 Verkuylen et al. Mar 2004 A1
20040062213 Koss Apr 2004 A1
20040078248 Altschuler Apr 2004 A1
20040078324 Lonnberg et al. Apr 2004 A1
20040083215 de Jong Apr 2004 A1
20040088221 Katz et al. May 2004 A1
20040093278 Burchetta et al. May 2004 A1
20040098625 Lagadec et al. May 2004 A1
20040102197 Dietz May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040107123 Haffner et al. Jun 2004 A1
20040107125 Guheen et al. Jun 2004 A1
20040111305 Gavan et al. Jun 2004 A1
20040111358 Lange et al. Jun 2004 A1
20040111363 Trench et al. Jun 2004 A1
20040117235 Shacham Jun 2004 A1
20040117358 Von Kaenel et al. Jun 2004 A1
20040122730 Tucciarone et al. Jun 2004 A1
20040122735 Meshkin Jun 2004 A1
20040128150 Lundegren Jul 2004 A1
20040128227 Whipple et al. Jul 2004 A1
20040128230 Oppenheimer et al. Jul 2004 A1
20040128232 Descloux Jul 2004 A1
20040128236 Brown et al. Jul 2004 A1
20040139035 Wang Jul 2004 A1
20040143526 Monasterio et al. Jul 2004 A1
20040143546 Wood et al. Jul 2004 A1
20040153330 Miller et al. Aug 2004 A1
20040153448 Cheng et al. Aug 2004 A1
20040158520 Noh Aug 2004 A1
20040158523 Dort Aug 2004 A1
20040163101 Swix Aug 2004 A1
20040167793 Masuoka et al. Aug 2004 A1
20040176995 Fusz Sep 2004 A1
20040177046 Ogram Sep 2004 A1
20040186807 Nathans et al. Sep 2004 A1
20040193535 Barazesh Sep 2004 A1
20040193538 Raines Sep 2004 A1
20040199456 Flint et al. Oct 2004 A1
20040199458 Ho Oct 2004 A1
20040199462 Starrs Oct 2004 A1
20040199789 Shaw et al. Oct 2004 A1
20040205157 Bibelnieks et al. Oct 2004 A1
20040212299 Ishikawa et al. Oct 2004 A1
20040220896 Finlay et al. Nov 2004 A1
20040225545 Turner et al. Nov 2004 A1
20040225586 Woods et al. Nov 2004 A1
20040225594 Nolan, III et al. Nov 2004 A1
20040225596 Kemper et al. Nov 2004 A1
20040230448 Schaich Nov 2004 A1
20040230459 Dordick et al. Nov 2004 A1
20040230527 Hansen et al. Nov 2004 A1
20040230534 McGough Nov 2004 A1
20040230820 Hui Hsu et al. Nov 2004 A1
20040243450 Bernard, Jr. et al. Dec 2004 A1
20040243518 Clifton et al. Dec 2004 A1
20040243588 Tanner et al. Dec 2004 A1
20040261116 Mckeown et al. Dec 2004 A1
20050004805 Srinivasan Jan 2005 A1
20050015330 Beery et al. Jan 2005 A1
20050021397 Cui et al. Jan 2005 A1
20050021476 Candella et al. Jan 2005 A1
20050027633 Fortuna et al. Feb 2005 A1
20050027983 Klawon Feb 2005 A1
20050033734 Chess et al. Feb 2005 A1
20050038726 Salomon et al. Feb 2005 A1
20050050027 Yeh et al. Mar 2005 A1
20050058262 Timmins et al. Mar 2005 A1
20050065874 Lefner et al. Mar 2005 A1
20050086261 Mammone Apr 2005 A1
20050091164 Varble Apr 2005 A1
20050097039 Kulcsar et al. May 2005 A1
20050102206 Savasoglu et al. May 2005 A1
20050102225 Oppenheimer et al. May 2005 A1
20050102226 Oppenheimer et al. May 2005 A1
20050113991 Rogers et al. May 2005 A1
20050120249 Shuster Jun 2005 A1
20050125350 Tidwell et al. Jun 2005 A1
20050130704 McParland et al. Jun 2005 A1
20050137899 Davies et al. Jun 2005 A1
20050137963 Ricketts et al. Jun 2005 A1
20050144452 Lynch et al. Jun 2005 A1
20050144641 Lewis Jun 2005 A1
20050154664 Guy et al. Jul 2005 A1
20050154665 Kerr Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050159996 Lazaraus et al. Jul 2005 A1
20050177489 Neff et al. Aug 2005 A1
20050189414 Fano et al. Sep 2005 A1
20050192008 Desai et al. Sep 2005 A1
20050197953 Broadbent et al. Sep 2005 A1
20050197954 Maitland et al. Sep 2005 A1
20050201272 Wang et al. Sep 2005 A1
20050209892 Miller Sep 2005 A1
20050209922 Hofmeister Sep 2005 A1
20050222900 Fuloria et al. Oct 2005 A1
20050228692 Hodgon Oct 2005 A1
20050246256 Gastineau et al. Nov 2005 A1
20050251408 Swaminathan et al. Nov 2005 A1
20050251474 Shinn et al. Nov 2005 A1
20050251820 Stefanik et al. Nov 2005 A1
20050256780 Eldred Nov 2005 A1
20050256809 Sadri Nov 2005 A1
20050257250 Mitchell et al. Nov 2005 A1
20050262014 Fickes Nov 2005 A1
20050262158 Sauermann Nov 2005 A1
20050267774 Merritt et al. Dec 2005 A1
20050273442 Bennett et al. Dec 2005 A1
20050273849 Araujo et al. Dec 2005 A1
20050278246 Friedman et al. Dec 2005 A1
20050278542 Pierson et al. Dec 2005 A1
20050279824 Anderson et al. Dec 2005 A1
20050279827 Mascavage et al. Dec 2005 A1
20050288954 McCarthy et al. Dec 2005 A1
20050288998 Verma et al. Dec 2005 A1
20050289003 Thompson et al. Dec 2005 A1
20060004626 Holmen et al. Jan 2006 A1
20060004731 Seibel et al. Jan 2006 A1
20060004753 Coifman et al. Jan 2006 A1
20060010055 Morita et al. Jan 2006 A1
20060014129 Coleman et al. Jan 2006 A1
20060015425 Brooks Jan 2006 A1
20060020611 Gilbert et al. Jan 2006 A1
20060031158 Orman Feb 2006 A1
20060031747 Wada et al. Feb 2006 A1
20060032909 Seegar Feb 2006 A1
20060041443 Horvath Feb 2006 A1
20060041464 Powers et al. Feb 2006 A1
20060041840 Blair Feb 2006 A1
20060059073 Walzak Mar 2006 A1
20060059110 Madhok et al. Mar 2006 A1
20060074986 Mallalieu et al. Apr 2006 A1
20060080126 Greer et al. Apr 2006 A1
20060080230 Freiberg Apr 2006 A1
20060080233 Mendelovich et al. Apr 2006 A1
20060080251 Fried et al. Apr 2006 A1
20060080263 Willis et al. Apr 2006 A1
20060085334 Murphy Apr 2006 A1
20060089842 Medawar Apr 2006 A1
20060095363 May May 2006 A1
20060095923 Novack et al. May 2006 A1
20060100954 Schoen May 2006 A1
20060122921 Comerford et al. Jun 2006 A1
20060129428 Wennberg Jun 2006 A1
20060129481 Bhatt et al. Jun 2006 A1
20060131390 Kim Jun 2006 A1
20060136330 DeRoy et al. Jun 2006 A1
20060144927 Love et al. Jul 2006 A1
20060149674 Cook et al. Jul 2006 A1
20060155624 Schwartz Jul 2006 A1
20060155639 Lynch et al. Jul 2006 A1
20060161435 Atef et al. Jul 2006 A1
20060173726 Hall et al. Aug 2006 A1
20060173772 Hayes et al. Aug 2006 A1
20060173776 Shalley et al. Aug 2006 A1
20060177226 Ellis, III Aug 2006 A1
20060178189 Walker et al. Aug 2006 A1
20060178957 LeClaire Aug 2006 A1
20060178971 Owen et al. Aug 2006 A1
20060178983 Nice et al. Aug 2006 A1
20060184440 Britti et al. Aug 2006 A1
20060195390 Rusk et al. Aug 2006 A1
20060202012 Grano et al. Sep 2006 A1
20060204051 Holland, IV Sep 2006 A1
20060206416 Farias Sep 2006 A1
20060212350 Ellis et al. Sep 2006 A1
20060218069 Aberman et al. Sep 2006 A1
20060218079 Goldblatt et al. Sep 2006 A1
20060229943 Mathias et al. Oct 2006 A1
20060229961 Lyftogt et al. Oct 2006 A1
20060229996 Keithley et al. Oct 2006 A1
20060235743 Long et al. Oct 2006 A1
20060239512 Petrillo Oct 2006 A1
20060241923 Xu et al. Oct 2006 A1
20060242046 Haggerty et al. Oct 2006 A1
20060242047 Haggerty et al. Oct 2006 A1
20060242048 Haggerty et al. Oct 2006 A1
20060242050 Haggerty et al. Oct 2006 A1
20060253328 Kohli et al. Nov 2006 A1
20060253358 Delgrosso et al. Nov 2006 A1
20060259364 Strock et al. Nov 2006 A1
20060262929 Vatanen et al. Nov 2006 A1
20060265243 Racho et al. Nov 2006 A1
20060265323 Winter et al. Nov 2006 A1
20060267999 Cash et al. Nov 2006 A1
20060271456 Romain et al. Nov 2006 A1
20060271457 Romain et al. Nov 2006 A1
20060271552 McChesney et al. Nov 2006 A1
20060276171 Pousti Dec 2006 A1
20060277102 Agliozzo Dec 2006 A1
20060277141 Palmer Dec 2006 A1
20060282328 Gerace et al. Dec 2006 A1
20060282359 Nobili et al. Dec 2006 A1
20060293921 McCarthy et al. Dec 2006 A1
20060293932 Cash et al. Dec 2006 A1
20060293979 Cash et al. Dec 2006 A1
20060294199 Bertholf Dec 2006 A1
20070005508 Chiang Jan 2007 A1
20070011026 Higgins et al. Jan 2007 A1
20070011039 Oddo Jan 2007 A1
20070011083 Bird et al. Jan 2007 A1
20070011099 Sheehan Jan 2007 A1
20070016500 Chatterji et al. Jan 2007 A1
20070016501 Chatterji et al. Jan 2007 A1
20070016518 Atkinson et al. Jan 2007 A1
20070016522 Wang Jan 2007 A1
20070022141 Singleton et al. Jan 2007 A1
20070022297 Britti et al. Jan 2007 A1
20070027778 Schellhammer et al. Feb 2007 A1
20070027791 Young et al. Feb 2007 A1
20070030282 Cash et al. Feb 2007 A1
20070033227 Gaito et al. Feb 2007 A1
20070038483 Wood Feb 2007 A1
20070038497 Britti et al. Feb 2007 A1
20070043654 Libman Feb 2007 A1
20070055598 Arnott et al. Mar 2007 A1
20070055599 Arnott Mar 2007 A1
20070055618 Pogust Mar 2007 A1
20070055621 Tischler et al. Mar 2007 A1
20070061195 Liu et al. Mar 2007 A1
20070061243 Ramer et al. Mar 2007 A1
20070067207 Haggerty et al. Mar 2007 A1
20070067208 Haggerty et al. Mar 2007 A1
20070067209 Haggerty et al. Mar 2007 A1
20070067235 Nathans et al. Mar 2007 A1
20070067285 Blume et al. Mar 2007 A1
20070067297 Kublickis Mar 2007 A1
20070067437 Sindambiwe Mar 2007 A1
20070072190 Aggarwal Mar 2007 A1
20070078741 Haggerty et al. Apr 2007 A1
20070078985 Shao et al. Apr 2007 A1
20070083460 Bachenheimer Apr 2007 A1
20070093234 Willis et al. Apr 2007 A1
20070094137 Phillips et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070112579 Ratnakaran et al. May 2007 A1
20070112667 Rucker May 2007 A1
20070112668 Celano et al. May 2007 A1
20070118393 Rosen et al. May 2007 A1
20070121843 Atazky et al. May 2007 A1
20070124235 Chakraborty et al. May 2007 A1
20070127702 Shaffer et al. Jun 2007 A1
20070130026 O'Pray et al. Jun 2007 A1
20070156515 Hasselback et al. Jul 2007 A1
20070156589 Zimler et al. Jul 2007 A1
20070156718 Hossfeld et al. Jul 2007 A1
20070168246 Haggerty et al. Jul 2007 A1
20070168267 Zimmerman et al. Jul 2007 A1
20070179860 Romero Aug 2007 A1
20070192165 Haggerty et al. Aug 2007 A1
20070192248 West Aug 2007 A1
20070192347 Rossmark et al. Aug 2007 A1
20070205266 Carr et al. Sep 2007 A1
20070208653 Murphy Sep 2007 A1
20070208729 Martino Sep 2007 A1
20070220611 Socolow et al. Sep 2007 A1
20070226093 Chan et al. Sep 2007 A1
20070226114 Haggerty et al. Sep 2007 A1
20070244732 Chatterji et al. Oct 2007 A1
20070244807 Andringa et al. Oct 2007 A1
20070250327 Hedy Oct 2007 A1
20070271178 Davis et al. Nov 2007 A1
20070282684 Prosser et al. Dec 2007 A1
20070282730 Carpenter et al. Dec 2007 A1
20070282736 Conlin et al. Dec 2007 A1
20070288271 Klinkhammer Dec 2007 A1
20070288355 Roland et al. Dec 2007 A1
20070288360 Seeklus Dec 2007 A1
20070288559 Parsadayan Dec 2007 A1
20070294163 Harmon et al. Dec 2007 A1
20070299759 Kelly Dec 2007 A1
20070299771 Brody Dec 2007 A1
20080004957 Hildreth et al. Jan 2008 A1
20080005313 Flake et al. Jan 2008 A1
20080010687 Gonen et al. Jan 2008 A1
20080015887 Drabek et al. Jan 2008 A1
20080015938 Haddad et al. Jan 2008 A1
20080016099 Ikeda Jan 2008 A1
20080021804 Deckoff Jan 2008 A1
20080027859 Nathans et al. Jan 2008 A1
20080028067 Berkhin et al. Jan 2008 A1
20080033852 Megdal et al. Feb 2008 A1
20080040475 Bosworth et al. Feb 2008 A1
20080052182 Marshall Feb 2008 A1
20080059224 Schechter Mar 2008 A1
20080059317 Chandran et al. Mar 2008 A1
20080059364 Tidwell et al. Mar 2008 A1
20080059449 Webster et al. Mar 2008 A1
20080065774 Keeler Mar 2008 A1
20080066188 Kwak Mar 2008 A1
20080071882 Hering et al. Mar 2008 A1
20080077526 Arumugam Mar 2008 A1
20080086368 Bauman et al. Apr 2008 A1
20080091463 Shakamuri Apr 2008 A1
20080094230 Mock et al. Apr 2008 A1
20080097768 Godshalk Apr 2008 A1
20080097928 Paulson Apr 2008 A1
20080103800 Domenikos et al. May 2008 A1
20080103972 Lanc May 2008 A1
20080110973 Nathans et al. May 2008 A1
20080120155 Pliha May 2008 A1
20080120569 Mann et al. May 2008 A1
20080126233 Hogan May 2008 A1
20080133273 Marshall Jun 2008 A1
20080133322 Kalia et al. Jun 2008 A1
20080133325 De et al. Jun 2008 A1
20080133531 Baskerville et al. Jun 2008 A1
20080134042 Jankovich Jun 2008 A1
20080140476 Anand et al. Jun 2008 A1
20080140507 Hamlisch et al. Jun 2008 A1
20080140549 Eder Jun 2008 A1
20080140576 Lewis et al. Jun 2008 A1
20080140694 Mangla Jun 2008 A1
20080147454 Walker et al. Jun 2008 A1
20080147523 Mulry et al. Jun 2008 A1
20080154766 Lewis et al. Jun 2008 A1
20080167883 Thavildar Khazaneh Jul 2008 A1
20080167936 Kapoor Jul 2008 A1
20080167956 Keithley Jul 2008 A1
20080172324 Johnson Jul 2008 A1
20080175360 Schwarz et al. Jul 2008 A1
20080177655 Zalik Jul 2008 A1
20080177836 Bennett Jul 2008 A1
20080183564 Tien et al. Jul 2008 A1
20080195425 Haggerty et al. Aug 2008 A1
20080195600 Deakter Aug 2008 A1
20080208548 Metzger et al. Aug 2008 A1
20080208610 Thomas et al. Aug 2008 A1
20080208631 Morita et al. Aug 2008 A1
20080208788 Merugu et al. Aug 2008 A1
20080215470 Sengupta et al. Sep 2008 A1
20080221934 Megdal et al. Sep 2008 A1
20080221947 Megdal et al. Sep 2008 A1
20080221970 Megdal et al. Sep 2008 A1
20080221971 Megdal et al. Sep 2008 A1
20080221972 Megdal et al. Sep 2008 A1
20080221973 Megdal et al. Sep 2008 A1
20080221990 Megdal et al. Sep 2008 A1
20080222016 Megdal et al. Sep 2008 A1
20080222027 Megdal et al. Sep 2008 A1
20080228538 Megdal et al. Sep 2008 A1
20080228539 Megdal et al. Sep 2008 A1
20080228540 Megdal et al. Sep 2008 A1
20080228541 Megdal et al. Sep 2008 A1
20080228556 Megdal et al. Sep 2008 A1
20080228606 Megdal et al. Sep 2008 A1
20080228635 Megdal et al. Sep 2008 A1
20080243680 Megdal et al. Oct 2008 A1
20080244008 Wilkinson et al. Oct 2008 A1
20080255897 Megdal et al. Oct 2008 A1
20080255992 Lin Oct 2008 A1
20080262925 Kim et al. Oct 2008 A1
20080263638 McMurtry et al. Oct 2008 A1
20080270245 Boukadoum et al. Oct 2008 A1
20080281737 Fajardo Nov 2008 A1
20080288382 Smith et al. Nov 2008 A1
20080294540 Celka et al. Nov 2008 A1
20080294546 Flannery Nov 2008 A1
20080300977 Gerakos et al. Dec 2008 A1
20080301016 Durvasula et al. Dec 2008 A1
20080301188 O'Hara Dec 2008 A1
20080312963 Reiner Dec 2008 A1
20080312969 Raines et al. Dec 2008 A1
20090006185 Stinson Jan 2009 A1
20090006475 Udezue et al. Jan 2009 A1
20090012889 Finch Jan 2009 A1
20090018996 Hunt et al. Jan 2009 A1
20090019027 Ju et al. Jan 2009 A1
20090024505 Patel et al. Jan 2009 A1
20090030776 Walker et al. Jan 2009 A1
20090037247 Quinn Feb 2009 A1
20090037323 Feinstein et al. Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090044279 Crawford et al. Feb 2009 A1
20090048877 Binns et al. Feb 2009 A1
20090048957 Celano Feb 2009 A1
20090076883 Kilger et al. Mar 2009 A1
20090089190 Girulat Apr 2009 A1
20090089205 Bayne Apr 2009 A1
20090094675 Powers Apr 2009 A1
20090099914 Lang et al. Apr 2009 A1
20090106150 Pelegero et al. Apr 2009 A1
20090112650 Iwane Apr 2009 A1
20090113532 Lapidous Apr 2009 A1
20090119169 Chandratillake et al. May 2009 A1
20090119199 Salahi May 2009 A1
20090125369 Kloostra et al. May 2009 A1
20090132347 Anderson et al. May 2009 A1
20090132559 Chamberlain et al. May 2009 A1
20090144102 Lopez Jun 2009 A1
20090144160 Haggerty et al. Jun 2009 A1
20090144201 Gierkink et al. Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090182653 Zimiles Jul 2009 A1
20090182872 Hong Jul 2009 A1
20090198557 Wang et al. Aug 2009 A1
20090198602 Wang et al. Aug 2009 A1
20090198612 Meimes et al. Aug 2009 A1
20090199264 Lang Aug 2009 A1
20090210886 Bhojwani et al. Aug 2009 A1
20090215479 Karmarkar Aug 2009 A1
20090216591 Buerger et al. Aug 2009 A1
20090222308 Zoldi et al. Sep 2009 A1
20090222373 Choudhuri et al. Sep 2009 A1
20090222374 Choudhuri et al. Sep 2009 A1
20090222375 Choudhuri et al. Sep 2009 A1
20090222376 Choudhuri et al. Sep 2009 A1
20090222377 Choudhuri et al. Sep 2009 A1
20090222378 Choudhuri et al. Sep 2009 A1
20090222379 Choudhuri et al. Sep 2009 A1
20090222380 Choudhuri et al. Sep 2009 A1
20090228918 Rolff et al. Sep 2009 A1
20090234665 Conkel Sep 2009 A1
20090234775 Whitney et al. Sep 2009 A1
20090240609 Cho et al. Sep 2009 A1
20090248567 Haggerty et al. Oct 2009 A1
20090248568 Haggerty et al. Oct 2009 A1
20090248569 Haggerty et al. Oct 2009 A1
20090248570 Haggerty et al. Oct 2009 A1
20090248571 Haggerty et al. Oct 2009 A1
20090248572 Haggerty et al. Oct 2009 A1
20090248573 Haggerty et al. Oct 2009 A1
20090249440 Platt et al. Oct 2009 A1
20090254476 Sharma et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090265326 Lehrman et al. Oct 2009 A1
20090271248 Sherman et al. Oct 2009 A1
20090271265 Lay et al. Oct 2009 A1
20090276233 Brimhall et al. Nov 2009 A1
20090276368 Martin et al. Nov 2009 A1
20090300066 Guo et al. Dec 2009 A1
20090313163 Wang et al. Dec 2009 A1
20090319648 Dutta et al. Dec 2009 A1
20090327120 Eze et al. Dec 2009 A1
20100009320 Wilkelis Jan 2010 A1
20100010935 Shelton Jan 2010 A1
20100030649 Ubelhor Feb 2010 A1
20100043055 Baumgart Feb 2010 A1
20100049651 Lang et al. Feb 2010 A1
20100082384 Bohrer et al. Apr 2010 A1
20100094704 Subramanian et al. Apr 2010 A1
20100094758 Chamberlain et al. Apr 2010 A1
20100094768 Miltonberger Apr 2010 A1
20100094774 Jackowitz et al. Apr 2010 A1
20100100945 Ozzie et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100114646 McIlwain et al. May 2010 A1
20100114724 Ghosh et al. May 2010 A1
20100114744 Gonen May 2010 A1
20100121767 Coulter et al. May 2010 A1
20100130172 Vendrow et al. May 2010 A1
20100142698 Spottiswoode et al. Jun 2010 A1
20100145836 Baker et al. Jun 2010 A1
20100145847 Zarikian et al. Jun 2010 A1
20100169159 Rose et al. Jul 2010 A1
20100169264 O'Sullivan Jul 2010 A1
20100185453 Satyavolu et al. Jul 2010 A1
20100198629 Wesileder et al. Aug 2010 A1
20100205662 Ibrahim et al. Aug 2010 A1
20100211445 Bodington Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20100223168 Haggerty et al. Sep 2010 A1
20100228657 Kagarlis Sep 2010 A1
20100229245 Singhal Sep 2010 A1
20100248681 Phills Sep 2010 A1
20100250364 Song et al. Sep 2010 A1
20100250434 Megdal et al. Sep 2010 A1
20100250469 Megdal et al. Sep 2010 A1
20100268557 Faith et al. Oct 2010 A1
20100274739 Haggerty et al. Oct 2010 A1
20100293114 Khan et al. Nov 2010 A1
20100312717 Haggerty et al. Dec 2010 A1
20100312769 Bailey et al. Dec 2010 A1
20100332292 Anderson Dec 2010 A1
20110004498 Readshaw Jan 2011 A1
20110016042 Cho et al. Jan 2011 A1
20110023115 Wright Jan 2011 A1
20110029388 Kendall et al. Feb 2011 A1
20110035333 Haggerty et al. Feb 2011 A1
20110047071 Choudhuri et al. Feb 2011 A1
20110054981 Faith et al. Mar 2011 A1
20110066495 Ayloo et al. Mar 2011 A1
20110071950 Ivanovic Mar 2011 A1
20110076663 Krallman et al. Mar 2011 A1
20110078073 Annappindi et al. Mar 2011 A1
20110093383 Haggerty et al. Apr 2011 A1
20110112958 Haggerty et al. May 2011 A1
20110125595 Neal et al. May 2011 A1
20110126275 Anderson et al. May 2011 A1
20110131131 Griffin et al. Jun 2011 A1
20110137789 Kortina et al. Jun 2011 A1
20110145122 Haggerty et al. Jun 2011 A1
20110161323 Hagiwara Jun 2011 A1
20110164746 Nice et al. Jul 2011 A1
20110173116 Yan et al. Jul 2011 A1
20110178922 Imrey et al. Jul 2011 A1
20110184838 Winters et al. Jul 2011 A1
20110184851 Megdal et al. Jul 2011 A1
20110196791 Dominguez Aug 2011 A1
20110211445 Chen Sep 2011 A1
20110213641 Metzger, II et al. Sep 2011 A1
20110218826 Birtel et al. Sep 2011 A1
20110219421 Ullman et al. Sep 2011 A1
20110238566 Santos Sep 2011 A1
20110251946 Haggerty et al. Oct 2011 A1
20110258050 Chan et al. Oct 2011 A1
20110258142 Haggerty et al. Oct 2011 A1
20110264581 Clyne Oct 2011 A1
20110270779 Showalter Nov 2011 A1
20110276396 Rathod Nov 2011 A1
20110282779 Megdal et al. Nov 2011 A1
20110307397 Benmbarek Dec 2011 A1
20110320307 Mehta et al. Dec 2011 A1
20120005070 McFall et al. Jan 2012 A1
20120011056 Ward et al. Jan 2012 A1
20120011158 Avner et al. Jan 2012 A1
20120016948 Sinha Jan 2012 A1
20120029956 Ghosh et al. Feb 2012 A1
20120029996 Lang et al. Feb 2012 A1
20120035980 Haggerty et al. Feb 2012 A1
20120047219 Feng et al. Feb 2012 A1
20120054592 Jaffe et al. Mar 2012 A1
20120066065 Switzer Mar 2012 A1
20120066106 Papadimitriou Mar 2012 A1
20120084230 Megdal et al. Apr 2012 A1
20120089605 Bangalore Apr 2012 A1
20120101938 Kasower Apr 2012 A1
20120101939 Kasower Apr 2012 A1
20120106801 Jackson May 2012 A1
20120110677 Abendroth et al. May 2012 A1
20120116807 Hane et al. May 2012 A1
20120123968 Megdal et al. May 2012 A1
20120124498 Santoro et al. May 2012 A1
20120136763 Megdal et al. May 2012 A1
20120143637 Paradis et al. Jun 2012 A1
20120143921 Wilson Jun 2012 A1
20120150587 Kruger et al. Jun 2012 A1
20120158460 Kruger et al. Jun 2012 A1
20120158574 Brunzell et al. Jun 2012 A1
20120158654 Behren et al. Jun 2012 A1
20120173339 Flynt et al. Jul 2012 A1
20120179536 Kalb et al. Jul 2012 A1
20120191479 Gupta et al. Jul 2012 A1
20120209586 Mieritz et al. Aug 2012 A1
20120215682 Lent et al. Aug 2012 A1
20120216125 Pierce Aug 2012 A1
20120232958 Silbert Sep 2012 A1
20120239497 Nuzzi Sep 2012 A1
20120239515 Batra et al. Sep 2012 A1
20120265661 Megdal et al. Oct 2012 A1
20120284118 Mamich, Jr. et al. Nov 2012 A1
20120290660 Rao et al. Nov 2012 A1
20120317016 Hughes Dec 2012 A1
20120323954 Bonalle et al. Dec 2012 A1
20130080242 Alhadeff et al. Mar 2013 A1
20130080467 Carson et al. Mar 2013 A1
20130085804 Leff et al. Apr 2013 A1
20130085902 Chew Apr 2013 A1
20130103571 Chung et al. Apr 2013 A1
20130117832 Gandhi May 2013 A1
20130124263 Amaro et al. May 2013 A1
20130132151 Stibel et al. May 2013 A1
20130137464 Kramer et al. May 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130159168 Evans Jun 2013 A1
20130159411 Bowen Jun 2013 A1
20130173359 Megdal et al. Jul 2013 A1
20130173450 Celka et al. Jul 2013 A1
20130173481 Hirtenstein et al. Jul 2013 A1
20130218638 Kilger et al. Aug 2013 A1
20130226787 Haggerty et al. Aug 2013 A1
20130226820 Sedota, Jr. et al. Aug 2013 A1
20130238413 Carlson et al. Sep 2013 A1
20130268324 Megdal et al. Oct 2013 A1
20130275331 Megdal et al. Oct 2013 A1
20130293363 Plymouth Nov 2013 A1
20130347059 Fong et al. Dec 2013 A1
20140006523 Hofman Jan 2014 A1
20140012633 Megdal et al. Jan 2014 A1
20140019331 Megdal et al. Jan 2014 A1
20140032265 Paprocki et al. Jan 2014 A1
20140032384 Megdal et al. Jan 2014 A1
20140046887 Lessin Feb 2014 A1
20140095251 Huovilainen Apr 2014 A1
20140096249 Dupont et al. Apr 2014 A1
20140149179 Haggerty et al. May 2014 A1
20140156501 Howe Jun 2014 A1
20140164112 Kala Jun 2014 A1
20140164398 Smith et al. Jun 2014 A1
20140172686 Haggerty et al. Jun 2014 A1
20140181285 Stevens et al. Jun 2014 A1
20140244353 Winters Aug 2014 A1
20140278774 Cai et al. Sep 2014 A1
20140279197 Ainsworth, III et al. Sep 2014 A1
20140310157 Haggerty et al. Oct 2014 A1
20140316852 Chatterji et al. Oct 2014 A1
20140316855 Haggerty et al. Oct 2014 A1
20140316969 Imrey Oct 2014 A1
20140317022 Haggerty et al. Oct 2014 A1
20140324538 Haggerty et al. Oct 2014 A1
20140344069 Haggerty et al. Nov 2014 A1
20140365357 Bohrer et al. Dec 2014 A1
20150026039 Annappindi Jan 2015 A1
20150051948 Aizono Feb 2015 A1
20150066772 Griffin et al. Mar 2015 A1
20150095184 Ainsworth et al. Apr 2015 A1
20150095187 Ainsworth et al. Apr 2015 A1
20150106192 Guo et al. Apr 2015 A1
20150108227 Nack et al. Apr 2015 A1
20150120391 Jodice et al. Apr 2015 A1
20150120755 Burger et al. Apr 2015 A1
20150235230 Ainsworth, III et al. Aug 2015 A1
20150248661 Pontious Sep 2015 A1
20150248665 Walz Sep 2015 A1
20150248691 Pontious Sep 2015 A1
20150248716 Ainsworth, III et al. Sep 2015 A1
20150262109 Ainsworth, III et al. Sep 2015 A1
20150262246 Stack et al. Sep 2015 A1
20150262291 West et al. Sep 2015 A1
20150278225 Weiss et al. Oct 2015 A1
20150286747 Anastasakos Oct 2015 A1
20150295906 Ufford et al. Oct 2015 A1
20150310543 DeBie Oct 2015 A1
20150332414 Unser Nov 2015 A1
20150363328 Candelaria Dec 2015 A1
20160005114 Donovan et al. Jan 2016 A1
20160055487 Votaw et al. Feb 2016 A1
20160071175 Reuss et al. Mar 2016 A1
20160086190 Bohrer et al. Mar 2016 A1
20160092997 Shen et al. Mar 2016 A1
20160098775 Ainsworth, III et al. Apr 2016 A1
20160098776 Ainsworth, III et al. Apr 2016 A1
20160098784 Ainsworth, III et al. Apr 2016 A1
20160110694 Walz et al. Apr 2016 A1
20160110707 Nack et al. Apr 2016 A1
20160140639 Ainsworth, III et al. May 2016 A1
20160155160 Walz et al. Jun 2016 A1
20160155191 Walz et al. Jun 2016 A1
20160171542 Fanous et al. Jun 2016 A1
20160180258 Walz Jun 2016 A1
20160180349 Korra et al. Jun 2016 A1
20160183051 Nack et al. Jun 2016 A1
20160189152 Walz Jun 2016 A1
20160189192 Walz Jun 2016 A1
20160210224 Cohen Jul 2016 A1
20160246581 Jimenez et al. Aug 2016 A1
20160267485 Walz et al. Sep 2016 A1
20160267508 West Sep 2016 A1
20160267513 Walz et al. Sep 2016 A1
20160267514 Walz et al. Sep 2016 A1
20160267515 Walz et al. Sep 2016 A1
20160267516 Walz et al. Sep 2016 A1
20160350851 Ainsworth, III et al. Dec 2016 A1
20170039588 Koltnow et al. Feb 2017 A1
20170039616 Korra et al. Feb 2017 A1
20170061511 Korra et al. Mar 2017 A1
20170061532 Koltnow et al. Mar 2017 A1
20170161780 Michalek Jun 2017 A1
20170186297 Brenner Jun 2017 A1
20170193315 El-Khamy et al. Jul 2017 A1
20170200222 Barber et al. Jul 2017 A1
20170278182 Kasower Sep 2017 A1
20180025273 Jordan et al. Jan 2018 A1
20180053172 Nack et al. Feb 2018 A1
20180053252 Koltnow et al. Feb 2018 A1
20180060546 Yin Mar 2018 A1
20180101889 Nack et al. Apr 2018 A1
20180189871 Lennert Jul 2018 A1
20180308151 Ainsworth, III et al. Oct 2018 A1
20180330383 Pontious et al. Nov 2018 A1
20180330415 Billman et al. Nov 2018 A1
20190005498 Roca et al. Jan 2019 A1
20190026354 Kapczynski Jan 2019 A1
20190042947 Turner et al. Feb 2019 A1
20190043126 Billman et al. Feb 2019 A1
20190095939 Hickman et al. Mar 2019 A1
20190311427 Quinn et al. Oct 2019 A1
20190318255 Ripley et al. Oct 2019 A1
20190340526 Turner et al. Nov 2019 A1
20190347092 Bouley et al. Nov 2019 A1
20190354613 Zoldi et al. Nov 2019 A1
20190354853 Zoldi et al. Nov 2019 A1
20200026642 Indurthivenkata et al. Jan 2020 A1
20200034419 Bondugula et al. Jan 2020 A1
20200042887 Marcé et al. Feb 2020 A1
20200043103 Sheptunov Feb 2020 A1
20200082302 Zoldi et al. Mar 2020 A1
20200090080 Ballal Mar 2020 A1
20200097591 Basant et al. Mar 2020 A1
20200097881 Krone et al. Mar 2020 A1
20200098041 Lawrence et al. Mar 2020 A1
20200104734 Turner et al. Apr 2020 A1
20200134387 Liu et al. Apr 2020 A1
20200134439 Turner et al. Apr 2020 A1
20200134474 Marcé et al. Apr 2020 A1
20200134500 Marcé et al. Apr 2020 A1
20200159989 Banaszak et al. May 2020 A1
20200202425 Taylor-Shoff et al. Jun 2020 A1
20200218629 Chen et al. Jul 2020 A1
20200242216 Zoldi et al. Jul 2020 A1
20200250185 Anderson Aug 2020 A1
20200250556 Nourian et al. Aug 2020 A1
20200250716 Laura Aug 2020 A1
20200265059 Patel et al. Aug 2020 A1
20200265513 Drotos et al. Aug 2020 A1
20200272853 Zoldi et al. Aug 2020 A1
20200293557 Farrell et al. Sep 2020 A1
20200293912 Williams et al. Sep 2020 A1
20200334748 Courbage et al. Oct 2020 A1
20200342556 Zoldi et al. Oct 2020 A1
20200349240 Yin et al. Nov 2020 A1
Foreign Referenced Citations (129)
Number Date Country
2019250275 May 2020 AU
2 865 348 Mar 2015 CA
2 895 452 Jan 2016 CA
2 901 057 Apr 2016 CA
2 909 392 Jun 2016 CA
2 915 375 Jun 2016 CA
2 923 334 Sep 2016 CA
3 059 314 Mar 2020 CA
91 08 341 Oct 1991 DE
0 350 907 Jan 1990 EP
0 419 889 Apr 1991 EP
0 458 698 Nov 1991 EP
0 468 440 Jan 1992 EP
0 554 083 Aug 1993 EP
0 566 736 Aug 1993 EP
0 559 358 Sep 1993 EP
0 869 652 Oct 1998 EP
0 913 789 May 1999 EP
0 919 942 Jun 1999 EP
0 977 128 Feb 2000 EP
1 028 401 Aug 2000 EP
1 077 419 Feb 2001 EP
0 772 836 Dec 2001 EP
2 088 743 Aug 2009 EP
2 151 793 Feb 2010 EP
3 572 985 Nov 2019 EP
3 573 009 Nov 2019 EP
3 690 762 Aug 2020 EP
3 699 827 Aug 2020 EP
3 719 710 Oct 2020 EP
2 392 748 Mar 2004 GB
2 579 139 Jun 2020 GB
10-222559 Aug 1998 JP
10-261009 Sep 1998 JP
10-293732 Nov 1998 JP
2000-331068 Nov 2000 JP
2001-282957 Oct 2001 JP
2001-297141 Oct 2001 JP
2001-344463 Dec 2001 JP
2001-357256 Dec 2001 JP
2002-149778 May 2002 JP
2002-163449 Jun 2002 JP
2002-163498 Jun 2002 JP
2002-259753 Sep 2002 JP
2003-271851 Sep 2003 JP
2003-316881 Nov 2003 JP
2003-316950 Nov 2003 JP
10-2000-0036594 Jul 2000 KR
10-2000-0063995 Nov 2000 KR
10-2001-0016349 Mar 2001 KR
10-2001-0035145 May 2001 KR
10-2002-0007132 Jan 2002 KR
10-2013-0107394 Oct 2013 KR
256569 Jun 2006 TW
WO 94006103 Mar 1994 WO
WO 95034155 Dec 1995 WO
WO 96000945 Jan 1996 WO
WO 97023838 Jul 1997 WO
WO 98041931 Sep 1998 WO
WO 98041932 Sep 1998 WO
WO 98041933 Sep 1998 WO
WO 98049643 Nov 1998 WO
WO 99008218 Feb 1999 WO
WO 99017225 Apr 1999 WO
WO 99017226 Apr 1999 WO
WO 99022328 May 1999 WO
WO 99038094 Jul 1999 WO
WO 00004465 Jan 2000 WO
WO 00028441 May 2000 WO
WO 00055778 Sep 2000 WO
WO 00055789 Sep 2000 WO
WO 00055790 Sep 2000 WO
WO 01010090 Feb 2001 WO
WO 01011522 Feb 2001 WO
WO 01016896 Mar 2001 WO
WO 01039090 May 2001 WO
WO 01039589 Jun 2001 WO
WO 01041083 Jun 2001 WO
WO 01057720 Aug 2001 WO
WO 01080053 Oct 2001 WO
WO 01084281 Nov 2001 WO
WO 02001462 Jan 2002 WO
WO 02027610 Apr 2002 WO
WO 03071388 Aug 2003 WO
WO 03101123 Dec 2003 WO
WO 2004046882 Jun 2004 WO
WO 2004051436 Jun 2004 WO
WO 2004061563 Jul 2004 WO
WO 2004114160 Dec 2004 WO
WO 2005059781 Jun 2005 WO
WO 2005124619 Dec 2005 WO
WO 2007004158 Jan 2007 WO
WO 2007014271 Feb 2007 WO
WO 2007149941 Dec 2007 WO
WO 2008022289 Feb 2008 WO
WO 2008054403 May 2008 WO
WO 2008076343 Jun 2008 WO
WO 2008127288 Oct 2008 WO
WO 2008147918 Dec 2008 WO
WO 2008148819 Dec 2008 WO
WO 2009061342 May 2009 WO
WO 2009076555 Jun 2009 WO
WO 2009117518 Sep 2009 WO
WO 2009132114 Oct 2009 WO
WO 2010045160 Apr 2010 WO
WO 2010062537 Jun 2010 WO
WO 2010132492 Nov 2010 WO
WO 2010150251 Dec 2010 WO
WO 2011005876 Jan 2011 WO
WO 2014018900 Jan 2014 WO
WO 2015162681 Oct 2015 WO
WO-2015162681 Oct 2015 WO
WO 2016160539 Oct 2016 WO
WO 2018039377 Mar 2018 WO
WO 2018057701 Mar 2018 WO
WO 2018084867 May 2018 WO
WO 2018128866 Jul 2018 WO
WO 2019035809 Feb 2019 WO
WO 2019067497 Apr 2019 WO
WO 2019088972 May 2019 WO
WO 2019089990 May 2019 WO
WO 2019094910 May 2019 WO
WO 2019104088 May 2019 WO
WO 2019104089 May 2019 WO
WO 2019217876 Nov 2019 WO
WO 2020055904 Mar 2020 WO
WO 2020132026 Jun 2020 WO
WO 2020142417 Jul 2020 WO
WO 20200219839 Oct 2020 WO
Non-Patent Literature Citations (261)
Entry
International Preliminary Report on Patentability in Application No. PCT/US2017/048265, dated Mar. 7, 2019.
International Preliminary Report on Patentability in Application No. PCT/US2017/068340, dated Jul. 18, 2019.
International Search Report and Written Opinion in PCT Application No. PCT/US07/76152, dated Mar. 20, 2009.
International Search Report for Application No. PCT/US2005/041814, dated Aug. 29, 2007.
Reinartz et al., “On the Profitability of Long-Life Customers in a Noncontractual Setting: An Empirical Investigation and Implications for Marketing” Journal of Marketing, Oct. 2000, vol. 64, pp. 17-35.
U.S. Appl. No. 14/975,536, Systems and Methods for Generating Entity Recommendation Data, filed Dec. 18, 2015.
U.S. Appl. No. 14/975,654, U.S. Pat. No. 10,242,019, User Behavior Segmentation Using Latent Topic Detection, filed Dec. 18, 2015.
U.S. Appl. No. 14/975,440, Systems and Methods for Dynamic Report Generation Based on Automatic Modeling of Complex Data Structures, filed Dec. 18, 2015.
U.S. Appl. No. 12/705,489, filed Feb. 12, 2010, Bargoli et al.
“A Google Health update,” Google Official Blog, Sep. 15, 2010 in 4 pages, http://googleblog.blogspot.com/2010/09/google-health-update.html.
“A New Approach to Fraud Solutions”, BasePoint Science Solving Fraud, pp. 8, 2006.
“Aggregate and Analyze Social Media Content: Gain Faster and Broader Insight to Market Sentiment,” SAP Partner, Mantis Technology Group, Apr. 2011, pp. 4.
Akl, Selim G., “Digital Signatures: A Tutorial Survey,” Computer, Feb. 1983, pp. 15-24.
“Auto Market StatisticsSM:Drive Response with Aggregated Motor Vehicle Information”, Experian, Apr. 2007, http://www.experian.com/assets/marketing-services/product-sheets/auto-market-statistics.pdf, pp. 2.
Adzilla, Press Release, “Zillacasting Technology Approved and Patent Pending,” http://www.adzilla.com/newsroom/pdf/patent_051605.pdf, May 16, 2005, pp. 2.
AISG's National Underwriting Database, A-Plus, is Now the Largest in the Industry, Business Wire, Aug. 7, 1997.
Alexander, Walter, “What's the Score”, ABA Banking Journal, vol. 81, 1989. [Journal Article Excerpt].
Amo, Tina, “How to Find Out Who Has Lived inYour House Before You”, https://web.archive.org/web/20130327090532/http://homeguides.sfgate.com/out-lived-house-before-50576.html as archived Mar. 27, 2013, pp. 2.
Announcing TrueProfiler, http://web.archive.org/web/20021201123646/http://www.truecredit.com/index.asp, dated Dec. 1, 2002, 2 pages.
Applied Geographic Solutions, “What is Mosaic™”, as captured Feb. 15, 2004 from http://web.archive.org/web/20040215224329/http://www.appliedgeographic.com/mosaic.html in 2 pages.
“AT&T Expected to Turn Up Heat in Card Wars”, American Banker, May 27, 1993, vol. 158, No. 101, pp. 3.
Babcock, Gwen, “Aggregation Without Aggravation: Determining Spatial Contiguity and Joining Geographic Areas Using Hashing”, SAS Global Forum 2010, Reporting and Information Visualization, Paper 223-2010, pp. 17.
BackupBox, http://mybackupbox.com printed Feb. 8, 2013 in 2 pages.
“Balance Transfers Offer Opportunities”, Risk Credit Risk Management Report, Jan. 29, 1996, vol. 6, No. 2, pp. 2.
“Bank of America Direct Web-Based Network Adds Core Functionality to Meet Day-To-Day Treasury Needs”, Business Wire, Oct. 25, 1999, pp. 2.
“Bank of America Launches Total Security Protection™; Features Address Cardholders' Financial Safety Concerns; Supported by $26 Million National Advertising Campaign; Free Educational Materials”, PR Newswire, Oct. 9, 2002, pp. 2.
BBC Green Home, “My Action Plan”, as printed from the Wayback Machine at http://web.archive.org/web/20080513014731/http://www.bbcgreen.com/actionplan, May 13, 2008, pp. 50.
BERR: Department for Business Enterprise & Regulatory Reform, “Regional Energy Consumption Statistics”, Jun. 10, 2008, http://webarchive.nationalarchives.gov.uk/20080610182444/http://www.berr.gov.uk/energy/statistics/regional/index.html.
“Beverly Hills Man Convicted of Operating ‘Bust-Out’ Schemes that Caused More than $8 Million in Losses”, Department of Justice, Jul. 25, 2006, 2 Pgs.
Bitran et al., “Mailing Decisions in Catalog Sales Industry”, Management Science (JSTOR), vol. 42, No. 9, pp. 1364-1381, Sep. 1996.
Brown et al., “ALCOD IDSS:Assisting the Australian Stock Market Surveillance Team's Review Process,” Applied Artificial Intelligence Journal, Dec. 1, 1996, pp. 625-641.
Bult et al., “Optimal Selection for Direct Mail,” Marketing Science, 1995, vol. 14, No. 4, pp. 378-394.
Burr Ph.D., et al., “Utility Payments as Alternative Credit Data: A Reality Check”, Asset Builders of America, Inc., Oct. 5, 2006, pp. 1-18, Washington, D.C.
Burr Ph.D., et al., “Payment Aggregation and Information Dissemination (Paid): Annotated Literature Search”, Asset Builders of America, Inc., Sep. 2005.
“Bust-Out Schemes”, Visual Analytics Inc. Technical Product Support, Newsletter vol. 4, Issue 1, Jan. 2005, pp. 7.
Caliendo, et al., “Some Practical Guidance for the Implementation of Propensity Score Matching”, IZA:Discussion Paper Series, No. 1588, Germany, May 2005, pp. 32.
Cantor, R. and Packer, F., “The Credit Rating Industry,” FRBNY Quarterly Review, Summer-Fall, 1994, pp. 1-24.
“Carbon Calculator—Calculation Explanation,” Warwick University Carbon Footprint Project Group, 2005, pp. 5, http://www.carboncalculator.co.uk/explanation.php.
Chandler et al., “The Benefit to Consumers from Generic Scoring Models Based on Credit Reports”, The MDS Group Atlanta, Georgia, Jul. 1, 1991, Abstract.
ChannelWave.com, PRM Central—About PRM, http://web.archive.org/web/20000510214859/http://www.channelwave.com as printed on Jun. 21, 2006, May 2000 Archive.
“Chase Gets Positive,” Bank Technology News, May 6, 2000, vol. 14, No. 5, p. 33.
Chatterjee et al., “Expenditure Patterns and Aggregate Consumer Behavior, Some Experiments with Australian and New Zealand Data”, The Economic Record, vol. 70, No. 210, Sep. 1994, pp. 278-291.
Chen, et al., “Modeling Credit Card ‘Share of Wallet’: Solving the Incomplete Information Problem”, New York University: Kauffman Management Center, http://www.rhsmith.umd.edu/marketing/pdfs_docs/seminarsspr05/abstract%20-%20chen.pdf , Spring 2005, 48 pages.
“Cole Taylor Bank Chooses Integrated E-Banking/E-Payments/Reconciliation Solution From Fundtech”, Business Wire, Oct. 21, 1999, pp. 2.
“Consumer Reports Finds American-Made Vehicles Close Reliability Gap with European-Made Vehicle—As Japanese Continue to Set New Benchmarks for the Industry”, Consumer Reports: Consumers Union, Yonkers, NY, Apr. 2003, pp. 2.
Corepoint Health, “The Continuity of Care Document—Changing the Landscape of Healthcare Information Exchange,” Jan. 2009, pp. 9.
CreditAnalyst, Digital Matrix Systems, as printed out Mar. 4, 2008, pp. 2.
CreditKarma, http://www.creditkarma.com printed Feb. 8, 2013 in 2 pages.
CreditSesame, http://www.creditsesame.com/how-it-works/our-technology/ printed Feb. 5, 2013 in 2 pages.
CreditXpert, http://www.creditxpert.com/Products/individuals.asp printed Oct. 12, 2012 in 1 page.
ComScore Networks Launches Business Unit to Help Credit Card Marketers Master Online and Multi-Channel Strategies—Solutions Provide Unprecedented Insight Into Customer Acquisition and Usage Opportunities, Reston, VA, Oct. 11, 2001, 2 pages.
Cowie, Norman, “Warning Bells & ‘The Bust-Out’”, Business Credit, Jul. 1, 2000, pp. 5.
Credit Card Management, “Neural Nets Shoot for Jackpot,” Dec. 1995, pp. 1-6.
Credit Risk Management Report, Potomac, Mar. 9, 1998, vol. 8, No. 4.
CreditXpert Inc., CreditXpert 3-Bureau Comparison™, 2002, pp. 5, http://web.archive.org/web/20030608171018/http://creditxpert.com/CreditXpert%203-Bureau%20Comparison(TM)%20sample.pdf.
CreditXpert Inc., CreditXpert Credit Score & Analysis™, Jan. 11, 2000, pp. 6, http://web.archive.org/web/20030611070058/http://www.creditxpert.com/CreditXpert%20Score%20&%20Analysis%20and%20Credit%20Wizard%20sample.pdf.
CreditXpert Inc., CreditXpert Essentials™, Advisor View—Experian on Jul. 7, 2003, http://www.creditxpert.com/cx_ess_app.pdf.
CreditXpert Inc., CreditXpert Essentials™, Advisor View—TransUnion on Oct. 10, 1999, pp. 6, http://web.archive.org/web/20041211052543/http://creditxpert.com/cx_ess_app.pdf.
CreditXpert Inc., CreditXpert Essentials™, Applicant View—TransUnion on Oct. 10, 1999, pp. 6, http://www.creditxpert.com/cx_ess_app.pdf.
CreditXpert Inc., CreditXpert What-If Simulator™, 2002, pp. 8, http://web.archive.org/web/20030630132914/http://creditxpert.com/CreditXpert%20What-If%20Simulator(TM)%20sample.pdf.
Dankar et al., “Efficient Private Information Retrieval for Geographical Aggregation”, Procedia Computer Science, 2014, vol. 37, pp. 497-502.
Dataman Group, “Summarized Credit Statistics,” Aug. 22, 2001, http://web.archive.org/web/20010822113446/http://www.datamangroup.com/summarized_credit.asp.
David, Alexander, “Controlling Information Premia by Repackaging Asset-Backed Securities,” The Journal of Risk and Insurance, Dec. 1997, 26 pages.
Davies, Donald W., “Applying the RSA Digital Signature to Electronic Mail,” Computer, Feb. 1983, pp. 55-62.
Dé, Andy, “Will mHealth Apps and Devices Empower ePatients for Wellness and Disease Management? A Case Study,” Jan. 10, 2011 in 6 pages, http://www.healthsciencestrategy.com/2011/04/will-mhealth-apps-and-devices-empower-epatients-for-wellness-and-disease-management-a-case-study-2/.
DeGruchy, et al., “Geodemographic Profiling Benefits Stop-Smoking Service;” The British Journal of Healthcare Computing & Information Management; Feb. 2007; 24, 7; pp. 29-31.
Dillon et al., “Good Science”, Marketing Research: A Magazine of Management & Applications™, Winter 1997, vol. 9, No. 4; pp. 11.
Downey, Sarah A., “Smile, you're on Spokeo.com! Concerned? (here's what to do)”, https://www.abine.com/blog/2011/how-to-remove-yourself-from-spokeo/, as posted Jan. 13, 2011 in 7 pages.
EFunds Corporation, “Data & Decisioning: Debit Report” printed Apr. 1, 2007, http://www.efunds.com/web/industry-solutions/financial-services/frm-debit-report/htm in 1 page.
Egol, Len; “What's New in Database Marketing Software,” Direct, Aug. 1994, vol. 6, No. 8, pp. 39.
Elmasri et al., “Fundamentals of Database Systems, Third Edition (Excerpts)”, Jun. 2000, pp. 253, 261, 268-270, 278-280, 585, 595.
Energy Saving Trust™, “HEED Online User Manual (1.7)”, Jul. 24, 2008, pp. 18, www.energysavingtrust.org.uk, Jul. 24, 2008.
Equifax; “White Paper: Driving Safe Growth in a Fluid Economy”, http://www.equifax.com/assets/USCIS/efx_safeGrowth_wp.pdf, Oct. 2012 in 14 pages.
Equifax; “True In-Market Propensity Scores™”, http://www.equifax.com/assets/USCIS/efx-00174-11-13_efx_tips.pdf, Nov. 2013 in 1 page.
Ettorre, “Paul Kahn on Exceptional Marketing,” Management Review, vol. 83, No. 11, Nov. 1994, pp. 48-51.
“Equifax and FICO Serve Consumers”, Mortgage Servicing News, Mar. 2001, vol. 5, No. 3, p. 19.
Experian Announces PLUS Score; Experian Press Release dated Oct. 16, 2003; Experian Global Press Office.
Experian and AGS Select SRC to Deliver Complete Marketing Solutions; Partnership First to Marketplace with Census2000 Data. PR Newswire. New York: Mar. 21, 2001. p. 1.
“Experian Helps Verify the Identity of Patients and Provide Secure Enrollment to Healthcare Portals by Integrating with Major Electronic Medical Records Platform,” http://press.experian.com/United-States/Press-Release/experian-helps-verify-the-identity-of-patients-and-provide-secure-enrollment-to-healthcare.aspx?&p=1, Dec. 19, 2013, pp. 2.
“Experian Launches Portfolio Monitor—Owner Notices℠”, News Release, Feb. 2003, Costa Mesa, CA.
Experian—Scorex Announces New Credit Simulation Tool, PR Newswire, Costa Mesa, CA, Jun. 13, 2005.
Experian; “Case study: SC Telco Federal Credit Union”, http://annualcreditreport.experian.com/assets/consumer-information/case-studies/sc-telco-case-study.pdf, Jun. 2011 in 2 pages.
Experian; “In the Market Models℠”, http://www.experian.com/assets/consumer-information/product-sheets/in-the-market-models.pdf, Sep. 2013 in 2 pages.
Experian Information Solutions, Inc., Credit Trends: Access Credit Trending Information Instantly, http://kewaneecreditbureau.com/Credit.Trends.pdf, Aug. 2000, pp. 4.
Experian: Improve Outcomes Through Applied Customer Insight, Brochure, Nov. 2009, pp. 20.
Experian: Mosaic Geodemographic Lifestyle Segmentation on ConsumerView [Data Card], as printed from http://datacards.experian.com/market?p.=research/datacard_print&prin, Apr. 6, 2012, pp. 4.
Experian: Mosaic Public Sector 2009 Launch, 2009, pp. 164.
Experian: Mosaic United Kingdom, Brochure, Jun. 2009, pp. 24.
Experian: Mosaic UK—Optimise the Value of Your Customers and Locations, Now and in the Future, Brochure, 2010, pp. 24.
Experian: Mosaic UK—Unique Consumer Classification Based on In-Depth Demographic Data, as printed from http://www.experian.co.uk/business-strategies/mosaic-uk.html, Jul. 30, 2012, pp. 2.
Experian: Mosaic USA, Brochure, May 2009, pp. 14.
Experian: Mosaic USA—Consumer Lifestyle Segmentation [Data Card], Dec. 2009, pp. 2.
Experian: Public Sector, as printed form http://publicsector.experian.co.uk/Products/Mosaicpublicsector.aspx, 2012, pp. 2.
Fair Isaac Announces Integrated, End-to-End Collection and Recovery Solution, Business Wire, New York, Sep. 2, 2004, p. 1.
“Fair Isaac Introduces Falcon One System to Combat Fraud at Every Customer Interaction”, Business Wire, May 5, 2005, pp. 3.
“Fair Isaac Offers New Fraud Tool”, National Mortgage News & Source Media, Inc., Jun. 13, 2005, pp. 2.
Fanelli, Marc, “Building a Holistic Customer View”, MultiChannel Merchant, Jun. 26, 2006, pp. 2.
Fickenscher, Lisa, “Merchant American Express Seeks to Mine its Data on Cardholder Spending Patterns,” American Banker, vol. 162, Issue 56, Mar. 24, 1997, pp. 1-2.
“Fighting the New Face of Fraud”, FinanceTech, http://www.financetech.com/showArticle.jhtml?articleID=167100405, Aug. 2, 2005.
Findermind, “PeopleFinders Review”, as archived Jun. 1, 2012 in 4 pages. http://web.archive.org/web/20120601010134/http://www.findermind.com/tag/peoplefinders-review/.
“FinExtra, Basepoint Analytics Introduces Predictive Technology for Mortgage Fraud”, Oct. 5, 2005, pp. 3.
Fisher, Joseph, “Access to Fair Credit Reports: Current Practices and Proposed Legislation,” American Business Law Journal, Fall 1981, vol. 19, No. 3, p. 319.
Frontporch, “Ad Networks—Partner with Front Porch!,” www.frontporch.com printed Apr. 2008 in 2 pages.
Frontporch, “New Free Revenue for Broadband ISPs!”, http://www.frontporch.com/html/bt/FPBroadbandISPs.pdf printed May 28, 2008 in 2 pages.
“FTC Testifies: Identity Theft on the Rise”, FTC News Release, Mar. 7, 2000, pp. 3.
Gao-03-661, Best Practices: Improved Knowledge of DOD Service Contracts Could Reveal Significant Savings, Gao, Jun. 2003.
Gao et al., “Exploring Temporal Effects for Location Recommendation on Location-Based Social Networks”, RecSys'13, Oct. 12-16, 2013, Hong Kong, China, pp. 93-100.
Garcia-Molina et al., “Database Systems: The Complete Book”, Prentice Hall, Inc., Ch. 15, 2002, pp. 713-715.
“Geographic Aggregation Tool SAS Beta Version 4.1”, Environmental Health Surveillance Section, New York State Dept. in Health, Troy, NY, Mar. 24, 2015, pp. 10.
Gilje, Shelby, “Keeping Tabs on Businesses That Keep Tabs on Us”, NewsRoom, The Seattle Times, Section: Scene, Apr. 19, 1995, pp. 4.
Glenn, Brandon, “Multi-provider patient portals get big boost with ONC ruling”, Feb. 25, 2013, http://medicaleconomics.modernmedicine.com/medical-economics/news/user-defined-tags/meaningful-use/multi-provider-patient-portals-get-big-boost in 2 pages.
Gonul, et al., “Optimal Mailing of Catalogs: A New Methodology Using Estimable Structural Dynamic Programming Models”, 14 pages, Management Science, vol. 44, No. 9, Sep. 1998.
Hampton et al., “Mapping Health Data: Improved Privacy Protection With Donut Method Geomasking”, American Journal of Epidemiology, Sep. 3, 2010, vol. 172, No. 9, pp. 8.
Haughton et al., “Direct Marketing Modeling with CART and CHAID”, Journal of Direct Marketing, Fall 1997, vol. 11, No. 4, pp. 42-52.
Healow.com, Various screenshots from page titled “Health and Online Wellness,” https://healow.com/apps/jsp/webview/index.jsp printed Aug. 19, 2013 in 4 pages.
Healthspek.com, “How Good Are We?” http://healthspek.com/how-good-are-we/ printed Jan. 21, 2014 in 2 pages.
“Healthspek Users Can Now Import Their Doctors' Records into Their Personal Health Record,” PRWeb, Nashville, TN, Jan. 14, 2014, pp. 1 http://www.prweb.com/releases/2014/01/prweb11485346.htm.
HealthVault, “Share Health Information,” https://account.healthvault.com/sharerecord.aspx, printed Feb. 20, 2013 in 2 pages.
HealthVault, “What Can you do with HealthVault?” https://www.healthvault.com/us/en/overview, http://www.eweek.com/mobile/diversinet-launches-mobihealth-wallet-for-patient-data-sharing/, printed Feb. 20, 2013 in 2 pages.
Hill, Kerry, “Identity Theft Your Social Security Number Provides Avenue for Thieves”, NewsRoom, Wisconsin State Journal, Sep. 13, 1998, pp. 4.
Hojoki, http://hojoki.com printed Feb. 8, 2013 in 5 pages.
Horowitz, Brian T., “Diversinet Launches MobiHealth Wallet for Patient Data Sharing,” eWeek, Dec. 4, 2012, http://www.eweek.com/mobile/diversinet-launches-mobihealth-wallet-for-patient-data-sharing/.
“ID Thieves These Days Want Your Number, Not Your Name”, The Columbus Dispatch, Columbus, Ohio, http://www.dispatch.com/content/stories/business/2014/08/03/id-thieves-these-days-want-your-number-not-your-name.html, Aug. 3, 2014 in 2 pages.
Ideon, Credit-Card Registry that Bellyflopped this Year, Is Drawing some Bottom-Fishers, The Wall Street Journal, Aug. 21, 1995, pp. C2.
IFTTT, “About IFTTT,” http://ifttt.com/wtf printed Feb. 18, 2013 in 4 pages.
igiHealth.com, “Orbit® PHR: Personal Health Record (PHR),” http://www.igihealth.com/consumers/orbit_phr.html, printed Jan. 21, 2014 in 2 pages.
“Impac Funding Introduces Enhanced Website for Static Pool Tracking of MBS Transactions,” Waltham, MA; Webpage printed out from http://www.lewtan.com/press/1208044_Impac-Lewtan.htm on Mar. 20, 2008.
“Industry News, New Technology Identifies Mortgage Fraud: Basepoint Analytics Launches FraudMark”, Inman News, American Land Title Association, Oct. 5, 2005, pp. 1.
InsightsOne.com, “Healthcare,” http://insightsone.com/healthcare-predictive-analytics/ printed Mar. 6, 2014 in 5 pages.
Instant Access to Credit Reports Now Available Online with DMS' CreditBrowser-based system also Simplifies Credit Decisioning and Offers a Central Point of Control, Business Wire, Dallas, May 23, 2000, p. 0264.
“Intelligent Miner Applications Guide”, IBM Corp., Apr. 2, 1999, Chapters 4-7, pp. 33-132.
Internal Revenue Service Data Book 2000, Issued Aug. 2001, Revised May 2003.
Jacob et al., A Case Study of Checking Account Inquiries and Closures in Chicago, The Center for Financial Services Innovation, Nov. 2006.
“Japan's JAAI System Appraises Used Cars Over Internet”, Asia Pulse, Mar. 3, 2000, p. 1.
Jost, Allen; Neural Networks, Credit World, Mar./Apr. 1993, vol. 81, No. 4, pp. 26-33.
Jowit, Juliette, “Ever wondered how big your own carbon footprint might be?”, Nov. 4, 2007, pp. 4, http://www.guardian.co.uk/money/2007/nov/04/cash.carbonfootprints/print.
“JPMorgan Worldwide Securities Services to Acquire Paloma's Middle and Back Office Operations,” Webpage printed from http://www.jpmorgan.com on Apr. 1, 2009.
Karlan et al., “Observing Unobservables:Identifying Information Asymmetries with a Consumer Credit Field Experiment”, Jun. 17, 2006, pp. 58, http://aida.econ.yale.edu/karlan/papers/ObservingUnobservables.KarlanZinman.pdf.
Kessler, Josh “How to Reach the Growing ‘Thin File’ Market: Huge Immigration Market and Other Groups with Little or No Credit History May Be Creditworthy. There are Several Ways to Tap This Well of Business”, ABA Banking Journal, vol. 97, 2005.
King et al., Local and Regional CO2 Emissions Estimates for 2004 for the UK, AEA Energy & Environment, Report for Department for Environment, Food and Rural Affairs, Nov. 2006, London, UK, pp. 73.
Klein, et al., “A Constant-Utility Index of the Cost of Living”, The Review of Economic Studies, pp. 84-87, vol. XV-XVI, Kraus Reprint Corporation, New York, 1960.
Klein, et al., “An Econometric Model of the United States: 1929-1952”, North-Holland Publishing Company, Amsterdam, 1955, pp. 4-41.
Klein, Lawrence R., “The Keynesian Revolution”, New York, The MacMillan Company, 1947, pp. 56-189.
Kohavi, Ron, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection”, International Joint Conference on Artificial Intelligence, 1995,pp. 7.
Kwan et al., “Protection of Geoprivacy and Accuracy of Spatial Information: How Effective Are Geographical Masks?”, Carographica, Summer 2004, vol. 39, No. 2, pp. 15-27.
Lamons, Bob, “Be Smart: Offer Inquiry Qualification Services,” Marketing News, ABI/Inform Global, Nov. 6, 1995, vol. 29, No. 23, pp. 13.
Lee, W.A.; “Experian, on Deal Hunt, Nets Identity Theft Insurer”, American Banker: The Financial Services Daily, Jun. 4, 2003, New York, NY, 1 page.
Leskovec, Jure, “Social Media Analytics: Tracking, Modeling and Predicting the Flow of Information through Networks”, WWW 2011—Tutorial, Mar. 28-Apr. 1, 2011, Hyderabad, India, pp. 277-278.
LifeLock, http://web.archive.org/web/20110724011010/http://www.lifelock.com/? as archived Jul. 24, 2011 in 1 page.
LifeLock, “How LifeLock Works,” http://www.lifelock.com/lifelock-for-people printed Mar. 14, 2008 in 1 page.
LifeLock, “LifeLock Launches First ID Theft Prevention Program for the Protection of Children,” Press Release, Oct. 14, 2005, http://www.lifelock.com/about-us/press-room/2005-press-releases/lifelock-protection-for-children.
LifeLock, Various Pages, www.lifelock.com/, 2007.
Longo, Tracey, “Managing Money: Your Family Finances”, Kiplinger's Personal Finance Magazine, Jun. 1, 1995, vol. 49, No. 6, pp. 4.
Lovelace, Robin, “IPFinR: An Implementation of Spatial Microsimulation in R”, RL's Powerstar, Jun. 12, 2013, pp. 9, https://robinlovelace.wordpress.com/2013/06/12/ipfinr-an-implementation-of-spatial-microsimulation-in-r/.
Maciejewski et al., “Understanding Syndromic Hotspots—A Visual Analytics Approach”, Conference Paper, IEEE Symposium on Visual Analytics Science and Technology, Oct. 21-23, 2017, pp. 35-42.
McManus et al.; “Street Wiser,” American Demographics; ABI/Inform Global; Jul./Aug. 2003; 25, 6; pp. 32-35.
McNamara, Paul, “Start-up's pitch: The Envelope, please,” Network World, Apr. 28, 1997, vol. 14, No. 17, p. 33.
MergePower, Inc., “Attribute Pro”, http://web.archive.org/web/20060520135324/http://www.mergepower.com/attribute_pro.html, dated May 20, 2006 in 1 page.
MergePower, Inc., “Attribute Pro”, http://web.archive.org/web/20080708204709/http:/www.mergepower.com/APInfo.aspx, dated Jul. 8, 2008 in 2 pages.
MergePower, Inc., “Attribute Pro®—Credit Bureau Attributes”, http://web.archive.org/web/20120307000028/http:/www.mergepower.com/APInfo.aspx, dated Mar. 7, 2012 in 2 pages.
MergePower, Inc., “MergePower, Inc”, http://web.archive.org/web/20060513003556/http:/www.mergepower.com/, dated May 13, 2006 in 1 page.
MergePower, Inc., “MergePower, Inc”, http://web.archive.org/web/20070208144622/http:/www.mergepower.com/, dated Feb. 8, 2007 in 1 page.
MergePower, Inc., “MergePower, Inc”, http://web.archive.org/web/20070914144019/http:/www.mergepower.com/, dated Sep. 14, 2007 in 1 page.
MergePower, Inc., “MergePower, Inc”, http://web.archive.org/web/20110828073054/http:/www.mergepower.com/, dated Aug. 28, 2011 in 2 pages.
MERit Credit Engine™, Diagram, http://creditengine.net/diagram.htm, copyright 1997, pp. 1.
Merugu, et al.; “A New Multi-View Regression Method with an Application to Customer Wallet Estimation,” The 12th International Conference on Knowledge Discovery and Data Mining, Aug. 20-23, 2006, Philadelphia, PA.
Miller, Joe, “NADA Used-Car Prices Go Online”, Automotive News, Jun. 14, 1999, p. 36.
Mint.com, http://www.mint.com/how-it-works/ printed Feb. 5, 2013 in 2 pages.
“Mosaic” (geodemography), available from http://en.wikipedia.org/wiki/Mosaic_(geodemography), as last modified Jul. 13, 2012. pp. 4.
Mover, “One API for the Cloud,” http://mover.io printed Feb. 6, 2013 in 3 pages.
Muus, et al., “A Decision Theoretic Framework for Profit Maximization in Direct Marketing”, Sep. 1996, pp. 20.
MyReceipts, http://www.myreceipts.com/, printed Oct. 16, 2012 in 1 page.
MyReceipts—How it Works, http://www.myreceipts.com/howItWorks.do, printed Oct. 16, 2012 in 1 page.
NebuAd, “Venture Capital: What's New—The Latest on Technology Deals From Dow Jones VentureWire”, Press Release, http://www.nebuad.com/company/media_coverage/media_10_22_07.php, Oct. 22, 2007, pp. 2.
“New FICO score extends lenders' reach to credit-underserved millions”, Viewpoints: News, Ideas and Solutions from Fair Isaac, Sep./Oct. 2004 as downloaded from http://www.fairisaac.com/NR/exeres/F178D009-B47A-444F-BD11-8B4D7D8B3532,frame . . . in 6 pages.
“New Privista Product Provides Early Warning System to Combat Identity Theft”, PR Newswire, Oct. 24, 2000, PR Newswire Association, Inc., New York.
Occasional CF Newsletter; http://www.halhelms.com/index.cfm?fuseaction=newsletters.oct1999; Oct. 1999.
Office of Integrated Analysis and Forecasting, DOE/EIA-M065(2004), Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, EIA, Washington DC, Feb. 2004.
Organizing Maniac's Blog—Online Receipts Provided by MyQuickReceipts.com, http://organizingmaniacs.wordpress.com/2011/01/12/online-receipts-provided-by-myquickreceipts.com/ dated Jan. 12, 2011 printed Oct. 16, 2012 in 3 pages.
Otixo, “Your Dashboard for the Cloud,” http://Otixo.com/product printed Feb. 6, 2013 in 3 pages.
Otter, et al., “Direct Mail Selection by Joint Modeling of the Probability and Quantity of Response”, Jun. 1997, pp. 14.
Padgett et al., “A Comparison of Carbon Calculators”, Environmental Impact Assessment Review 28, pp. 106-115, Jun. 7, 2007.
Pagano, et al., “Information Sharing in Credit Markets,” Dec. 1993, The Journal of Finance, vol. 48, No. 5, pp. 1693-1718.
“Parse”, Definition from PC Magazine Encyclopedia, http://www/pcmag.com/encyclopedia_term_0,2542,t=parse&i=48862,00.asp as downloaded Mar. 5, 2012.
Partnoy, Frank, Rethinking Regulation of Credit Rating Agencies: An Institutional Investor Perspective, Council of Institutional Investors, Apr. 2009, pp. 21.
Perlich et al., “High Quantile Modeling for Customer Wallet Estimation with Other Applications,” The 13th International Conference on Knowledge Discovery and Data Mining, Aug. 12-15, 2007, San Jose, CA.
Perry et al., “Integrating Waste and Renewable Energy to Reduce the Carbon Footprint of Locally Integrated Energy Sectors”, Energy 33, Feb. 15, 2008, pp. 1489-1497.
Phorm, “BT PLC TalkTalk and Virgin Media Inc. confirm exclusive agreements with Phorm”, Press Release, http://www.phorm.com/about/launch_agreement.php, Feb. 14, 2008, pp. 2.
Phorm, “The Open Internet Exchange, ‘Introducing the OIX’”, http://www.phorm.com/oix/ printed May 29, 2008 in 1 page.
Pipes, http://pipes.yahoo.com/pipes printed Feb. 18, 2013 in 1 page.
Planet Receipt—Home, http://www.planetreceipt.com/home printed Oct. 16, 2012 in 1 page.
Planet Receipt—Solutions & Features, http://www.planetreceipt.com/solutions-features printed Oct. 16, 2012 in 2 pages.
Planwise, http://planwise.com printed Feb. 8, 2013 in 5 pages.
Polatoglu et al., “Theory and Methodology, Probability Distributions of Cost, Revenue and Profit over a Warranty Cycle”, European Journal of Operational Research, Jul. 1998, vol. 108, Issue 1, pp. 170-183.
“PostX to Present at Internet Showcase”, PR Newswire, Apr. 28, 1997, pp. 2.
PostX, “PostX® Envelope and ActiveView”, http://web.archive.org/web/19970714203719/http://www.postx.com/priducts_fm.html, Jul. 14, 1997 (retrieved Nov. 7, 2013) in 2 pages.
Powerforms: Declarative Client-Side for Field Validation, ISSN 1386-145x, Dec. 2000.
“PremierGuide Announces Release 3.0 of Local Search Platform”, Business Wire, Mar. 4, 2004, Palo Alto, CA, p. 5574.
Primadesk, http://primadesk.com printed Feb. 8, 2013 in 1 page.
PrivacyGuard, http://web.archive.org/web/20110728114049/http://www.privacyguard.com/ as archived Jul. 28, 2011 in 1 page.
RapUP, Attribute Management & Report Systems:Absolute Advantage!, Magnum Communications Brochure, Copyright 2004, pp. 5.
Rodgers, Zachary, “ISPs Collect User Data for Behavioral Ad Targeting”, ClickZ, www.clickz.com/showPage.html?page=clickz, Jan. 3, 2008, pp. 3.
Rosset et al., “Wallet Estimation Models”, IBM TJ Watson Research Center, 2005, Yorktown Heights, NY, pp. 12.
Sakia, R.M., “The Box-Cox Transformation Technique: a Review”, The Statistician, 41, 1992, pp. 169-178.
SalesLogix.net, SalesLogix Sales Tour, Apr. 11, 2001, http:///www.saleslogix.com, pp. 19.
Saunders, A., “Data Goldmine,” Management Today, London: Mar. 1, 2004, 6 pages.
Sawyers, Arlena, “NADA to Offer Residual Guide”, Automotive News, May 22, 2000, p. 1.
Schmittlein et al., “Customer Base Analysis: An Industrial Purchase Process Application”, Marketing Science, vol. 13, No. 1, Winter 1994, pp. 41-67.
“ScoreNet® Network”, FairIsaac, web.archive.org/web/20071009014242/http://www.fairisaac.com/NR/rdonlyres/AC4C2F79-4160-4E44-B0CB-5C899004879A/0/ScoreNetnetworkBR.pdf, May 2006, pp. 6.
ServiceObjects, “DOTS Web Services—Product Directory”, http://www.serviceobjects.com/products/directory_of_web_services.asp printed Aug. 17, 2006 in 4 pages.
ShoeBoxed, https://www.shoeboxed.com/sbx-home/ printed Oct. 16, 2012 in 4 pages.
Shvachko et al., “The Hadoop Distributed File System”, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), May 3, 2010, pp. 1-10.
Singletary, Michelle, “Score One for Open Credit Ratings”, The Washington Post, Washington DC, Jun. 18, 2000, 3 pages.
Smith, Richard M., “The Web Bug FAQ”, Nov. 11, 1999, Version 1.0, pp. 4.
Smith, Wendell R., “Product Differentiation and Market Segmentation as Alternative Marketing Strategies”, The Journal of Marketing, The American Marketing Association, Brattleboro, Vermont, Jul. 1956, vol. XXI, pp. 3-8.
“STAGG Variables Sum Up Credit Attributes for Automated Decisions”, PRWeb, May 11, 2011, pp. 2. http://www.prweb.com/releases/2011/5/prweb8404324.htm.
Stanton, T.H., “Credit Scoring and Loan Scoring as Tools for Improved Management of Federal Credit Programs”, Financier, Philadelphia, Summer 1999, vol. 6, 36 pages.
Stein, Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation, Moody's KMV, Revised Jun. 13, 2002, Technical Report #020305; New York.
Stone, “Linear Expenditure Systems and Demand Analysis: An Application to the Pattern of British Demand”, The Economic Journal: The Journal of the Royal Economic Society, Sep. 1954, pp. 511-527, vol. LXIV, Macmillan & Co., London.
Storage Made Easy(SME), http://storagemadeeasy.com printed Feb. 6, 2013 in 1 page.
Sumner, Anthony, “Tackling the Issue of Bust-Out Fraud”, Retail Banker International, Jul. 24, 2007, pp. 4.
Sumner, Anthony, “Tackling the Issue of Bust-Out Fraud”, Experian: Decision Analytics, Dec. 18, 2007, pp. 24.
Sumner, Anthony, “Tackling the Issue of Bust-Out Fraud”, e-News, Experian: Decision Analytics, pp. 4, [Originally Published in Retail Banker International Magazine Jul. 24, 2007].
Sweat, Jeff; “Know Your Customers,” Information Week, Nov. 30, 1998, pp. 20.
Tao, Lixin, “Shifting Paradigms with the Application Service Provider Model”; Concordia University, IEEE, Oct. 2001, Canada.
Tennant, Don, “How a Health Insurance Provider Uses Big Data to Predict Patient Needs,” http://www.itbusinessedge.com/blogs/from-under-the-rug/how-a-health-insurance-provider-uses-big-data-to-predict-patient-needs.html, printed Mar. 6, 2014 in 2 pages.
Thoemmes, Felix, “Propensity Score Matching in SPSS”, Center for Educational Science and Psychology, University of Tübingen, Jan. 2012.
Truston, “Checking if your Child is an ID Theft Victim can be Stressful,” as posted by Michelle Pastor on Jan. 22, 2007 at http://www.mytruston.com/blog/credit/checking_if_your_child_is_an_id_theft_vi.html.
Van Collie, Shimon, “The Road to Better Credit-Card Marketing,” Bank Technology News, Sep. 1995, pp. 4.
Verstraeten, Geert, Ph.D.; Issues in predictive modeling of individual customer behavior: Applications in targeted marketing and consumer credit scoring; Universiteit Gent (Belgium) 2005.
“WashingtonPost.com and Cars.com Launch Comprehensive Automotive Web Site for the Washington Area”, PR Newswire, Oct. 22, 1998. pp. 2.
Watts, Craig, “Consumers Now Can Know What Loan Rate Offers to Expect Based on Their FICO Credit Score at MyFICO.com,” San Rafael, CA, Mar. 6, 2002, pp. 2, http://www.myfico.com/PressRoom/PressReleases/2002_03_06.aspx.
Watts, Craig, “Fair, Isaac and Equifax Give Consumers New Score Power Tools Offering Greater Insights for Managing Their Credit Health,” May 21, 2002, pp. 3, http://www.myfico.com/PressRoom/PressReleases/2002_05_21.aspx.
Webber, Richard, “The Relative Power of Geodemographics vis a vis Person and Household Level Demographic Variables as Discriminators of Consumer Behavior,” CASA:Working Paper Series, http://www.casa.ucl.ac.uk/working_papers/paper84.pdf, Oct. 2004, pp. 17.
Webpage printed out from http://www.jpmorgan.com/cm/ContentServer?c=TS_Content&pagename=jpmorgan%2Fts%2FTS_Content%2FGeneral&cid=1139403950394 on Mar. 20, 2008, Feb. 13, 2006, New York, NY.
White, Ron, “How Computers Work”, Millennium Edition, Que Corporation, Indianapolis, IN, Sep. 1999, pp. 284.
Wiedmann, et al., “Report No. 2: The use of input-output analysis in REAP to allocate Ecological Footprints and material flows to final consumption categories”, Resources and Energy Analysis Programme, Stockholm Environment Institute—York, Feb. 2005, York, UK, pp. 33.
Wilson, Andrea, “Escaping the Alcatraz of Collections and Charge-Offs”, http://www.transactionworld.net/articles/2003/october/riskMgmt1.asp, Oct. 2003.
Working, Holbrook, “Statistical Laws of Family Expenditure”, Journal of the American Statistical Association, pp. 43-56, vol. 38, American Statistical Association, Washington, D.C., Mar. 1943.
Wyatt, Craig, “Usage Models just for Merchants,” Credit Card Management, Sep. 1995, vol. 8, No. 6, pp. 4.
Yuan et al., “Time-Aware Point-of-Interest Recommendation”, SIGIR'13, Jul. 28-Aug. 1, 2013, Dublin, Ireland, pp. 363-372.
Yücesan et al., “Distributed Web-Based Simulation Experiments for Optimization”, Simulation Practice and Theory 9, 2001, pp. 73-90.
Zandbergen, Paul A., “Ensuring Confidentiality of Geocoded Health Data: Assessing Geographic Masking Strategies for Individual-Level Data”, Review Article, Hindawi Publishing Corporation, Advances in Medicine, VI. 2014, pp. 14.
Zapier, “Integrate Your Web Services,” http://www.Zapier.com printed Feb. 18, 2013 in 3 pages.
Zimmerman et al., “A Web-Based Platform for Experimental Investigation of Electric Power Auctions,” Decision Support Systems, 1999, vol. 24, pp. 193-205.
Declaration of Paul Clark, DSc. for Inter Partes Review of U.S. Pat. No. 8,504,628 (Symantec Corporation, Petitioner), dated Jan. 15, 2014 in 76 pages.
Exhibit D to Joint Claim Construction Statement, filed in Epsilon Data Management, LLC, No. 2:12-cv-00511-JRG (E.D. Tex.) (combined for pretrial purposes with RPost Holdings. Inc., et al. v. Experian Marketing Solutions. Inc., No. 2:12-cv-00513-JRG (E.D. Tex.)) Filed Jan. 14, 2014 in 9 pages.
First Amended Complaint in Civil Action No. 2:12-cv-511-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Constant Contact, Inc.; et al.) filed Feb. 11, 2013 in 14 pages.
First Amended Complaint in Civil Action No. 2:12-cv-511-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Epsilon Data Management, LLC.) filed Sep. 13, 2013 in 9 pages.
First Amended Complaint in Civil Action No. 2:12-cv-513-JRG (Rpost Holdings, Inc. and Rpost Communications Limited V. Experian Marketing Solutions, Inc.) filed Aug. 30, 2013 in 9 pages.
Petition for Covered Business Method Patent Review in U.S. Pat. No. 8,161,104 (Experian Marketing Solutions, Inc., Epsilon Data Management, LLC, and Constant Contact, Inc., v. Rpost Communications Limited) dated Jan. 29, 2014 in 90 pages.
Source Code Appendix attached to U.S. Appl. No. 08/845,722 by Venkatraman et al., Exhibit A, Part 1 & 2, pp. 32.
Official Communication in Canadian Patent Application No. 2,381,349, dated Jul. 31, 2014.
International Search Report and Written Opinion for Application No. PCT/US2007/06070, dated Nov. 10, 2008.
International Search Report and Written Opinion for Application No. PCT/US2008/064594, dated Oct. 30, 2008.
International Preliminary Report and Written Opinion in PCT/US2008/064594, dated Dec. 10, 2009.
International Search Report and Written Opinion for Application No. PCT/US09/37565, dated May 12, 2009.
International Search Report and Written Opinion for Application No. PCT/US2013/052342, dated Nov. 21, 2013.
International Preliminary Report on Patentability for Application No. PCT/US2013/052342, dated Feb. 5, 2015.
International Search Report and Written Opinion for Application No. PCT/US2017/048265, dated Dec. 5, 2017.
International Search Report and Written Opinion for Application No. PCT/US2017/068340, dated Feb. 26, 2018.
Provisional Applications (1)
Number Date Country
62094819 Dec 2014 US
Continuations (1)
Number Date Country
Parent 14975654 Dec 2015 US
Child 16357106 US