This background description is provided for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, material described in this section is neither expressly nor impliedly admitted to be prior art to the present disclosure or the appended claims.
Computers and applications assign a default input mechanism to an action response as a way to interpret user commands. For example, pressing a space bar on a keyboard results in a word processing application interpreting the input as a command to enter a space into a document. At times, a user may desire to override the default input mechanism with a customized interaction instead. For instance, the user may desire to call for help, but is unable to reach a mobile phone to enter the predetermined input associated with making a call, or has a disability that prevents them from performing the actions necessary to enter the input. Thus, predetermined inputs for a computing device may constrain the user and be unsuited to their needs.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter.
A user can train a radar-based gesture detection system to dynamically learn user-customizable input gestures. In some cases, the user can dynamically perform a gesture unknown to the radar-based gesture detection system without touching or holding an input device coupled to the radar-based gesture detection system. In turn, the radar-based gesture detection system can learn one or more identifying characteristics about the gesture, and generate a machine-learning model that can be used to identify the gesture at a later point in time.
Various aspects of user-customizable input gestures are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system performed by a user in the radar field. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing radar field reflecting off the new gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the new gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the new gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.
In the following discussion, an example environment is first described in which various embodiments can be employed. Following this is a discussion of example RF signal propagation properties and how they can be employed in accordance with one or more embodiments. After this, dynamic learning of user-customizable input gestures is described. Finally, an example device is described in which various embodiments of machine-learning of user-customizable gestures can be employed.
Radar-based gesture detection component 104 represents functionality that wirelessly captures characteristics of a target object, illustrated here as hand 106. In this example, radar-based gesture detection component 104 is a hardware component of computing device 102. In some cases, radar-based gesture detection component 104 not only captures characteristics about hand 106, but can additionally identify a specific gesture performed by hand 106 from other gestures. Any suitable type of characteristic or gesture can be captured or identified, such as an associated size of the hand, a directional movement of the hand, a micro-gesture performed by all or a portion of the hand (e.g., a single-tap gesture, a double-tap gesture, a left-swipe, a forward-swipe, a right-swipe, a finger making a shape, etc.), and so forth. The term micro-gesture is used to signify a gesture that can be identified from other gestures based on differences in movement using a scale on the order of millimeters to sub-millimeters. Alternately or additionally, radar-based gesture detection component 104 can be configured to identify gestures on a larger scale than a micro-gesture (e.g., a macro-gesture that is identified by differences with a coarser resolution than a micro-gesture, such as differences measured in centimeters or meters).
Hand 106 represents a target object that radar-based gesture detection component 104 is in process of detecting. Here, hand 106 resides in free-space. Being in free-space, hand 106 has no physical devices attached to it that couple to, or communicate with, computing device 102 and/or radar-based gesture detection component 104. While this example is described in the context of detecting hand 106, it is to be appreciated that radar-based gesture detection component 104 can be used to capture characteristics of any other suitable type of target object, such as a head, a component of the head (eyes, tongue, ear, etc.), a finger, and so forth.
Signals 108 generally represent one or more RF signals transmitted and received by radar-based gesture detection component 104. In some embodiments, radar-based gesture detection component 104 transmits a radar signal using a single antenna and is generally directed towards hand 106. In other embodiments, multiple radar signals are transmitted, each on a respective antenna. As a transmitted signal reaches hand 106, at least a portion reflects back to radar-based gesture detection component 104 and is processed, as further described below. Signals 108 can have any suitable combination of energy level, carrier frequency, burst periodicity, pulse width, modulation type, waveform, phase relationship, and so forth. In some cases, some or all of the respective signals transmitted in signals 108 differs from one another to create a specific diversity scheme, such as a time diversity scheme that transmits multiple versions of a same signal at different points in time, a frequency diversity scheme that transmits signals using several different frequency channels, a space diversity scheme that transmits signals over different propagation paths, etc.
Computing device 102 also includes gesture training application 110. Among other things, gesture training application 110 represents functionality that configures radar-based detection component 104 to detect and learn gestures that are new or unknown to the radar-based detection component. For instance, a user can access gesture training application 110 to review a help guide that includes instructions on how to train radar-based gesture detection component 104 with user-customized gestures. Gesture training application 110 also controls the gesture-learning process by hiding from the user any configuration parameters used by radar-based detection component 104 to configure and initiate transmission of signals 108 for gesture-learning purposes, as well as any processing parameters or algorithms.
Having generally described an environment in which wireless hand gesture detection may be implemented, now consider
Computing device 102 includes processor(s) 202 and computer-readable media 204. Gesture training application 110 from
Gesture sensor APIs 206 provide programming access into various routines and functionality incorporated into radar-based gesture detection component 104. For instance, radar-based gesture detection component 104 can have a programmatic interface (socket connection, shared memory, read/write registers, hardware interrupts, etc.) that can be used in concert with gesture sensor APIs 206 to allow applications external to radar-based gesture detection component 104 a way to communicate or configure the component. In some embodiments, gesture sensor APIs 206 provide high-level access into radar-based gesture detection component 104 in order to abstract implementation details and/or hardware access from a calling program, request notifications related to identified events, query for results, and so forth. Gesture sensor APIs 206 can also provide low-level access to radar-based gesture detection component 104, where a calling program can control direct or partial hardware configuration of radar-based gesture detection component 104. In some cases, gesture sensor APIs 206 provide programmatic access to input configuration parameters that configure transmit signals (e.g., signals 108 of
Radar-based gesture detection component 104 represents functionality that wirelessly detects gestures performed by a hand. Radar-based gesture detection component 104 can be implemented as a chip embedded within computing device 102, such as a System-on-Chip (SoC). However, it is to be appreciated that gesture sensor component can be implemented in any other suitable manner, such as one or more Integrated Circuits (ICs), as a processor with embedded processor instructions or configured to access processor instructions stored in memory, as hardware with embedded firmware, a printed circuit board with various hardware components, or any combination thereof. Here, radar-based gesture detection component 104 includes radar-emitting element 208, antenna(s) 210, digital signal processing component 212, machine-learning component 214, and gesture library 216, which can be used in concert to wirelessly detect hand gestures using radar techniques.
Generally, radar-emitting element 208 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand.
A radar field can be a small size, such as 0 or 1 millimeters to 1. 5 meters, or an intermediate size, such as 1 to 30 meters. It is to be appreciated that these sizes are merely for discussion purposes, and that any other suitable range can be used. When the radar field has an intermediate size, radar-based gesture detection component 104 is configured to receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements. In other cases, the radar field can be configured to enable radar-based gesture detection component 104 to detect smaller and more-precise gestures, such as micro-gestures. Example intermediate-sized radar fields include those in which a user makes gestures to control a television from a couch, change a song or volume from a stereo across a room, turn off an oven or oven timer (a near field would also be useful here), turn lights on or off in a room, and so forth. Radar-emitting element 208 can be configured to emit continuously modulated radiation, ultra-wideband radiation, or submillimeter-frequency radiation.
Antenna(s) 210 transmit and receive RF signals. In some cases, radar-emitting element 208 couples with antenna(s) 210 to transmit a radar field. As one skilled in the art will appreciate, this is achieved by converting electrical signals into electromagnetic waves for transmission, and vice versa for reception. Radar-based gesture detection component 104 can include any suitable number of antennas in any suitable configuration. For instance, any of the antennas can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a monopole antenna, and so forth. In some embodiments, antenna(s) 210 are constructed on-chip (e.g., as part of an SoC), while in other embodiments, antenna(s) 210 are separate components, metal, hardware, etc. that attach to, or are included within, radar-based gesture detection component 104. An antenna can be single-purpose (e.g., a first antenna directed towards transmitting signals, a second antenna directed towards receiving signals, etc.), or multi-purpose (e.g., an antenna is directed towards transmitting and receiving signals). Thus, some embodiments utilize varying combinations of antennas, such as an embodiment that utilizes two single-purpose antennas directed towards transmission in combination with four single-purpose antennas directed towards reception. The placement, size, and/or shape of antenna(s) 210 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about a micro-gesture performed by the hand. In some cases, the antennas can be physically separated from one another by a distance that allows radar-based gesture detection component 104 to collectively transmit and receive signals directed to a target object over different channels, different radio frequencies, and different distances. In some cases, antenna(s) 210 are spatially distributed to support triangulation techniques, while in others the antennas are collocated to support beamforming techniques. While not illustrated, each antenna can correspond to a respective transceiver path that physically routes and manages the outgoing signals for transmission and the incoming signals for capture and analysis.
Digital signal processing component 212 generally represents digitally capturing and processing a signal. For instance, digital signal processing component 212 samples analog RF signals received by antenna(s) 210 to generate digital samples that represents the RF signals, and then processes these samples to extract information about the target object. Alternately or additionally, digital signal processing component 212 controls the configuration of signals generated and transmitted by radar-emitting element 208 and/or antenna(s) 210, such as configuring a plurality of signals to form a specific diversity scheme like a beamforming diversity scheme. In some cases, digital signal processing component 212 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level, etc.), such as through gesture sensor APIs 206. In turn, digital signal processing component 212 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of digital signal processing component 212 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via gesture sensor APIs 206. Thus, digital signal processing component 212 can be programmed or configured via gesture sensor APIs 206 (and a corresponding programmatic interface of radar-based gesture detection component 104) to dynamically select algorithms and/or dynamically reconfigure. Digital signal processing component 212 can be implemented in hardware, software, firmware, or any combination thereof.
Among other things, machine-learning component 214 receives information processed or extracted by digital signal processing component 212, and uses that information to classify or recognize various aspects of the target object. In some cases, machine-learning component 214 applies one or more algorithms to probabilistically determine which gesture has occurred given an input signal and previously learned gesture features. As in the case of digital signal processing component 212, machine-learning component 214 can include a library of multiple machine-learning algorithms, such as a Random Forest algorithm, deep learning algorithms (e.g., artificial neural network algorithms, convolutional neural net algorithms, etc.), clustering algorithms, Bayesian algorithms, and so forth. Machine-learning component 214 can be trained on how to identify various gestures using input data that consists of example gesture(s) to learn. In turn, machine-learning component 214 uses the input data to learn what features can be attributed to a specific gesture. These features are then used to identify when the specific gesture occurs. In some embodiments, gesture sensor APIs 206 can be used to configure machine-learning component 214 and/or its corresponding algorithms. Thus, machine-learning component 214 can be configured via gesture sensor APIs 206 (and a corresponding programmatic interface of radar-based gesture detection component 104) to dynamically select algorithms and/or dynamically reconfigure.
Gesture library 216 represents data used by digital signal processing component 212 and/or machine-learning component 214 to identify a target object and/or detect known gestures performed by the target object. For instance, gesture library 216 can store signal characteristics, characteristics about a target object that are discernable from a signal, or a customized machine-learning model that can be used to identify a unique in-the-air gesture, a user identity, user presence, and so forth. In addition, certain data stored in gesture library 216 may be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Having described computing device 102 in accordance with one or more embodiments, now consider a discussion of RF signal propagation in radar-based detection devices in accordance with one or more embodiments.
As technology advances, users have an expectation that new devices will provide additional freedoms and flexibility over past devices. One such example is the inclusion of wireless capabilities in a device. Consider the case of a wireless mouse input device. A wireless mouse input device receives input from a user in the format of button clicks and movement in position, and wirelessly transmits this information to a corresponding computing device. The wireless nature obviates the need to have a wired connection between the wireless mouse input device and the computing device, which gives more freedom to the user with the mobility and placement of the mouse. However, the user still physically interacts with the wireless mouse input device as a way to enter input into the computing device. Accordingly, if the wireless mouse input device gets lost or is misplaced, the user is unable to enter input with that mechanism. Thus, removing the need for a peripheral device as an input mechanism gives additional freedom to the user. One such example is performing input to a computing device via a hand gesture.
Hand gestures provide a user with a simple and readily available mechanism to input commands to a computing device. However, detecting hand gestures can pose certain problems. For example, attaching a movement sensing device to a hand does not remove a user's dependency upon a peripheral device. Instead, it is a solution that trades one input peripheral for another. As an alternative, cameras can capture images, which can then be compared and analyzed to identify the hand gestures. However, this option may not yield a fine enough resolution to detect micro-gestures. An alternate solution involves usage of radar systems to transmit a radar field to a target object, and determine information about that target based upon an analysis of the reflected signal.
Consider
Environment 300a includes source device 302 and object 304. Source device 302 includes antenna 306, which generally represents functionality configured to transmit and receive electromagnetic waves in the form of an RF signal. It is to be appreciated that antenna 306 can be coupled to a feed source, such as a radar-emitting element, to achieve transmission of a signal. In this example, source device 302 transmits a series of RF pulses, illustrated here as RF pulse 308a, RF pulse 308b, and RF pulse 308c. As indicated by their ordering and distance from source device 302, RF pulse 308a is transmitted first in time, followed by RF pulse 308b, and then RF pulse 308c. For discussion purposes, these RF pulses have the same pulse width, power level, and transmission periodicity between pulses, but any other suitable type of signal with alternate configurations can be transmitted without departing from the scope of the claimed subject matter.
Generally speaking, electromagnetic waves can be characterized by the frequency or wavelength of their corresponding oscillations. Being a form of electromagnetic radiation, RF signals adhere to various wave and particle properties, such as reflection. When an RF signal reaches an object, it will undergo some form of transition. Specifically, there will be some reflection off the object. Environment 300b illustrates the reflection of RF pulses 308a-308c reflecting off of object 304, where RF pulse 310a corresponds to a reflection originating from RF pulse 308a reflecting off of object 304, RF pulse 310b corresponds to a reflection originating from RF pulse 308b, and so forth. In this simple case, source device 302 and object 304 are stationary, and RF pulses 308a-308c are transmitted via a single antenna (antenna 306) over a same RF channel, and are transmitted directly towards object 304 with a perpendicular impact angle. Similarly, RF pulses 310a-310c are shown as reflecting directly back to source device 302, rather than with some angular deviation. However, as one skilled in the art will appreciate, these signals can alternately be transmitted or reflected with variations in their transmission and reflection directions based upon the configuration of source device 302, object 304, transmission parameters, variations in real-world factors, and so forth. Upon receiving and capturing RF pulses 310a-310c, source device 302 can then analyze the pulses, either individually or in combination, to identify characteristics related to object 304. For example, source device 302 can analyze all of the received RF pulses to obtain temporal information and/or spatial information about object 304. Accordingly, source device 302 can use knowledge about a transmission signal's configuration (such as pulse widths, spacing between pulses, pulse power levels, phase relationships, and so forth), and further analyze a reflected RF pulse to identify various characteristics about object 304, such as size, shape, movement speed, movement direction, surface smoothness, material composition, and so forth.
Now consider
When RF signals 408a-408d reach hand 404, they generate reflected RF signals 410a-410d. Similar to the discussion of
As in the case of
Now consider
Desktop computer 506 includes, or is associated with, radar-based gesture detection system 502. These devices work together to improve user interaction with desktop computer 506. Assume, for example, that desktop computer 506 includes a touch screen 514 through which display and user interaction can be performed. This touch screen 514 can present some challenges to users, such as needing a person to sit in a particular orientation, such as upright and forward, to be able to touch the screen. Further, the size for selecting controls through touch screen 514 can make interaction difficult and time-consuming for some users. Consider, however, radar-based gesture detection system 502, which provides near radar field 510 enabling a user's hands to interact with desktop computer 506, such as with small or large, simple or complex gestures, including those with one or two hands, and in three dimensions. As is readily apparent, a large volume through which a user may make selections can be substantially easier and provide a better experience over a flat surface, such as that of touch screen 514.
Similarly, consider radar-based gesture detection system 504, which provides intermediate radar field 512. Providing a radar-field enables a user to interact with television 508 from a distance and through various gestures, ranging from hand gestures, to arm gestures, to full-body gestures. By so doing, user selections can be made simpler and easier than a flat surface (e.g., touch screen 514), a remote control (e.g., a gaming or television remote), and other conventional control mechanisms.
Radar-based gesture recognition systems can interact with applications or an operating system of computing devices, or remotely through a communication network by transmitting input responsive to recognizing gestures. Gestures can be mapped to various applications and devices, thereby enabling control of many devices and applications. Many complex and unique gestures can be recognized by radar-based gesture recognition systems, thereby permitting precise and/or single-gesture control, even for multiple applications. Radar-based gesture recognition systems, whether integrated with a computing device, having computing capabilities, or having few computing abilities, can each be used to interact with various devices and applications.
The radar field can also include a surface applied to human tissue. This is illustrated at
With respect to human-tissue reflection, reflecting radar fields can process these fields to determine identifying indicia based on the human-tissue reflection, and confirm that the identifying indicia matches recorded identifying indicia for a person, such as authentication for a person permitted to control a corresponding computing device. These identifying indicia can include various biometric identifiers, such as a size, shape, ratio of sizes, cartilage structure, and bone structure for the person or a portion of the person, such as the person's hand. These identify indicia may also be associated with a device worn by the person permitted to control the mobile computing device, such as device having a unique or difficult-to-copy reflection (e.g., a wedding ring of 14 carat gold and three diamonds, which reflects radar in a particular manner). In addition, radar-based gesture detection systems can be configured so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Having described general principles of RF signals which can be used in radar-based detection devices, now consider a discussion of user-customizable input gestures that can be employed in accordance with one or more embodiments.
As discussed herein, a radar-based gesture detection system provides a user with a way to enter input into a computing device without physically touching the computing device, or an input mechanism coupled to the computing device. As the user performs an in-the-air gesture, the radar-based gesture detection system uses reflected signals to extract characteristics about the gesture that are then used to identify and recognize the gesture. In turn, this gesture can generally be mapped to a known input and/or have additional input context associated with an application. For instance, the radar-based gesture detection system can consult a gesture library, such as gesture library 216 of
Various embodiments dynamically learn user-customizable input gestures. Instead of using known gestures, or creating new combinations of known gestures, to replace a default gesture associated with invoking an action, a radar-based gesture detection system learns a new gesture that was previously unknown to the radar-based gesture detection system. At times, a software package or tool provides the user with a simplified or user-friendly interface to train the radar-based gesture detection system with a new input gesture.
Among other things, gesture training application 110 represents a software package and/or software tool that provides an interface to the user for customizing input gestures to a radar-based gesture detection system. In some embodiments, gesture training application 110 includes a user's guide that explains a training process, such as high-level steps used to train radar-based gesture detection component 104. Here, high-level instructions indicate instructions or interface controls that obscure hardware configuration and/or algorithm configurations from the user. For example, high level instructions can include simple steps such as “Step 1: Enable gesture detection by activating the user interface control labeled ‘Start Gesture Training’, Step 2: Perform an in-the-air gesture, and Step 3: Assign an action to the captured gesture”. As one skilled in the art will appreciate, these three steps are considered high-level in that the user does not need to have any knowledge on how these steps are performed in hardware or by computing device 102. In other cases, the user's guide includes low-level instructions that indicate to a user hardware-specific instructions, such as “Step 1: Set up the radar field transmission parameters by writing data into the radar configuration register, Step 2: Program a machine-learning algorithm by writing data into the machine-learning register, Step 3: Program digital signal processing capture parameters by writing data into the digital signal processing register”, and so forth. Thus, the user's guide can include simple, high-level instructions that describe steps which obscure hardware configuration information from user, to low-level instructions that explain hardware level access and configuration steps to a user. Alternately or additionally, the user's guide can include a questionnaire as a way to determine how to configure a radar-based gesture detection component 104. For example, the questionnaire can ask whether the pending new gesture is a micro-gesture, or something larger. In turn, the answers can affect what radar field is emitted for learning a new gesture, what digital signal processing configurations or algorithms are used to learn a new gesture, what machine-learning algorithm is applied to learn a new gesture, how many iterations of the gesture are captured, and so forth.
Gesture training application 110 selects and configures various digital signal processing components and/or machine-learning components included within radar-based gesture detection component 104, such as digital signal processing component 212 and machine-learning component 214 (which are not illustrated in
Gesture training application 110 sometimes displays visual prompts to a user as part of the gesture training process. For example, the gesture-learning application can include display controls that a user selects to train the radar-based gesture detection component on a new in-the-air gesture. In some cases, the display control can be a start button that the user selects, or an in-the-air gesture associated with initiating a gesture learning mode. As previously discussed, this simple interface obscures from the user any configuration performed on the radar-based gesture detection component as part of the training process. However, the user may need prompts to aid in the process, such as a visual prompt that indicates when to perform a new gesture, when to repeat performing the new gesture, and when to stop performing the new gesture. These visual prompts can also indicate whether the training period was successful, an update or a percentage of completion in the training process, when radar is actively being emitted, and so forth. Alternately or additionally, visual prompts can be used to display instructions on how assign the newly learned gesture to a function, action, as a password, etc.
Based upon the interactions with gesture training application 110, radar-based gesture detection component 104 has the ability learn new in-the-air gestures that are previously unknown to the system. When in a gesture-learning mode, the radar-based gesture detection system may operate in a different manner than when detecting in-the-air gestures. For example, when in the gesture-learning mode, the radar-based gesture detection system records training data. This training data can be representative of a single capture of a new gesture that is being analyzed, or can be representative of multiple captures. The training data may be stored for future reference, or thrown away. Regardless, training data can be input to a machine-learning algorithm (such as one utilized by machine-learning component 214) as a way to build a new model subsequently used to identify the new gesture when it is next performed. In some embodiments, the training data is raw signal captures, while in other embodiments, the training data is information extracted by a digital signal processing component (such as digital signal processing component 212), including the non-limiting examples of a 3D profile, target velocity information, target directional movement information, and so forth. Thus, a machine-learning process may receive transformed data or extracted data, rather than raw signal data. Upon learning a new gesture, the radar-based gesture detection component can be updated to identify the new gesture in the future by storing identifying characteristic and/or storing a newly generated model for future reference and detection purposes.
Step 802 transitions a radar-based gesture detection system into a gesture-learning mode. This can be user initiated, such as a user selecting a hardware button connected to the radar-based gesture detection system that, when activated, transitions the radar-based gesture detection system into a gesture-learning mode. In other embodiments, the user performs an in-the-air gesture associated with initiating the gesture training process, or selects a control displayed on a user-interface of a gesture training application. Upon receiving input from the user, whether through a display control or an in-the-air gesture, the gesture training application programmatically communicates with the radar-based gesture detection system as a way to dynamically initiate a gesture-learning process. Some embodiments provide the gesture training application with APIs that transition the radar-based gesture detection system into the gesture-learning mode. Alternately or additionally, commands are sent a radar-based gesture detection system via a programmatic interface to configure various internal components, such as digital signal processing component 212 and/or machine-learning component 214 of
Step 804 initiates transmission of a radar field from the radar-based gesture detection system. This can be achieved in any suitable manner. In some cases, the radar-based gesture detection system has a default radar field that is automatically transmitted when in the gesture-learning mode. In other cases, the radar field is dynamically configured based upon an anticipated gesture, or changes dynamically for some or all iterations of a training process. For example, some radar fields may have a configuration that is more suitable for detecting micro-gestures (using a near-field configuration) versus larger gestures (using an intermediate-sized radar field configuration) or location determinations. Thus, in some embodiments, when initially detecting a new gesture, for a first iteration of analysis, the radar emitter emits the radar field in a first configuration that is suitable for location detection. Upon determining a location of the new gesture and completing the analysis with the first radar field, the radar-based gesture detection system can dynamically reconfigure the radar emitter to emit the radar field in a second configuration and/or diversity scheme (in subsequent iterations of analysis) that is suitable for micro-gesture detection can be emitted for subsequent iterations of training data capture. In other embodiments, the reconfiguration process can be controlled by an external application, such as gesture training application 110 of
Step 806 captures an incoming RF signal generated by the radar field reflecting off a new gesture being performed in the radar field. As discussed herein, this can be an iterative process in which multiple captures are taken over a period of time. In some embodiments, the incoming RF signal is received by a single-purpose antenna that is directed towards receiving, while in other embodiments, the incoming RF signal is receive by a multi-purpose antenna. For example, antenna(s) 210 of
Step 808 analyzes the RF signal to determine one or more identifying characteristics associated with the new gesture. Here, the analysis can be an iterative process that analyzes multiple data captures, and/or can include a multi-step process. For example, consider the example of a pipeline that includes a digital-signal processing stage and a machine-learning stage. Analyzing the RF signal can sometimes first feed a raw a digital capture of an RF signal into a digital signal processing stage as a way to transform the signal into an alternate representation (e.g., 3D representation, velocity, etc.). In turn, the alternate representation can be fed into the machine-learning stage as training data. The machine-learning stage then uses this training data to identify and learn unique characteristics about the new gesture. In some cases, the machine-learning stage uses a single set of training data to identify characteristics about the new gesture, while in other cases, multiple sets of training data are used.
Step 810 reconfigures the radar-based gesture detection system to identify the new gesture when it is next performed in the radar field. This can include dynamically generating or building a new custom machine-learning model that identifies the new or unknown gesture based upon the characteristics unique to the new gesture. A custom machine-learning model can be generated using a single data capture, or can be generated over time using multiple iterations of data capture. Some embodiments store the custom machine-learning model and/or the unique characteristics associated with the new gesture in a gesture library, such as gesture library 216 of
Upon completion of the training process, step 812 transitions the radar-based gesture detection system out of the gesture-learning mode. In some cases, the transition out of the gesture-learning mode is user-initiated, in that a user interfaces with an application or the radar-based gesture detection system to indicate the training process is over. This can be achieved in any suitable manner, such as through an in-the-air gesture, a hardware button press, a user interface control selection, etc. Other times, the training process is configured to run for a predetermined amount of time or a set number of iterations. For example, upon entering the gesture-learning mode, some embodiments set a timer for a predetermined amount of time. When the timer expires, the training process completes and transitions out of the gesture-learning mode, where no more training data is captured or recorded. In the case of a predetermined number of iterations, the training process will run until “X” number of training data captures are recorded (“X” being an arbitrary number).
The various examples described generally discuss radar-based gesture detection systems in the context of learning user-customized gestures performed by a hand. However, other types or forms of gestures can be learned as well. For example, consider a case of a disabled person who is unable to perform refined movements as those performed in a micro-gesture. In such a situation, the user can dynamically modify or train the radar-based gesture detection system to learn less refined movements, unconventional movements, and/or movements less fluid or precise in execution than gestures currently known by into the radar-based detection system. For instance, a radar-based gesture detection system can discern differences in tongue gestures, which other sensors lack resolution or light for (such as cameras). Users unable to perform hand gestures can dynamically train the system to use these alternate gestures as a form of input. As another example, a user who cannot physically perform a double-tap with a finger with execution that fits within the characteristics currently defined in a radar-based detection can retrain the system to recognize a less precise version of the double-tap gesture as performed by the user when compared to the double-tap gesture currently defined to the radar detection system. Further, allowing a user to customize input gestures adds flexibility to the user experience. In the case of a radar-based gesture detection system, the user can physically demonstrate a new gesture for the system to learn. These new and previously unknown gestures can then be mapped to any suitable type of action. In turn, these new gestures can be used to enter a password to unlock a home, a car, log into a secure web site, auto-dial a specific person, order a taxi, open a mapping application and/or auto-map a route to a specific destination, and so forth. By coupling this with a gesture training application, dynamic machine-learning of a new gesture additionally gives flexibility to users of all technical capacity.
Having considered various embodiments, consider now an example system and device that can be utilized to implement the embodiments described herein.
System 900 includes communication devices 902 that enable wired and/or wireless communication of device data 904 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 904 or other device content can include configuration settings of the device and/or information associated with a user of the device.
System 900 also includes communication interfaces 906 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 906 provide a connection and/or communication links between system 900 and a communication network by which other electronic, computing, and communication devices communicate data with system 900.
System 900 includes one or more processors 908 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of system 900 and to implement embodiments of the techniques described herein. Alternately or in addition, system 900 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 910. Although not shown, system 900 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
System 900 also includes computer-readable media 912, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like.
Computer-readable media 912 provides data storage mechanisms to store the device data 904, as well as various applications and any other types of information and/or data related to operational aspects of system 900. Here, computer-readable media 912 includes gesture training application 914, which generally represents an application that a user can interface with to train system 900 with new in-the-air gestures. Other applications can include a device manager (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, etc.). Computer-readable media 912 also includes gesture sensor APIs 916.
Gesture sensor APIs 916 provide programmatic access to a gesture sensor component, examples of which are provided herein. The programmatic access can range from high-level program access that obscures underlying details of how a function is implemented, to low-level programmatic access that enables access to hardware. In some cases, gesture sensor APIs can be used to send input configuration parameters associated with modifying how signals are transmitted, received, and/or processed by a gesture sensor component.
System 900 also includes audio and/or video processing system 918 that processes audio data and/or passes through the audio and video data to audio system 920 and/or to display system 922 (e.g., a screen of a smart phone or camera). Audio system 920 and/or display system 922 may include any devices that process, display, and/or otherwise render audio, video, display, and/or image data. Display data and audio signals can be communicated to an audio component and/or to a display component via an RF link, S-video link, HDMI, composite video link, component video link, DVI, analog audio connection, or other similar communication link, such as media data port 924. In some implementations, audio system 920 and/or display system 922 are external components to system 900. Alternatively or additionally, display system 922 can be an integrated component of the example electronic device, such as part of an integrated touch interface.
System 900 also includes gesture sensor component 926 that wirelessly identifies one or more features of a target object, such as a micro-gesture performed by a hand as further described herein. Gesture sensor component 926 can be implemented as any suitable combination of hardware, software, firmware, and so forth. In some embodiments, gesture sensor component 926 is implemented as an SoC. Among other things, gesture sensor component 926 includes radar-emitting element 928, antennas 930, digital signal processing component 932, machine-learning component 934, and gesture library 936.
Radar-emitting element 928 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand. Radar-emitting element 928 works in concert with antennas 930 to provide the radar field.
Antenna(s) 930 transmit and receive RF signals under the control of gesture sensor component 926. Each respective antenna of antennas 930 can correspond to a respective transceiver path internal to gesture sensor component 926 that physical routes and manages outgoing signals for transmission and the incoming signals for capture and analysis as further described herein.
Digital signal processing component 932 digitally processes RF signals received via antennas 930 to extract information about the target object. This can be high-level information that identifies a target object, or lower level information that identifies a particular micro-gesture performed by a hand. In some embodiments, digital signal processing component 932 additionally configures outgoing RF signals for transmission on antennas 930. Some of the information extracted by digital signal processing component 932 is used by machine-learning component 934. Digital signal processing component 932 at times includes multiple digital signal processing algorithms that can be selected or deselected for an analysis, examples of which are provided herein. Thus, digital signal processing component 932 can generate key information from RF signals that can be used to determine what gesture might be occurring at any given moment. At times, an application, such as gesture training application 914, can configure the operating behavior of digital signal processing component 932 via gesture Sensor APIs 916.
Machine-learning component 934 receives input data, such as a transformed raw signal or high-level information about a target object, and analyzes the input date to identify or classify various features extractable from the data, such as position data, motion data, presence data, shape data, and so forth. As in the case of digital signal processing component 932, machine-learning component 934 can include multiple machine-learning algorithms that can be selected or deselected for an analysis. Among other things, machine-learning component 934 can use the key information generated by digital signal processing component 932 to detect relationships and/or correlations between the generated key information and previously learned gestures to probabilistically decide which gesture is being performed. At times, an application, such as gesture training application 914, can configure the operating behavior of machine-learning component 934 via gesture Sensor APIs 916.
Gesture library 936 represents data used by gesture sensor component 926 to identify a target object and/or gestures performed by the target object. For instance, gesture library 936 can store signal characteristics, or characteristics about a target object that are discernable from a signal, that can be used to identify a unique in-the-air gesture, a user identity, user presence, and so forth. In some embodiments, gesture library 936 stores a machine-learning model dynamically generated when learning a new or unknown gesture. In addition, certain data stored in gesture library 936 may be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Various embodiments dynamically learn user-customizable input gestures. A user can transition a radar-based gesture detection system into a gesture-learning mode. In turn, the radar-based gesture detection system emits a radar field configured to detect a gesture new to the radar-based gesture detection system. The radar-based gesture detection system receives incoming radio frequency (RF) signals generated by the outgoing RF signal reflecting off the gesture, and analyzes the incoming RF signals to learn one or more identifying characteristics about the gesture. Upon learning the identifying characteristics, the radar-based gesture detection system reconfigures a corresponding input identification system to detect the gesture when the one or more identifying characteristics are next identified, and transitions out of the gesture-learning mode.
Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the various embodiments defined in the appended claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the various embodiments.
This application is a continuation application of U.S. application Ser. No. 15/287,359, filed on Oct. 6, 2016, which claims priority to U.S. Provisional Patent Application Ser. No. 62/237,975 filed on Oct. 6, 2015, the disclosures of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3570312 | Kreith | Mar 1971 | A |
3610874 | Gagliano | Oct 1971 | A |
3752017 | Lloyd et al. | Aug 1973 | A |
3953706 | Harris et al. | Apr 1976 | A |
4104012 | Ferrante | Aug 1978 | A |
4321930 | Jobsis et al. | Mar 1982 | A |
4654967 | Thenner | Apr 1987 | A |
4700044 | Hokanson et al. | Oct 1987 | A |
4795998 | Dunbar et al. | Jan 1989 | A |
4838797 | Dodier | Jun 1989 | A |
5016500 | Conrad et al. | May 1991 | A |
5024533 | Egawa et al. | Jun 1991 | A |
5121124 | Spivey et al. | Jun 1992 | A |
5298715 | Chalco et al. | Mar 1994 | A |
5309916 | Hatschek | May 1994 | A |
5341979 | Gupta | Aug 1994 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5468917 | Brodsky et al. | Nov 1995 | A |
5564571 | Zanotti | Oct 1996 | A |
5656798 | Kubo et al. | Aug 1997 | A |
5724707 | Kirk et al. | Mar 1998 | A |
5798798 | Rector et al. | Aug 1998 | A |
6032450 | Blum | Mar 2000 | A |
6037893 | Lipman | Mar 2000 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6101431 | Niwa et al. | Aug 2000 | A |
6129673 | Fraden | Oct 2000 | A |
6179785 | Martinosky et al. | Jan 2001 | B1 |
6210771 | Post et al. | Apr 2001 | B1 |
6254544 | Hayashi | Jul 2001 | B1 |
6303924 | Adan et al. | Oct 2001 | B1 |
6313825 | Gilbert | Nov 2001 | B1 |
6340979 | Beaton et al. | Jan 2002 | B1 |
6380882 | Hegnauer | Apr 2002 | B1 |
6386757 | Konno | May 2002 | B1 |
6440593 | Ellison et al. | Aug 2002 | B2 |
6492980 | Sandbach | Dec 2002 | B2 |
6493933 | Post et al. | Dec 2002 | B1 |
6513833 | Breed et al. | Feb 2003 | B2 |
6513970 | Tabata et al. | Feb 2003 | B1 |
6524239 | Reed et al. | Feb 2003 | B1 |
6543668 | Fujii et al. | Apr 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6711354 | Kameyama | Mar 2004 | B2 |
6717065 | Hosaka et al. | Apr 2004 | B2 |
6802720 | Weiss et al. | Oct 2004 | B2 |
6805672 | Martin et al. | Oct 2004 | B2 |
6833807 | Flacke et al. | Dec 2004 | B2 |
6835898 | Eldridge et al. | Dec 2004 | B2 |
6854985 | Weiss | Feb 2005 | B1 |
6929484 | Weiss et al. | Aug 2005 | B2 |
6970128 | Dwelly et al. | Nov 2005 | B1 |
6997882 | Parker et al. | Feb 2006 | B1 |
7019682 | Louberg et al. | Mar 2006 | B1 |
7134879 | Sugimoto et al. | Nov 2006 | B2 |
7158076 | Fiore et al. | Jan 2007 | B2 |
7164820 | Eves et al. | Jan 2007 | B2 |
7194371 | McBride et al. | Mar 2007 | B1 |
7205932 | Fiore | Apr 2007 | B2 |
7209775 | Bae et al. | Apr 2007 | B2 |
7223105 | Weiss et al. | May 2007 | B2 |
7230610 | Jung et al. | Jun 2007 | B2 |
7249954 | Weiss | Jul 2007 | B2 |
7266532 | Sutton et al. | Sep 2007 | B2 |
7299964 | Jayaraman et al. | Nov 2007 | B2 |
7310236 | Takahashi et al. | Dec 2007 | B2 |
7317416 | Flom et al. | Jan 2008 | B2 |
7348285 | Dhawan et al. | Mar 2008 | B2 |
7365031 | Swallow et al. | Apr 2008 | B2 |
7421061 | Boese et al. | Sep 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7528082 | Krans et al. | May 2009 | B2 |
7544627 | Tao et al. | Jun 2009 | B2 |
7578195 | DeAngelis et al. | Aug 2009 | B2 |
7644488 | Aisenbrey | Jan 2010 | B2 |
7647093 | Bojovic et al. | Jan 2010 | B2 |
7670144 | Ito et al. | Mar 2010 | B2 |
7677729 | Vilser et al. | Mar 2010 | B2 |
7691067 | Westbrook et al. | Apr 2010 | B2 |
7698154 | Marchosky | Apr 2010 | B2 |
7750841 | Oswald et al. | Jul 2010 | B2 |
7791700 | Bellamy | Sep 2010 | B2 |
7834276 | Chou et al. | Nov 2010 | B2 |
7845023 | Swatee | Dec 2010 | B2 |
7941676 | Glaser | May 2011 | B2 |
7952512 | Delker et al. | May 2011 | B1 |
7999722 | Beeri et al. | Aug 2011 | B2 |
8062220 | Kurtz et al. | Nov 2011 | B2 |
8063815 | Valo et al. | Nov 2011 | B2 |
8169404 | Boillot | May 2012 | B1 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8193929 | Siu et al. | Jun 2012 | B1 |
8199104 | Park et al. | Jun 2012 | B2 |
8282232 | Hsu et al. | Oct 2012 | B2 |
8289185 | Alonso | Oct 2012 | B2 |
8301232 | Albert et al. | Oct 2012 | B2 |
8314732 | Oswald et al. | Nov 2012 | B2 |
8326313 | McHenry et al. | Dec 2012 | B2 |
8334226 | Nhan et al. | Dec 2012 | B2 |
8341762 | Balzano | Jan 2013 | B2 |
8344949 | Moshfeghi | Jan 2013 | B2 |
8367942 | Howell et al. | Feb 2013 | B2 |
8374668 | Hayter et al. | Feb 2013 | B1 |
8475367 | Yuen et al. | Jul 2013 | B1 |
8505474 | Kang et al. | Aug 2013 | B2 |
8509882 | Albert et al. | Aug 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8527146 | Jackson et al. | Sep 2013 | B1 |
8549829 | Song et al. | Oct 2013 | B2 |
8560972 | Wilson | Oct 2013 | B2 |
8562526 | Heneghan et al. | Oct 2013 | B2 |
8569189 | Bhattacharya et al. | Oct 2013 | B2 |
8614689 | Nishikawa et al. | Dec 2013 | B2 |
8655004 | Prest et al. | Feb 2014 | B2 |
8700137 | Albert | Apr 2014 | B2 |
8758020 | Burdea et al. | Jun 2014 | B2 |
8759713 | Sheats | Jun 2014 | B2 |
8764651 | Tran | Jul 2014 | B2 |
8785778 | Streeter et al. | Jul 2014 | B2 |
8790257 | Libbus et al. | Jul 2014 | B2 |
8814574 | Selby et al. | Aug 2014 | B2 |
8819812 | Weber et al. | Aug 2014 | B1 |
8854433 | Rafii | Oct 2014 | B1 |
8860602 | Nohara et al. | Oct 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8926509 | Magar et al. | Jan 2015 | B2 |
8948839 | Longinotti-Buitoni et al. | Feb 2015 | B1 |
9055879 | Selby et al. | Jun 2015 | B2 |
9075429 | Karakotsios et al. | Jul 2015 | B1 |
9093289 | Vicard et al. | Jul 2015 | B2 |
9125456 | Chow | Sep 2015 | B2 |
9141194 | Keyes et al. | Sep 2015 | B1 |
9148949 | Zhou et al. | Sep 2015 | B2 |
9223494 | DeSalvo et al. | Dec 2015 | B1 |
9229102 | Wright et al. | Jan 2016 | B1 |
9230160 | Kanter | Jan 2016 | B1 |
9235241 | Newham et al. | Jan 2016 | B2 |
9316727 | Sentelle et al. | Apr 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9335825 | Rautianinen et al. | May 2016 | B2 |
9346167 | O'Connor et al. | May 2016 | B2 |
9354709 | Heller et al. | May 2016 | B1 |
9412273 | Ricci | Aug 2016 | B2 |
9508141 | Khachaturian et al. | Nov 2016 | B2 |
9511877 | Masson | Dec 2016 | B2 |
9524597 | Ricci | Dec 2016 | B2 |
9569001 | Mistry et al. | Feb 2017 | B2 |
9575560 | Poupyrev et al. | Feb 2017 | B2 |
9582933 | Mosterman et al. | Feb 2017 | B1 |
9588625 | Poupyrev | Mar 2017 | B2 |
9594443 | VanBlon et al. | Mar 2017 | B2 |
9600080 | Poupyrev | Mar 2017 | B2 |
9693592 | Robinson et al. | Jul 2017 | B2 |
9699663 | Jovancevic | Jul 2017 | B1 |
9729986 | Crawley et al. | Aug 2017 | B2 |
9746551 | Scholten et al. | Aug 2017 | B2 |
9766742 | Papakostas | Sep 2017 | B2 |
9778749 | Poupyrev | Oct 2017 | B2 |
9807619 | Tsai et al. | Oct 2017 | B2 |
9811164 | Poupyrev | Nov 2017 | B2 |
9817109 | Saboo et al. | Nov 2017 | B2 |
9837760 | Karagozler et al. | Dec 2017 | B2 |
9848780 | DeBusschere et al. | Dec 2017 | B1 |
9870056 | Yao | Jan 2018 | B1 |
9921660 | Poupyrev | Mar 2018 | B2 |
9933908 | Poupyrev | Apr 2018 | B2 |
9947080 | Nguyen et al. | Apr 2018 | B2 |
9958541 | Kishigami et al. | May 2018 | B2 |
9971414 | Gollakota et al. | May 2018 | B2 |
9971415 | Poupyrev et al. | May 2018 | B2 |
9983747 | Poupyrev | May 2018 | B2 |
9994233 | Diaz-Jimenez et al. | Jun 2018 | B2 |
10016162 | Rogers et al. | Jul 2018 | B1 |
10027923 | Chang | Jul 2018 | B1 |
10034630 | Lee et al. | Jul 2018 | B2 |
10063427 | Brown | Aug 2018 | B1 |
10064582 | Rogers | Sep 2018 | B2 |
10073590 | Dascola et al. | Sep 2018 | B2 |
10080528 | DeBusschere et al. | Sep 2018 | B2 |
10082950 | Lapp | Sep 2018 | B2 |
10088908 | Poupyrev et al. | Oct 2018 | B1 |
10139916 | Poupyrev | Nov 2018 | B2 |
10155274 | Robinson et al. | Dec 2018 | B2 |
10175781 | Karagozler et al. | Jan 2019 | B2 |
10203405 | Mazzaro et al. | Feb 2019 | B2 |
10203763 | Poupyrev et al. | Feb 2019 | B1 |
10222469 | Gillian et al. | Mar 2019 | B1 |
10241581 | Lien et al. | Mar 2019 | B2 |
10268321 | Poupyrev | Apr 2019 | B2 |
10285456 | Poupyrev et al. | May 2019 | B2 |
10300370 | Amihood et al. | May 2019 | B1 |
10304567 | Kitagawa et al. | May 2019 | B2 |
10310620 | Lien et al. | Jun 2019 | B2 |
10310621 | Lien et al. | Jun 2019 | B1 |
10376195 | Reid et al. | Aug 2019 | B1 |
10379621 | Schwesig et al. | Aug 2019 | B2 |
10401490 | Gillian et al. | Sep 2019 | B2 |
10409385 | Poupyrev | Sep 2019 | B2 |
10459080 | Schwesig et al. | Oct 2019 | B1 |
10492302 | Karagozler et al. | Nov 2019 | B2 |
10496182 | Lien et al. | Dec 2019 | B2 |
10503883 | Gillian et al. | Dec 2019 | B1 |
10509478 | Poupyrev et al. | Dec 2019 | B2 |
10540001 | Poupyrev et al. | Jan 2020 | B1 |
10572027 | Poupyrev et al. | Feb 2020 | B2 |
10579150 | Gu et al. | Mar 2020 | B2 |
10642367 | Poupyrev | May 2020 | B2 |
10660379 | Poupyrev et al. | May 2020 | B2 |
10664059 | Poupyrev | May 2020 | B2 |
10664061 | Poupyrev | May 2020 | B2 |
10705185 | Lien et al. | Jul 2020 | B1 |
10768712 | Schwesig et al. | Sep 2020 | B2 |
10817065 | Lien et al. | Oct 2020 | B1 |
10817070 | Lien et al. | Oct 2020 | B2 |
10823841 | Lien et al. | Nov 2020 | B1 |
10908696 | Amihood et al. | Feb 2021 | B2 |
10931934 | Richards et al. | Feb 2021 | B2 |
10936081 | Poupyrev | Mar 2021 | B2 |
10936085 | Poupyrev et al. | Mar 2021 | B2 |
10948996 | Poupyrev et al. | Mar 2021 | B2 |
11080556 | Gillian et al. | Aug 2021 | B1 |
11132065 | Gillian et al. | Sep 2021 | B2 |
11140787 | Karagozler et al. | Oct 2021 | B2 |
11169988 | Poupyrev et al. | Nov 2021 | B2 |
11175743 | Lien et al. | Nov 2021 | B2 |
11221682 | Poupyrev | Jan 2022 | B2 |
11256335 | Poupyrev et al. | Feb 2022 | B2 |
11385721 | Lien et al. | Jul 2022 | B2 |
20010030624 | Schwoegler | Oct 2001 | A1 |
20010035836 | Miceli et al. | Nov 2001 | A1 |
20020009972 | Amento et al. | Jan 2002 | A1 |
20020080156 | Abbott et al. | Jun 2002 | A1 |
20020170897 | Hall | Nov 2002 | A1 |
20030005030 | Sutton et al. | Jan 2003 | A1 |
20030036685 | Goodman | Feb 2003 | A1 |
20030071750 | Benitz | Apr 2003 | A1 |
20030093000 | Nishio et al. | May 2003 | A1 |
20030100228 | Bungo et al. | May 2003 | A1 |
20030119391 | Swallow et al. | Jun 2003 | A1 |
20030122677 | Kail | Jul 2003 | A1 |
20040008137 | Hassebrock et al. | Jan 2004 | A1 |
20040009729 | Hill et al. | Jan 2004 | A1 |
20040046736 | Pryor et al. | Mar 2004 | A1 |
20040102693 | DeBusschere et al. | May 2004 | A1 |
20040157662 | Tsuchiya | Aug 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040259391 | Jung et al. | Dec 2004 | A1 |
20050069695 | Jung et al. | Mar 2005 | A1 |
20050128124 | Greneker et al. | Jun 2005 | A1 |
20050148876 | Endoh et al. | Jul 2005 | A1 |
20050231419 | Mitchell | Oct 2005 | A1 |
20050267366 | Murashita et al. | Dec 2005 | A1 |
20060035554 | Glaser et al. | Feb 2006 | A1 |
20060040739 | Wells | Feb 2006 | A1 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060061504 | Leach, Jr. et al. | Mar 2006 | A1 |
20060125803 | Westerman et al. | Jun 2006 | A1 |
20060136997 | Telek et al. | Jun 2006 | A1 |
20060139162 | Flynn | Jun 2006 | A1 |
20060139314 | Bell | Jun 2006 | A1 |
20060148351 | Tao et al. | Jul 2006 | A1 |
20060157734 | Onodero et al. | Jul 2006 | A1 |
20060166620 | Sorensen | Jul 2006 | A1 |
20060170584 | Romero et al. | Aug 2006 | A1 |
20060183980 | Yang | Aug 2006 | A1 |
20060209021 | Yoo et al. | Sep 2006 | A1 |
20060244654 | Cheng et al. | Nov 2006 | A1 |
20060258205 | Locher et al. | Nov 2006 | A1 |
20060284757 | Zemany | Dec 2006 | A1 |
20070024488 | Zemany et al. | Feb 2007 | A1 |
20070024946 | Panasyuk et al. | Feb 2007 | A1 |
20070026695 | Lee et al. | Feb 2007 | A1 |
20070027369 | Pagnacco et al. | Feb 2007 | A1 |
20070030195 | Steinway et al. | Feb 2007 | A1 |
20070118043 | Oliver et al. | May 2007 | A1 |
20070161921 | Rausch | Jul 2007 | A1 |
20070164896 | Suzuki et al. | Jul 2007 | A1 |
20070176821 | Flom et al. | Aug 2007 | A1 |
20070192647 | Glaser | Aug 2007 | A1 |
20070197115 | Eves et al. | Aug 2007 | A1 |
20070197878 | Shklarski | Aug 2007 | A1 |
20070210074 | Maurer et al. | Sep 2007 | A1 |
20070237423 | Tico et al. | Oct 2007 | A1 |
20070276262 | Banet et al. | Nov 2007 | A1 |
20070276632 | Banet et al. | Nov 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002027 | Kondo et al. | Jan 2008 | A1 |
20080015422 | Wessel | Jan 2008 | A1 |
20080024438 | Collins et al. | Jan 2008 | A1 |
20080039731 | McCombie et al. | Feb 2008 | A1 |
20080059578 | Albertson et al. | Mar 2008 | A1 |
20080065291 | Breed | Mar 2008 | A1 |
20080074307 | Boric-Lubecke et al. | Mar 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080134102 | Movold et al. | Jun 2008 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20080168396 | Matas et al. | Jul 2008 | A1 |
20080168403 | Westerman et al. | Jul 2008 | A1 |
20080194204 | Duet et al. | Aug 2008 | A1 |
20080194975 | MacQuarrie et al. | Aug 2008 | A1 |
20080211766 | Westerman et al. | Sep 2008 | A1 |
20080233822 | Swallow et al. | Sep 2008 | A1 |
20080278450 | Lashina | Nov 2008 | A1 |
20080282665 | Speleers | Nov 2008 | A1 |
20080291158 | Park et al. | Nov 2008 | A1 |
20080303800 | Elwell | Dec 2008 | A1 |
20080316085 | Rofougaran et al. | Dec 2008 | A1 |
20080320419 | Matas et al. | Dec 2008 | A1 |
20090002220 | Lovberg et al. | Jan 2009 | A1 |
20090018408 | Ouchi et al. | Jan 2009 | A1 |
20090018428 | Dias et al. | Jan 2009 | A1 |
20090033585 | Lang | Feb 2009 | A1 |
20090053950 | Surve | Feb 2009 | A1 |
20090056300 | Chung et al. | Mar 2009 | A1 |
20090058820 | Hinckley | Mar 2009 | A1 |
20090113298 | Jung et al. | Apr 2009 | A1 |
20090115617 | Sano et al. | May 2009 | A1 |
20090118648 | Kandori et al. | May 2009 | A1 |
20090149036 | Lee et al. | Jun 2009 | A1 |
20090177068 | Stivoric et al. | Jul 2009 | A1 |
20090203244 | Toonder | Aug 2009 | A1 |
20090226043 | Angell et al. | Sep 2009 | A1 |
20090253585 | Diatchenko et al. | Oct 2009 | A1 |
20090270690 | Roos et al. | Oct 2009 | A1 |
20090278915 | Kramer et al. | Nov 2009 | A1 |
20090288762 | Wolfel | Nov 2009 | A1 |
20090292468 | Wu et al. | Nov 2009 | A1 |
20090295712 | Ritzau | Dec 2009 | A1 |
20090299197 | Antonelli et al. | Dec 2009 | A1 |
20090303100 | Zemany | Dec 2009 | A1 |
20090319181 | Khosravy et al. | Dec 2009 | A1 |
20100013676 | Do et al. | Jan 2010 | A1 |
20100045513 | Pett et al. | Feb 2010 | A1 |
20100050133 | Nishihara et al. | Feb 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060570 | Underkoffler et al. | Mar 2010 | A1 |
20100065320 | Urano | Mar 2010 | A1 |
20100069730 | Bergstrom et al. | Mar 2010 | A1 |
20100071205 | Graumann et al. | Mar 2010 | A1 |
20100094141 | Puswella | Apr 2010 | A1 |
20100107099 | Frazier et al. | Apr 2010 | A1 |
20100109938 | Oswald et al. | May 2010 | A1 |
20100152600 | Droitcour et al. | Jun 2010 | A1 |
20100179820 | Harrison et al. | Jul 2010 | A1 |
20100198067 | Mahfouz et al. | Aug 2010 | A1 |
20100201586 | Michalk | Aug 2010 | A1 |
20100204550 | Heneghan et al. | Aug 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100208035 | Pinault et al. | Aug 2010 | A1 |
20100225562 | Smith | Sep 2010 | A1 |
20100234094 | Gagner et al. | Sep 2010 | A1 |
20100241009 | Petkie | Sep 2010 | A1 |
20100002912 | Solinsky | Oct 2010 | A1 |
20100281438 | Latta et al. | Nov 2010 | A1 |
20100292549 | Schuler | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100313414 | Sheats | Dec 2010 | A1 |
20100324384 | Moon et al. | Dec 2010 | A1 |
20100325770 | Chung et al. | Dec 2010 | A1 |
20110003664 | Richard | Jan 2011 | A1 |
20110010014 | Oexman et al. | Jan 2011 | A1 |
20110018795 | Jang | Jan 2011 | A1 |
20110029038 | Hyde et al. | Feb 2011 | A1 |
20110073353 | Lee et al. | Mar 2011 | A1 |
20110083111 | Forutanpour et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110118564 | Sankai | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110166940 | Bangera et al. | Jul 2011 | A1 |
20110181509 | Rautiainen et al. | Jul 2011 | A1 |
20110181510 | Hakala et al. | Jul 2011 | A1 |
20110193939 | Vassigh et al. | Aug 2011 | A1 |
20110197263 | Stinson, III | Aug 2011 | A1 |
20110202404 | van der Riet | Aug 2011 | A1 |
20110213218 | Weiner et al. | Sep 2011 | A1 |
20110221666 | Newton et al. | Sep 2011 | A1 |
20110234492 | Ajmera et al. | Sep 2011 | A1 |
20110239118 | Yamaoka et al. | Sep 2011 | A1 |
20110245688 | Arora et al. | Oct 2011 | A1 |
20110279303 | Smith | Nov 2011 | A1 |
20110286585 | Hodge | Nov 2011 | A1 |
20110303341 | Meiss et al. | Dec 2011 | A1 |
20110307842 | Chiang et al. | Dec 2011 | A1 |
20110316888 | Sachs et al. | Dec 2011 | A1 |
20110318985 | McDermid | Dec 2011 | A1 |
20120001875 | Li et al. | Jan 2012 | A1 |
20120013571 | Yeh et al. | Jan 2012 | A1 |
20120019168 | Noda et al. | Jan 2012 | A1 |
20120029369 | Icove et al. | Feb 2012 | A1 |
20120047468 | Santos et al. | Feb 2012 | A1 |
20120068876 | Bangera et al. | Mar 2012 | A1 |
20120069043 | Narita et al. | Mar 2012 | A1 |
20120075958 | Hintz | Mar 2012 | A1 |
20120092284 | Rogougaran et al. | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120123232 | Najarian et al. | May 2012 | A1 |
20120127082 | Kushler et al. | May 2012 | A1 |
20120144934 | Russell et al. | Jun 2012 | A1 |
20120146950 | Park et al. | Jun 2012 | A1 |
20120150493 | Casey et al. | Jun 2012 | A1 |
20120154313 | Au et al. | Jun 2012 | A1 |
20120156926 | Kato et al. | Jun 2012 | A1 |
20120174299 | Balzano | Jul 2012 | A1 |
20120174736 | Wang et al. | Jul 2012 | A1 |
20120182222 | Moloney | Jul 2012 | A1 |
20120191223 | Dharwada et al. | Jul 2012 | A1 |
20120193801 | Gross et al. | Aug 2012 | A1 |
20120200600 | Demaine | Aug 2012 | A1 |
20120220835 | Chung | Aug 2012 | A1 |
20120243374 | Dahl et al. | Sep 2012 | A1 |
20120248093 | Ulrich et al. | Oct 2012 | A1 |
20120254810 | Heck et al. | Oct 2012 | A1 |
20120268310 | Kim | Oct 2012 | A1 |
20120268416 | Pirogov et al. | Oct 2012 | A1 |
20120270564 | Gum et al. | Oct 2012 | A1 |
20120276849 | Hyde et al. | Nov 2012 | A1 |
20120280900 | Wang et al. | Nov 2012 | A1 |
20120298748 | Factor et al. | Nov 2012 | A1 |
20120310665 | Xu et al. | Dec 2012 | A1 |
20130016070 | Starner et al. | Jan 2013 | A1 |
20130027218 | Schwarz et al. | Jan 2013 | A1 |
20130035563 | Angellides | Feb 2013 | A1 |
20130046544 | Kay et al. | Feb 2013 | A1 |
20130053653 | Cuddihy et al. | Feb 2013 | A1 |
20130076649 | Myers et al. | Mar 2013 | A1 |
20130076788 | Ben Zvi | Mar 2013 | A1 |
20130078624 | Holmes et al. | Mar 2013 | A1 |
20130079649 | Mestha et al. | Mar 2013 | A1 |
20130082922 | Miller | Apr 2013 | A1 |
20130083173 | Geisner et al. | Apr 2013 | A1 |
20130086533 | Stienstra | Apr 2013 | A1 |
20130096439 | Lee et al. | Apr 2013 | A1 |
20130102217 | Jeon | Apr 2013 | A1 |
20130104084 | Mlyniec et al. | Apr 2013 | A1 |
20130106710 | Ashbrook | May 2013 | A1 |
20130113647 | Sentelle et al. | May 2013 | A1 |
20130113830 | Suzuki | May 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130132931 | Bruns et al. | May 2013 | A1 |
20130147833 | Aubauer et al. | Jun 2013 | A1 |
20130150735 | Cheng | Jun 2013 | A1 |
20130154919 | An et al. | Jun 2013 | A1 |
20130161078 | Li | Jun 2013 | A1 |
20130169471 | Lynch | Jul 2013 | A1 |
20130176161 | Derham et al. | Jul 2013 | A1 |
20130176258 | Dahl et al. | Jul 2013 | A1 |
20130194173 | Zhu et al. | Aug 2013 | A1 |
20130195330 | Kim et al. | Aug 2013 | A1 |
20130196716 | Khurram | Aug 2013 | A1 |
20130207962 | Oberdorfer et al. | Aug 2013 | A1 |
20130222232 | Kong et al. | Aug 2013 | A1 |
20130229508 | Li et al. | Sep 2013 | A1 |
20130241765 | Kozma et al. | Sep 2013 | A1 |
20130245986 | Grokop et al. | Sep 2013 | A1 |
20130249793 | Zhu et al. | Sep 2013 | A1 |
20130253029 | Jain et al. | Sep 2013 | A1 |
20130260630 | Ito et al. | Oct 2013 | A1 |
20130263029 | Rossi et al. | Oct 2013 | A1 |
20130278499 | Anderson | Oct 2013 | A1 |
20130278501 | Bulzacki | Oct 2013 | A1 |
20130281024 | Rofougaran et al. | Oct 2013 | A1 |
20130283203 | Batraski et al. | Oct 2013 | A1 |
20130310700 | Wiard et al. | Nov 2013 | A1 |
20130322729 | Mestha et al. | Dec 2013 | A1 |
20130332438 | Li et al. | Dec 2013 | A1 |
20130345569 | Mestha et al. | Dec 2013 | A1 |
20140005809 | Frei et al. | Jan 2014 | A1 |
20140022108 | Alberth et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140035737 | Rashid et al. | Feb 2014 | A1 |
20140049487 | Konertz et al. | Feb 2014 | A1 |
20140050354 | Heim et al. | Feb 2014 | A1 |
20140051941 | Messerschmidt | Feb 2014 | A1 |
20140070957 | Longinotti-Buitoni et al. | Mar 2014 | A1 |
20140072190 | Wu et al. | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140073969 | Zou et al. | Mar 2014 | A1 |
20140081100 | Muhsin et al. | Mar 2014 | A1 |
20140095480 | Marantz et al. | Apr 2014 | A1 |
20140097979 | Nohara et al. | Apr 2014 | A1 |
20140121540 | Raskin | May 2014 | A1 |
20140135631 | Brumback et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139430 | Leung | May 2014 | A1 |
20140139616 | Pinter et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140145955 | Gomez et al. | May 2014 | A1 |
20140149859 | Van Dyken et al. | May 2014 | A1 |
20140181509 | Liu | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140184499 | Kim | Jul 2014 | A1 |
20140188989 | Stekkelpak et al. | Jul 2014 | A1 |
20140191939 | Penn et al. | Jul 2014 | A1 |
20140200416 | Kashef et al. | Jul 2014 | A1 |
20140201690 | Holz | Jul 2014 | A1 |
20140203080 | Hintz | Jul 2014 | A1 |
20140208275 | Mongia et al. | Jul 2014 | A1 |
20140215389 | Walsh et al. | Jul 2014 | A1 |
20140239065 | Zhou et al. | Aug 2014 | A1 |
20140244277 | Krishna Rao et al. | Aug 2014 | A1 |
20140246415 | Wittkowski | Sep 2014 | A1 |
20140247212 | Kim et al. | Sep 2014 | A1 |
20140250515 | Jakobsson | Sep 2014 | A1 |
20140253431 | Gossweiler et al. | Sep 2014 | A1 |
20140253709 | Bresch et al. | Sep 2014 | A1 |
20140262478 | Harris et al. | Sep 2014 | A1 |
20140265642 | Utley et al. | Sep 2014 | A1 |
20140270698 | Luna et al. | Sep 2014 | A1 |
20140275854 | Venkatraman et al. | Sep 2014 | A1 |
20140276104 | Tao et al. | Sep 2014 | A1 |
20140280295 | Kurochikin et al. | Sep 2014 | A1 |
20140281975 | Anderson | Sep 2014 | A1 |
20140282877 | Mahaffey et al. | Sep 2014 | A1 |
20140297006 | Sadhu | Oct 2014 | A1 |
20140298266 | Lapp | Oct 2014 | A1 |
20140300506 | Alton et al. | Oct 2014 | A1 |
20140306936 | Dahl et al. | Oct 2014 | A1 |
20140309855 | Tran | Oct 2014 | A1 |
20140316261 | Lux et al. | Oct 2014 | A1 |
20140318699 | Longinotti-Buitoni et al. | Oct 2014 | A1 |
20140324888 | Xie et al. | Oct 2014 | A1 |
20140329567 | Chan et al. | Nov 2014 | A1 |
20140333467 | Inomata | Nov 2014 | A1 |
20140343392 | Yang | Nov 2014 | A1 |
20140347295 | Kim et al. | Nov 2014 | A1 |
20140357369 | Callens et al. | Dec 2014 | A1 |
20140368378 | Crain et al. | Dec 2014 | A1 |
20140368441 | Touloumtzis | Dec 2014 | A1 |
20140376788 | Xu et al. | Dec 2014 | A1 |
20150002391 | Chen | Jan 2015 | A1 |
20150009096 | Lee et al. | Jan 2015 | A1 |
20150026815 | Barrett | Jan 2015 | A1 |
20150029050 | Driscoll et al. | Jan 2015 | A1 |
20150030256 | Brady et al. | Jan 2015 | A1 |
20150040040 | Balan et al. | Feb 2015 | A1 |
20150046183 | Cireddu | Feb 2015 | A1 |
20150062033 | Ishihara | Mar 2015 | A1 |
20150068069 | Tran et al. | Mar 2015 | A1 |
20150077282 | Mohamadi | Mar 2015 | A1 |
20150077345 | Hwang et al. | Mar 2015 | A1 |
20150084855 | Song et al. | Mar 2015 | A1 |
20150085060 | Fish et al. | Mar 2015 | A1 |
20150091820 | Rosenberg et al. | Apr 2015 | A1 |
20150091858 | Rosenberg et al. | Apr 2015 | A1 |
20150091859 | Rosenberg et al. | Apr 2015 | A1 |
20150091903 | Costello et al. | Apr 2015 | A1 |
20150095987 | Potash et al. | Apr 2015 | A1 |
20150099941 | Tran | Apr 2015 | A1 |
20150100328 | Kress et al. | Apr 2015 | A1 |
20150106770 | Shah et al. | Apr 2015 | A1 |
20150109164 | Takaki | Apr 2015 | A1 |
20150112606 | He et al. | Apr 2015 | A1 |
20150133017 | Liao et al. | May 2015 | A1 |
20150143601 | Longinotti-Buitoni et al. | May 2015 | A1 |
20150145805 | Liu | May 2015 | A1 |
20150162729 | Reversat et al. | Jun 2015 | A1 |
20150177374 | Driscoll et al. | Jun 2015 | A1 |
20150177866 | Hwang et al. | Jun 2015 | A1 |
20150185314 | Corcos et al. | Jul 2015 | A1 |
20150199045 | Robucci et al. | Jul 2015 | A1 |
20150204973 | Nohara et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150223733 | Al-Alusi | Aug 2015 | A1 |
20150226004 | Thompson | Aug 2015 | A1 |
20150229885 | Offenhaeuser | Aug 2015 | A1 |
20150256763 | Niemi | Sep 2015 | A1 |
20150257653 | Hyde et al. | Sep 2015 | A1 |
20150261320 | Leto | Sep 2015 | A1 |
20150268027 | Gerdes | Sep 2015 | A1 |
20150268799 | Starner et al. | Sep 2015 | A1 |
20150276925 | Scholten et al. | Oct 2015 | A1 |
20150277569 | Sprenger et al. | Oct 2015 | A1 |
20150280102 | Tajitsu et al. | Oct 2015 | A1 |
20150285906 | Hooper et al. | Oct 2015 | A1 |
20150287187 | Redtel | Oct 2015 | A1 |
20150297105 | Pahlevan et al. | Oct 2015 | A1 |
20150301167 | Sentelle et al. | Oct 2015 | A1 |
20150312041 | Choi | Oct 2015 | A1 |
20150314780 | Stenneth et al. | Nov 2015 | A1 |
20150317518 | Fujimaki et al. | Nov 2015 | A1 |
20150323993 | Levesque et al. | Nov 2015 | A1 |
20150332075 | Burch | Nov 2015 | A1 |
20150341550 | Lay | Nov 2015 | A1 |
20150346701 | Gordon et al. | Dec 2015 | A1 |
20150346820 | Poupyrev et al. | Dec 2015 | A1 |
20150350902 | Baxley et al. | Dec 2015 | A1 |
20150351703 | Phillips et al. | Dec 2015 | A1 |
20150370250 | Bachrach et al. | Dec 2015 | A1 |
20150375339 | Sterling et al. | Dec 2015 | A1 |
20160011668 | Gilad-Bachrach et al. | Jan 2016 | A1 |
20160018948 | Parvarandeh et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160026768 | Singh et al. | Jan 2016 | A1 |
20160038083 | Ding et al. | Feb 2016 | A1 |
20160041617 | Poupyrev | Feb 2016 | A1 |
20160041618 | Poupyrev | Feb 2016 | A1 |
20160042169 | Polehn | Feb 2016 | A1 |
20160045706 | Gary et al. | Feb 2016 | A1 |
20160048235 | Poupyrev | Feb 2016 | A1 |
20160048236 | Poupyrev | Feb 2016 | A1 |
20160048672 | Lux et al. | Feb 2016 | A1 |
20160054792 | Poupyrev | Feb 2016 | A1 |
20160054803 | Poupyrev | Feb 2016 | A1 |
20160054804 | Gollakata et al. | Feb 2016 | A1 |
20160055201 | Poupyrev et al. | Feb 2016 | A1 |
20160075015 | Izhikevich et al. | Mar 2016 | A1 |
20160075016 | Laurent et al. | Mar 2016 | A1 |
20160077202 | Hirvonen et al. | Mar 2016 | A1 |
20160085296 | Mo et al. | Mar 2016 | A1 |
20160089042 | Saponas et al. | Mar 2016 | A1 |
20160090839 | Stolarcyzk | Mar 2016 | A1 |
20160096270 | Ibarz Gabardos et al. | Apr 2016 | A1 |
20160098089 | Poupyrev | Apr 2016 | A1 |
20160100166 | Dragne et al. | Apr 2016 | A1 |
20160103500 | Hussey et al. | Apr 2016 | A1 |
20160106328 | Mestha et al. | Apr 2016 | A1 |
20160124579 | Tokutake | May 2016 | A1 |
20160131741 | Park | May 2016 | A1 |
20160140872 | Palmer et al. | May 2016 | A1 |
20160145776 | Roh | May 2016 | A1 |
20160146931 | Rao et al. | May 2016 | A1 |
20160170491 | Jung | Jun 2016 | A1 |
20160171293 | Li et al. | Jun 2016 | A1 |
20160186366 | McMaster | Jun 2016 | A1 |
20160206244 | Rogers | Jul 2016 | A1 |
20160213331 | Gil et al. | Jul 2016 | A1 |
20160216825 | Forutanpour | Jul 2016 | A1 |
20160220152 | Meriheina et al. | Aug 2016 | A1 |
20160234365 | Alameh et al. | Aug 2016 | A1 |
20160238696 | Hintz | Aug 2016 | A1 |
20160249698 | Berzowska et al. | Sep 2016 | A1 |
20160252607 | Saboo et al. | Sep 2016 | A1 |
20160252965 | Mandella et al. | Sep 2016 | A1 |
20160253044 | Katz | Sep 2016 | A1 |
20160259037 | Molchanov et al. | Sep 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160282988 | Poupyrev | Sep 2016 | A1 |
20160283101 | Schwesig et al. | Sep 2016 | A1 |
20160284436 | Fukuhara et al. | Sep 2016 | A1 |
20160287172 | Morris et al. | Oct 2016 | A1 |
20160291143 | Cao et al. | Oct 2016 | A1 |
20160299526 | Inagaki et al. | Oct 2016 | A1 |
20160306034 | Trotta et al. | Oct 2016 | A1 |
20160320852 | Poupyrev | Nov 2016 | A1 |
20160320853 | Lien et al. | Nov 2016 | A1 |
20160320854 | Lien et al. | Nov 2016 | A1 |
20160321428 | Rogers | Nov 2016 | A1 |
20160338599 | DeBusschere et al. | Nov 2016 | A1 |
20160345638 | Robinson et al. | Dec 2016 | A1 |
20160349790 | Connor | Dec 2016 | A1 |
20160349845 | Poupyrev et al. | Dec 2016 | A1 |
20160377712 | Wu et al. | Dec 2016 | A1 |
20170011210 | Cheong et al. | Jan 2017 | A1 |
20170013417 | Zampini, II | Jan 2017 | A1 |
20170029985 | Tajitsu et al. | Feb 2017 | A1 |
20170052618 | Lee et al. | Feb 2017 | A1 |
20170060254 | Molchanov et al. | Mar 2017 | A1 |
20170060298 | Hwang et al. | Mar 2017 | A1 |
20170075481 | Chou et al. | Mar 2017 | A1 |
20170075496 | Rosenberg et al. | Mar 2017 | A1 |
20170097413 | Gillian et al. | Apr 2017 | A1 |
20170097684 | Lien | Apr 2017 | A1 |
20170115777 | Poupyrev | Apr 2017 | A1 |
20170124407 | Micks et al. | May 2017 | A1 |
20170125940 | Karagozler et al. | May 2017 | A1 |
20170131395 | Reynolds et al. | May 2017 | A1 |
20170164904 | Kirenko | Jun 2017 | A1 |
20170168630 | Khoshkava et al. | Jun 2017 | A1 |
20170192523 | Poupyrev | Jul 2017 | A1 |
20170192629 | Takada et al. | Jul 2017 | A1 |
20170196513 | Longinotti-Buitoni et al. | Jul 2017 | A1 |
20170231089 | Van Keymeulen | Aug 2017 | A1 |
20170232538 | Robinson et al. | Aug 2017 | A1 |
20170233903 | Jeon | Aug 2017 | A1 |
20170249033 | Podhajny et al. | Aug 2017 | A1 |
20170258366 | Tupin et al. | Sep 2017 | A1 |
20170291301 | Gabardos et al. | Oct 2017 | A1 |
20170322633 | Shen et al. | Nov 2017 | A1 |
20170325337 | Karagozler et al. | Nov 2017 | A1 |
20170325518 | Poupyrev et al. | Nov 2017 | A1 |
20170329412 | Schwesig et al. | Nov 2017 | A1 |
20170329425 | Karagozler et al. | Nov 2017 | A1 |
20170356992 | Scholten et al. | Dec 2017 | A1 |
20180000354 | DeBusschere et al. | Jan 2018 | A1 |
20180000355 | DeBusschere et al. | Jan 2018 | A1 |
20180004301 | Poupyrev | Jan 2018 | A1 |
20180005766 | Fairbanks et al. | Jan 2018 | A1 |
20180046258 | Poupyrev | Feb 2018 | A1 |
20180095541 | Gribetz et al. | Apr 2018 | A1 |
20180106897 | Shouldice et al. | Apr 2018 | A1 |
20180113032 | Dickey et al. | Apr 2018 | A1 |
20180157330 | Gu et al. | Jun 2018 | A1 |
20180160943 | Fyfe et al. | Jun 2018 | A1 |
20180177464 | DeBusschere et al. | Jun 2018 | A1 |
20180196527 | Poupyrev et al. | Jul 2018 | A1 |
20180256106 | Rogers et al. | Sep 2018 | A1 |
20180296163 | DeBusschere et al. | Oct 2018 | A1 |
20180321841 | Lapp | Nov 2018 | A1 |
20190030713 | Gabardos et al. | Jan 2019 | A1 |
20190033981 | Poupyrev | Jan 2019 | A1 |
20190138109 | Poupyrev et al. | May 2019 | A1 |
20190155396 | Lien et al. | May 2019 | A1 |
20190208837 | Poupyrev et al. | Jul 2019 | A1 |
20190232156 | Amihood et al. | Aug 2019 | A1 |
20190243464 | Lien et al. | Aug 2019 | A1 |
20190257939 | Schwesig et al. | Aug 2019 | A1 |
20190278379 | Gribetz et al. | Sep 2019 | A1 |
20190321719 | Gillian et al. | Oct 2019 | A1 |
20190391667 | Poupyrev | Dec 2019 | A1 |
20190394884 | Karagozler et al. | Dec 2019 | A1 |
20200064471 | Gatland et al. | Feb 2020 | A1 |
20200064924 | Poupyrev et al. | Feb 2020 | A1 |
20200089314 | Poupyrev et al. | Mar 2020 | A1 |
20200150776 | Poupyrev et al. | May 2020 | A1 |
20200218361 | Poupyrev | Jul 2020 | A1 |
20200229515 | Poupyrev et al. | Jul 2020 | A1 |
20200264765 | Poupyrev et al. | Aug 2020 | A1 |
20200278422 | Lien et al. | Sep 2020 | A1 |
20200326708 | Wang et al. | Oct 2020 | A1 |
20200393912 | Lien et al. | Dec 2020 | A1 |
20200409472 | Lien et al. | Dec 2020 | A1 |
20210096653 | Amihood et al. | Apr 2021 | A1 |
20210132702 | Poupyrev | May 2021 | A1 |
20210365124 | Gillian et al. | Nov 2021 | A1 |
20220019291 | Lien et al. | Jan 2022 | A1 |
20220043519 | Poupyrev et al. | Feb 2022 | A1 |
20220058188 | Poupyrev et al. | Feb 2022 | A1 |
20220066567 | Lien et al. | Mar 2022 | A1 |
20220066568 | Lien et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1299501 | Jun 2001 | CN |
1462382 | Dec 2003 | CN |
1862601 | Nov 2006 | CN |
101349943 | Jan 2009 | CN |
101636711 | Jan 2010 | CN |
101751126 | Jun 2010 | CN |
101910781 | Dec 2010 | CN |
102031615 | Apr 2011 | CN |
102160471 | Aug 2011 | CN |
102184020 | Sep 2011 | CN |
102414641 | Apr 2012 | CN |
102473032 | May 2012 | CN |
102782612 | Nov 2012 | CN |
102819315 | Dec 2012 | CN |
102893327 | Jan 2013 | CN |
106342197 | Feb 2013 | CN |
202887794 | Apr 2013 | CN |
103076911 | May 2013 | CN |
103091667 | May 2013 | CN |
103502911 | Jan 2014 | CN |
103534664 | Jan 2014 | CN |
102660988 | Mar 2014 | CN |
103675868 | Mar 2014 | CN |
103907405 | Jul 2014 | CN |
104035552 | Sep 2014 | CN |
104094194 | Oct 2014 | CN |
104115118 | Oct 2014 | CN |
104838336 | Aug 2015 | CN |
103355860 | Jan 2016 | CN |
106154270 | Nov 2016 | CN |
102011075725 | Nov 2012 | DE |
102013201359 | Jul 2014 | DE |
0161895 | Nov 1985 | EP |
1785744 | May 2007 | EP |
1815788 | Aug 2007 | EP |
2177017 | Apr 2010 | EP |
2417908 | Feb 2012 | EP |
2637081 | Sep 2013 | EP |
2770408 | Aug 2014 | EP |
2014165476 | Oct 2014 | EP |
2953007 | Dec 2015 | EP |
2923642 | Mar 2017 | EP |
3201726 | Aug 2017 | EP |
3017722 | Aug 2015 | FR |
2070469 | Sep 1981 | GB |
2443208 | Apr 2008 | GB |
113860 | Apr 1999 | JP |
11168268 | Jun 1999 | JP |
H11168268 | Jun 1999 | JP |
2003500759 | Jan 2003 | JP |
2003280049 | Oct 2003 | JP |
2006163886 | Jun 2006 | JP |
2006234716 | Sep 2006 | JP |
2007011873 | Jan 2007 | JP |
2007132768 | May 2007 | JP |
2007266772 | Oct 2007 | JP |
2007333385 | Dec 2007 | JP |
2008287714 | Nov 2008 | JP |
2008293501 | Dec 2008 | JP |
2009037434 | Feb 2009 | JP |
2010048583 | Mar 2010 | JP |
2010049583 | Mar 2010 | JP |
2011003202 | Jan 2011 | JP |
2011086114 | Apr 2011 | JP |
2011102457 | May 2011 | JP |
2012068854 | Apr 2012 | JP |
201218583. | Sep 2012 | JP |
2012185833 | Sep 2012 | JP |
2012198916 | Oct 2012 | JP |
2012208714 | Oct 2012 | JP |
2013016060 | Jan 2013 | JP |
2013037674 | Feb 2013 | JP |
2013196047 | Sep 2013 | JP |
2013251913 | Dec 2013 | JP |
2014503873 | Feb 2014 | JP |
2014532332 | Dec 2014 | JP |
2015507263 | Mar 2015 | JP |
2015509634 | Mar 2015 | JP |
2021085256 | Jun 2021 | JP |
1020080102516 | Nov 2008 | KR |
100987650 | Oct 2010 | KR |
20130045222 | May 2013 | KR |
1020130137005 | Dec 2013 | KR |
20140027837 | Mar 2014 | KR |
20140053988 | May 2014 | KR |
1020140055985 | May 2014 | KR |
101999712 | Jan 2017 | KR |
101914850 | Oct 2018 | KR |
201425974 | Jul 2014 | TW |
9001895 | Mar 1990 | WO |
0130123 | Apr 2001 | WO |
2001027855 | Apr 2001 | WO |
0175778 | Oct 2001 | WO |
2002082999 | Oct 2002 | WO |
2004004557 | Jan 2004 | WO |
2004053601 | Jun 2004 | WO |
2005033387 | Apr 2005 | WO |
2005103863 | Nov 2005 | WO |
2007125298 | Nov 2007 | WO |
2008061385 | May 2008 | WO |
2009032073 | Mar 2009 | WO |
2009083467 | Jul 2009 | WO |
2009148064 | Dec 2009 | WO |
2010032173 | Mar 2010 | WO |
2010101697 | Sep 2010 | WO |
2012026013 | Mar 2012 | WO |
2012064847 | May 2012 | WO |
2012152476 | Nov 2012 | WO |
2013082806 | Jun 2013 | WO |
2013084108 | Jun 2013 | WO |
2013137412 | Sep 2013 | WO |
2013154864 | Oct 2013 | WO |
2013186696 | Dec 2013 | WO |
2013191657 | Dec 2013 | WO |
2013192166 | Dec 2013 | WO |
2014019085 | Feb 2014 | WO |
2014032984 | Mar 2014 | WO |
2014085369 | Jun 2014 | WO |
2014116968 | Jul 2014 | WO |
2014124520 | Aug 2014 | WO |
2014136027 | Sep 2014 | WO |
2014138280 | Sep 2014 | WO |
2014160893 | Oct 2014 | WO |
2014165476 | Oct 2014 | WO |
2014204323 | Dec 2014 | WO |
2015017931 | Feb 2015 | WO |
2015018675 | Feb 2015 | WO |
2015022671 | Feb 2015 | WO |
2015099796 | Jul 2015 | WO |
2015149049 | Oct 2015 | WO |
2016053624 | Apr 2016 | WO |
2016118534 | Jul 2016 | WO |
2016154560 | Sep 2016 | WO |
2016154568 | Sep 2016 | WO |
2016176471 | Nov 2016 | WO |
2016176600 | Nov 2016 | WO |
2016176606 | Nov 2016 | WO |
2016178797 | Nov 2016 | WO |
2017019299 | Feb 2017 | WO |
2017062566 | Apr 2017 | WO |
2017079484 | May 2017 | WO |
2017200570 | Nov 2017 | WO |
2017200571 | Nov 2017 | WO |
20170200949 | Nov 2017 | WO |
2018106306 | Jun 2018 | WO |
Entry |
---|
“Advisory Action”, U.S. Appl. No. 16/689,519, dated Jun. 30, 2021, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/563,124, dated Jul. 8, 2021, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/005,207, dated Jul. 14, 2021, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/822,601, dated Aug. 5, 2021, 9 pages. |
“Final Office Action”, U.S. Appl. No. 17/023,122, dated Apr. 7, 2022, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/023,122, dated Jan. 24, 2022, 25 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/875,427, dated Feb. 22, 2022, 13 pages. |
“Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages. |
“Advisory Action”, U.S. Appl. No. 15/704,825, dated Feb. 10, 2021, 4 pages. |
“Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.com/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report. |
Application No. PCT/US2016/026756 on Nov. 10, 2017; The Verge, paragraph 1, Sep. 9, 2014, 4 pages. |
“Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8>, Feb. 24, 2015, 6 pages. |
“Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages. |
“Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages. |
“Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 6, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Jan. 28, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/744,626, dated Feb. 3, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/669,842, dated Feb. 18, 2021, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Sep. 30, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 15, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Dec. 14, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Dec. 18, 2020, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017 , 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages. |
“EP Appeal Decision”, European Application No. 10194359.5, May 28, 2019, 20 pages. |
“European Search Report”, European Application No. 16789735.4, dated Nov. 14, 2018, 4 pages. |
“Extended European Search Report”, European Application No. 19164113.3, dated Jun. 13, 2019, 11 pages. |
“Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages. |
“Extended European Search Report”, European Application No. 19158625.4, dated May 8, 2019, 16 pages. |
“Extended European Search Report”, EP Application No. 20174555.1, dated Oct. 13, 2020, 9 pages. |
“Final Office Action”, U.S. Appl. No. 15/462,957, dated Nov. 8, 2019, 10 Pages. |
“Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016 10 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages. |
“Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,155, dated Apr. 10, 2019, 11 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages. |
“Final Office Action”, U.S. Appl. No. 16/689,519, dated Apr. 29, 2021, 13 pages. |
“Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages. |
“Final Office Action”, U.S. Appl. No. 16/503,234, dated Dec. 30, 2020, 14 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages. |
“Final Office Action”, U.S. Appl. No. 16/238,464, dated Jul. 25, 2019, 15 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,359, dated Feb. 19, 2020, 16 Pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages. |
“Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages. |
“Final Office Action”, U.S. Appl. No. 15/704,825, dated Nov. 23, 2020, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/596,702, dated Jun. 13, 2019, 21 pages. |
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/599,954, dated Aug. 10, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages. |
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages. |
“Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages. |
“Final Office Action”, U.S. Appl. No. 15/704,615, dated Dec. 11, 2020, 26 pages. |
“Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages. |
“Final Office Action”, U.S. Appl. No. 15/596,702, dated Apr. 14, 2020, 27 pages. |
“Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages. |
“Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages. |
“Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages. |
“Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages. |
“Final Office Action”, U.S. Appl. No. 15/287,394, dated Sep. 30, 2019, 38 Pages. |
“Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages. |
“Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages. |
“Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages. |
“Final Office Action”, Korean Application No. 10-2016-7036023, dated Feb. 19, 2018, 8 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages. |
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages. |
“First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 5, 2019, 29 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 16/080,293, dated Jul. 23, 2020, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages. |
“First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages. |
“First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages. |
“First Exam Report”, EP Application No. 15754352.1, dated Mar. 5, 2018, 7 pages. |
“First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages. |
“Foreign Office Action”, CN Application No. 201580034536.8, dated Oct. 9, 2018. |
“Foreign Office Action”, KR Application No. 1020187029464, dated Oct. 30, 2018, 1 page. |
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages. |
“Foreign Office Action”, CN Application No. 201680020123.9, dated Nov. 29, 2019, 10 pages. |
“Foreign Office Action”, CN Application No. 201580034908.7, dated Feb. 19, 2019, 10 pages. |
“Foreign Office Action”, CN Application No. 201611159602.7, dated Jul. 23, 2020, 10 pages. |
“Foreign Office Action”, CNM Application No. 201611191179.9, dated Aug. 28, 2019, 10 pages. |
“Foreign Office Action”, KR Application No. 10-2021-7007454, dated Apr. 29, 2021, 11 pages. |
“Foreign Office Action”, CN Application No. 201710922856.8, dated Jun. 19, 2020, 11 pages. |
“Foreign Office Action”, JP Application No. 2018-501256, dated Jul. 24, 2018, 11 pages. |
“Foreign Office Action”, JP Application No. 2019-078554, dated Jul. 21, 2020, 12 pages. |
“Foreign Office Action”, CN Application No. 201580036075.8, dated Jul. 4, 2018, 14 page. |
“Foreign Office Action”, EP Application No. 16725269.1, dated Nov. 26, 2018, 14 pages. |
“Foreign Office Action”, CN Application No. 201680021212.5, dated Sep. 3, 2019, 14 pages. |
“Foreign Office Action”, JP Application No. 2016-563979, dated Sep. 21, 2017, 15 pages. |
“Foreign Office Action”, JP Application No. 1020187027694, dated Nov. 23, 2018, 15 pages. |
“Foreign Office Action”, CN Application No. 201611159870.9, dated Dec. 17, 2019, 15 pages. |
“Foreign Office Action”, EP Application No. 16725269.1, dated Mar. 24, 2020, 15 pages. |
“Foreign Office Action”, JP Application No. 2020027181, dated Nov. 17, 2020, 16 pages. |
“Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages. |
“Foreign Office Action”, CN Application No. 201510300495.4, dated Jun. 21, 2018, 18 pages. |
“Foreign Office Action”, CN Application No. 201680020567.2, dated Sep. 26, 2019, 19 pages. |
“Foreign Office Action”, KR Application No. 10-2019-7004803, dated Oct. 14, 2019, 2 pages. |
“Foreign Office Action”, KR Application No. 10-2019-7004803, dated Dec. 6, 2019, 2 pages. |
“Foreign Office Action”, CN Application No. 201611159602.7, dated Oct. 11, 2019, 20 pages. |
“Foreign Office Action”, CN Application No. 201580035246.5, dated Jan. 31, 2019, 22 pages. |
“Foreign Office Action”, CN Application No. 201680021213.X, dated Oct. 28, 2019, 26 pages. |
“Foreign Office Action”, EP Application No. 16725269.1, dated Feb. 9, 2021, 26 pages. |
“Foreign Office Action”, CN Application No. 201680038897.4, dated Jun. 29, 2020, 28 pages. |
“Foreign Office Action”, JP Application No. 2018156138, dated May 22, 2019, 3 pages. |
“Foreign Office Action”, JP Application No. 2016-567813, dated Jan. 16, 2018, 3 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages. |
“Foreign Office Action”, GB Application No. 1621332.4, dated Nov. 6, 2019, 3 pages. |
“Foreign Office Action”, JP Application No. 2018501256, dated Feb. 26, 2019, 3 pages. |
“Foreign Office Action”, JP Application No. 2018156138, dated Apr. 22, 2020, 3 pages. |
“Foreign Office Action”, JP Application No. 2016-567839, dated Apr. 3, 2018, 3 pages. |
“Foreign Office Action”, JP Application No. 2018-021296, dated Apr. 9, 2019, 3 pages. |
“Foreign Office Action”, EP Application No. 16784352.3, dated May 16, 2018, 3 pages. |
“Foreign Office Action”, JP Application No. 2016-563979, dated May 21, 2018, 3 pages. |
“Foreign Office Action”, CN Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages. |
“Foreign Office Action”, JP Application No. 2018156138, dated Sep. 30, 2019, 3 pages. |
“Foreign Office Action”, CN Application No. 201680038897.4, dated Feb. 1, 2021, 30 pages. |
“Foreign Office Action”, EP Application No. 15170577.9, dated Dec. 21, 2018, 31 pages. |
“Foreign Office Action”, JP Application No. 2016-575564, dated Jan. 10, 2019, 4 pages. |
“Foreign Office Action”, GB Application No. 1621191.4, dated Dec. 31, 2020, 4 pages. |
“Foreign Office Action”, CN Application No. 201721290290.3, dated Mar. 9, 2018, 4 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Apr. 12, 2018, 4 pages. |
“Foreign Office Action”, JP Application No. 2016-575564, dated Jul. 10, 2018, 4 pages. |
“Foreign Office Action”, KR Application No. 10-2021-7009474, dated May 10, 2021, 5 pages. |
“Foreign Office Action”, KR Application No. 1020217011901, dated Jun. 4, 2021, 5 pages. |
“Foreign Office Action”, GB Application No. 1621192.2, dated Jun. 17, 2020, 5 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages. |
“Foreign Office Action”, JP Application No. 2018169008, dated Jan. 14, 2020, 5 pages. |
“Foreign Office Action”, JP Application No. 2018501256, dated Oct. 23, 2019, 5 pages. |
“Foreign Office Action”, KR Application No. 10-2017-7027877, dated Nov. 23, 2018, 5 pages. |
“Foreign Office Action”, JP Application No. 2017-541972, dated Nov. 27, 2018, 5 pages. |
“Foreign Office Action”, EP Application No. 15754352.1, dated Nov. 7, 2018, 5 pages. |
“Foreign Office Action”, EP Application No. 16784352.3, dated Dec. 9, 2020, 5 pages. |
“Foreign Office Action”, EP Application No. 16789735.4, dated Dec. 12, 2018, 5 pages. |
“Foreign Office Action”, JP Application No. 2016-575564, dated Dec. 5, 2017, 5 pages. |
“Foreign Office Action”, GB Application No. 1620891.0, dated Dec. 6, 2018, 5 pages. |
“Foreign Office Action”, CN Application No. 201580036075.8, dated Feb. 19, 2019, 5 pages. |
“Foreign Office Action”, JP Application No. 2016-563979, dated Feb. 7, 2018, 5 pages. |
“Foreign Office Action”, KR Application No. 1020187004283, dated Sep. 11, 2020, 5 pages. |
“Foreign Office Action”, GB Application No. 1912334.8, dated Sep. 23, 2019, 5 pages. |
“Foreign Office Action”, KR Application No. 10-2019-7004803, dated Jan. 21, 2021, 6 pages. |
“Foreign Office Action”, KR Application No. 1020197019768, dated Sep. 30, 2019, 6 pages. |
“Foreign Office Action”, KR Application No. 10-2017-7027871, dated Nov. 23, 2018, 6 pages. |
“Foreign Office Action”, CN Application No. 201510300495.4, dated Apr. 10, 2019, 6 pages. |
“Foreign Office Action”, KR Application No. 10-2019-7004803, dated Apr. 26, 2019, 6 pages. |
“Foreign Office Action”, KR Application No. 1020187012629, dated May 24, 2018, 6 pages. |
“Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages. |
“Foreign Office Action”, KR Application No. 1020197023675, dated Jul. 13, 2020, 7 pages. |
“Foreign Office Action”, KR Application No. 2019-7020454, dated Aug. 26, 2020, 7 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7036396, dated Jan. 3, 2018, 7 pages. |
“Foreign Office Action”, EP Application No. 16716351.8, dated Mar. 15, 2019, 7 pages. |
“Foreign Office Action”, CN Application No. 201680021213.X, dated Aug. 27, 2020, 7 pages. |
“Foreign Office Action”, IN Application No. 201747044162, dated Sep. 3, 2020, 7 pages. |
“Foreign Office Action”, JP Application No. 2016-567813, dated Sep. 22, 2017, 8 pages. |
“Foreign Office Action”, KR Application No. 1020187004283, dated Jan. 3, 2020, 8 pages. |
“Foreign Office Action”, JP Application No. 2018021296, dated Dec. 25, 2018, 8 pages. |
“Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages. |
“Foreign Office Action”, EP Application No. 16724775.8, dated Nov. 23, 2018, 9 pages. |
“Foreign Office Action”, DE Application No. 102016014611.7, dated Sep. 28, 2020, 9 pages. |
“Foreign Office Action”, KR Application No. 10-2016-7032967, English Translation, dated Sep. 14, 2017, 4 pages. |
“Foreign Office Acton”, EP Application No. 21156948.8, dated May 21, 2021, 15 pages. |
“Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From <http://www.geekzone.co.nz/content.asp?contentid=3898>, Jan. 7, 2005, 2 pages. |
“Galaxy S4 Air Gesture”, Galaxy S4 Guides, retrieved from: https://allaboutgalaxys4.com/galaxy-s4-features-explained/air-gesture/ on Sep. 3, 2019, 4 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2016/063874, dated Nov. 29, 2018, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages. |
“International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages. |
“International Search Report and Written Opinion”, PCT/US2017/047691, dated Nov. 16, 2017, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043963, dated Nov. 24, 2015, 16 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/030115, dated Aug. 8, 2016, 18 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016 , 20 pages. |
“Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/153,395, dated Oct. 22, 2019, 10 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/843,813, dated Mar. 18, 2021, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/669,842, dated Sep. 3, 2020, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/252,477, dated Jan. 10, 2020, 13 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Oct. 21, 2019, 21 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/704,825, dated Jun. 1, 2020, 22 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/791,044, dated Sep. 30, 2019, 22 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/689,519, dated Oct. 20, 2020, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/005,207, dated Apr. 1, 2021, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Aug. 19, 2020, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Sep. 3, 2019, 28 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/704,615, dated Jun. 1, 2020, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/699,181, dated Oct. 18, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/744,626, dated Sep. 23, 2020, 9 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jun. 29, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages. |
“Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, May 29, 2009, 2 pages. |
“Notice of Allowability”, U.S. Appl. No. 16/560,085, dated Nov. 12, 2020, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/744,626, dated Jan. 1, 2021, 10 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/238,464, dated Nov. 4, 2019, 10 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/424,263, dated Nov. 14, 2019, 10 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,394, dated Mar. 4, 2020, 11 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/153,395, dated Feb. 20, 2020, 13 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/917,238, dated Aug. 21, 2019, 13 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,253, dated Aug. 26, 2019, 13 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,512, dated Apr. 9, 2019, 14 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/401,611, dated Jun. 10, 2020, 17 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,308, dated Jul. 17, 2019, 17 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Feb. 11, 2020, 5 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/093,533, dated Jul. 16, 2020, 5 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,359, dated Apr. 14, 2021, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul. 10, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,471, dated Aug. 6, 2020, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 16/389,402, dated Aug. 21, 2019, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Sep. 15, 2020, 7 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/731,195, dated Apr. 24, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/287,155, dated Jul. 25, 2019, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/462,957, dated Jan. 23, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/791,044, dated Feb. 12, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,121, dated Jun. 1, 2021, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/503,234, dated Jun. 11, 2021, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Jun. 24, 2020, 8 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Oct. 19, 2020, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/669,842, dated Dec. 18, 2020, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Oct. 17, 2019, 9 Pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated Mar. 15, 2018, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages. |
“Patent Board Decision”, U.S. Appl. No. 14/504,121, dated May 20, 2021, 9 pages. |
“Philips Vital Signs Camera”, Retrieved From <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 16/380,245, dated Jun. 15, 2020, 3 Pages. |
“Pre-Interview Communication”, U.S. Appl. No. 16/080,293, dated Jun. 25, 2020, 3 Pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/142,471, dated Dec. 12, 2018, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 16/401,611, dated Apr. 13, 2020, 4 Pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 11, 2019, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages. |
“Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages. |
“Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages. |
“Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/034366, dated Dec. 7, 2017, 10 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/030177, dated Oct. 31, 2017, 11 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/030115, dated Oct. 31, 2017, 15 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/030185, dated Nov. 9, 2017, 16 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/062082, dated Nov. 15, 2018, 8 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages. |
“Preliminary Report on Patentability”, Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages. |
“Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?t itle=Pressure-volume loop analysis in card iology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 on Jul. 28, 2016, Dec. 6, 2014, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/976,518, dated Jul. 9, 2020, 5 Pages. |
“Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 16/563,124, dated Apr. 5, 2021, 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages. |
“Samsung Galaxy S4 Air Gestures”, Video retrieved from https://www.youtube.com/watch?v=375Hb87yGcg, May 7, 2013, 4 pages. |
“Search Report”, GB Application No. 2007255.9, dated Jul. 6, 2020, 1 page. |
“Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages. |
“The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014, 3 pages. |
“The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages. |
“Thermofocus No Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014. https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages. |
“Written Opinion”, Application No. PCT/US2016/030185, dated Nov. 3, 2016, 15 pages. |
“Written Opinion”, Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages. |
“Written Opinion”, Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages. |
“Written Opinion”, Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages. |
“Written Opinion”, PCT Application No. PCT/US2016/060399, dated May 11, 2017, 6 pages. |
“Written Opinion”, Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages. |
“Written Opinion”, Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages. |
“Written Opinion”, Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages. |
“Written Opinion”, Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages. |
“Written Opinion”, Application No. PCT/US2016/013968, dated Jul. 28, 2016, 9 pages. |
“Written Opinion”, Application No. PCT/US2016/030177, dated Nov. 3, 2016, 9 pages. |
Amihood, Patrick M. et al., “Closed-Loop Manufacturing System Using Radar”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/464, Apr. 17, 2017, 8 pages. |
Antonimuthu, , “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35. |
Arbabian, Amin et al., “A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, Apr. 4, 2013, pp. 1055-1071. |
Azevedo, Stephen et al., “Micropower Impulse Radar”, Science & Technology Review, Feb. 29, 1996, 7 pages. |
Badawy, Wael , “System on Chip”, Section 1.1 “Real-Time Applications” Springer Science & Business Media,, 2003, 14 pages. |
Balakrishnan, Guha et al., “Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Available at: <http://people.csail.mit.edu/mrub/vidmag/papers/Balakrishnan_Detecting_Pulse_from_2013_CVPR_paper.pdf>, Jun. 23, 2013, 8 pages. |
Bondade, Rajdeep et al., “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages. |
Cheng, Jingyuan , “Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, Jul. 2013, pp. 81-84. |
Couderc, Jean-Philippe et al., “Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, 7 pages. |
Dias, T et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 5, No. 5, Oct. 1, 2005 (Oct. 1, 2005), pp. 989-994, XP011138559, ISSN: 1530-437X, DOI: 10.1109/JSEN.2005.844327, Oct. 1, 2005, 5 pages. |
Duncan, David P. , “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages. |
Espina, Javier et al., “Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, 5 pages. |
Fan, Tenglong et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427, Nov. 1, 2016. |
Farringdon, Jonny et al., “Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, Sep. 2000, 7 pages. |
Felch, Andrew et al., “Standard Radar API: Proposal Version 0.1”, Technical Disclosure Commons, Jan. 24, 2021, 18 pages. |
Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, 10 pages. |
Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE, 2001, 5 pages. |
Godana, Bruhtesfa E. , “Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Nov. 30, 2009, 100 pages. |
Guerra, Anna et al., “Millimeter-Wave Personal Radars for 3D Environment Mapping”, 48th ASILOMAR Conference On Signals, Systems and Computer, Nov. 2014, pp. 701-705. |
Gürbüz, Sevgi Z. et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages. |
He, David D. , “A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (BCG) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute Of Technology Available at: <http://dspace.mit.edu/handle/1721.1/79221>, 137 pages. |
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages. |
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference On Human Computer Interaction With Mobile Devices and Services, XP055223937, New York, NY, US; DOI: 10.1145/1409240.1409250; ISBN: 978-1-59593-952-4, Jan. 1, 2008, 11 pages. |
Hollington, Jessie , “Playing back all songs on iPod”, retrieved at: https://www.ilounge.com/index.php/articles/comments/playing-back-all-songs-on-ipod, Aug. 22, 2008, 2 pages. |
Ishijima, Masa , “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 on Jul. 28, 2016, Sep. 26, 2007, 3 pages. |
Karagozler, Mustafa E. et al., “Embedding Radars in Robots to Accurately Measure Motion”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/454, Mar. 30, 2017, 8 pages. |
Klabunde, Richard E. , “Ventricular Pressure-Volume Loop Changes in Valve Disease”, Retrieved From <https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010 , 8 pages. |
Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 12 pages. |
Lee, Cullen E. , “Computing the Apparent Centroid of Radar Targets”, Sandia National Laboratories; Presented at the Proceedings of the 1996 IEEE National Radar Conference: Held at the University of Michigan; May 13-16, 1996; retrieved from https://www.osti.gov/scitech/servlets/purl/218705 on Sep. 24, 2017, 21 pages. |
Lien, Jaime et al., “Embedding Radars in Robots for Safety and Obstacle Detection”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/455, Apr. 2, 2017, 10 pages. |
Lien, Jaime et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, Us, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages. |
Martinez-Garcia, Hermino et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages. |
Matthews, Robert J. , “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages. |
Nakajima, Kazuki et al., “Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3; Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3_401.pdf> Feb. 27, 2015, 8 pages. |
Narasimhan, Shar , “Combining Self- & Mutual-Capacitive Sensing for Distinct User Advantages”, Retrieved from the Internet: URL:http://www.designnews.com/author.asp? section_id=1365&doc_id=271356&print=yes [retrieved on Oct. 1, 2015], Jan. 31, 2014, 5 pages. |
Otto, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages. |
Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, ORL—head and neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013 , pp. 8-12. |
Patel, P C. et al., “Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages. |
Poh, Ming-Zher et al., “A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRAPH Emerging Technologies Available at: <http://affect.media.mit.edu/pdfs/11.Poh-etal-SIGGRAPH.pdf>, Jan. 1, 2011 , 1 page. |
Poh, Ming-Zher et al., “Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10 Available at: <http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%2Fwww%2Eopticsinfobase%2Eorg%2FDirectPDFAccess%2F77B04D55%2DBC95%2D6937%2D5BAC49A426378C02%5F199381%2Foe%2D18%2D10%2D10762%2Ep, May 7, 2010 , 13 pages. |
Pu, Qifan et al., “Gesture Recognition Using Wireless Signals”, Oct. 2014, pp. 15-18. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, Sep. 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages. |
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 2013, pp. 27-38, Sep. 30, 2013, 12 pages. |
Pu, Quifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013 , 12 pages. |
Schneegass, Stefan et al., “Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 13, 2014, 6 pages. |
Skolnik, Merrill I. , “CW and Frequency-Modulated Radar”, In “Introduction To Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages. |
Stoppa, Matteo , “Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992. |
Wang, Wenjin et al., “Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015 , 11 pages. |
Wang, Yazhou et al., “Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106. |
Wijesiriwardana, R et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages. |
Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. # Cambridge University Press and the European Microwave Association, 2011 doi:10.1017/S1759078711000122, 2011. |
Zhadobov, Maxim et al., “Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 1, 2011, 11 pages. |
Zhang, Ruquan et al., “Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages. |
Zheng, Chuan et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages. |
“Foreign Notice of Allowance”, KR Application No. 10-2021-7011901, dated Oct. 12, 2021, 3 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/875,427, dated Oct. 5, 2021, 37 pages. |
“Notice of Allowance”, U.S. Appl. No. 16/689,519, dated Sep. 30, 2021, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 17/148,374, dated Oct. 14, 2021, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Sep. 8, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages. |
“Non-Final Office Action”,U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/976,518, dated Nov. 25, 2020, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/822,601, dated Mar. 15, 2021, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Mar. 18, 2021, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Aug. 5, 2020, 18 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Jun. 26, 2020, 19 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Oct. 28, 2020, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages. |
“Foreign Office Action”, JP Application No. 2021-85256, dated Apr. 20, 2022, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 17/506,605, dated Jul. 27, 2022, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210326642 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62237975 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15287359 | Oct 2016 | US |
Child | 17361824 | US |