User-customized deceptions and their deployment in networks

Information

  • Patent Grant
  • 10382483
  • Patent Number
    10,382,483
  • Date Filed
    Thursday, August 2, 2018
    6 years ago
  • Date Issued
    Tuesday, August 13, 2019
    5 years ago
Abstract
A system for generating and deploying custom deceptions for a network, including an administrator computer for generating custom deception entities (CDEs), each CDE including parameters including inter alia (i) a type of entity, (ii) conditions for deployment of the CDE, and (iii) a deception type, and a management server, comprising an application programming interface for use by the administrator computer to generate CDEs through the medium of a formal language for specifying deceptions, and a translator for translating formal language CDEs to deceptions that are installable in network endpoint computers, wherein the management computer receives a request from a network endpoint computer to retrieve CDEs, selects CDEs that are relevant to the requesting network endpoint computer based on the parameters of the CDE, translates the requested CDEs to installable deceptions, and transmits the installable deceptions to the network endpoint computer for installation thereon.
Description
CROSS REFERENCES TO RELATED APPLICATIONS

The contents of the following of applicant's US patent applications are hereby incorporated herein in their entireties.

    • U.S. patent application Ser. No. 15/722,351, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Oct. 2, 2017 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. patent application Ser. No. 15/403,194, now U.S. Pat. No. 9,787,715, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jan. 11, 2017 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. patent application Ser. No. 15/004,904, now U.S. Pat. No. 9,553,885, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jan. 23, 2016 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,251, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,253, entitled SYSTEM AND METHOD FOR MULTI-LEVEL DECEPTION MANAGEMENT AND DECEPTION SYSTEM FOR MALICIOUS ACTIONS IN A COMPUTER NETWORK, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,255, entitled METHODS AND SYSTEMS TO DETECT, PREDICT AND/OR PREVENT AN ATTACKER'S NEXT ACTION IN A COMPROMISED NETWORK, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,259, entitled MANAGING DYNAMIC DECEPTIVE ENVIRONMENTS, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,261, entitled SYSTEMS AND METHODS FOR AUTOMATICALLY GENERATING NETWORK ENTITY GROUPS BASED ON ATTACK PARAMETERS AND/OR ASSIGNMENT OF AUTOMATICALLY GENERATED SECURITY POLICIES, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.


FIELD OF THE INVENTION

The present invention relates to computer security, and in particular to preventing attackers from breaching computer networks.


BACKGROUND OF THE INVENTION

Reference is made to FIG. 1, which is a simplified diagram of a prior art organization network 100 connected to an external internet 10. Network 100 is shown generally with resources including endpoint computers 110, databases 120, switches and routers 130, and mobile devices 140 such as smart phones and tablets, for ease of presentation, although it will be appreciated by those skilled in the art that organization networks today are generally much more complex and include other devices such as printers, other types of network elements such as relays, and any Internet of Things objects. The various connections shown in FIG. 1 may be direct or indirect, wired or wireless communications, or a combination of wired and wireless connections. Endpoint computers 110 and databases 120 may be physical elements or logical elements, or a mix of physical and logical elements. Endpoint computers 110 and databases 120 may be virtual machines. Endpoint computer 110 and databases 120 may be local, remote or cloud-based elements, or a mix of local, remote and cloud-based elements. Endpoint computers 110 may be client workstation computers, or server computers including inter alia file transfer protocol (FTP) servers, email servers, structured query language (SQL) servers, secure shell (SSH) servers and other application servers, or a mix of client and server computers. An organization's information technology (IT) department manages and controls network 100 in order to serve the organization's requirements and meet the organization's needs.


Access to endpoint computers 110 and databases 120 in network 100 may optionally be governed by an access governor 150, such as a directory service, that authorizes users to access endpoint computers 110 and databases 120 based on “credentials”. Access governor 150 may be a name directory, such as ACTIVE DIRECTORY® developed by Microsoft Corporation of Redmond, Wash., for WINDOWS® environments. Background information about ACTIVE DIRECTORY is available at Wikipedia. Other access governors for WINDOWS and non-WINDOWS environments, include inter alia Lightweight Directory Access Protocol (LDAP), Remote Authentication Dial-In User Service (RADIUS), and Apple Filing Protocol (AFP), formerly APPLETALK®, developed by Apple Inc. of Cupertino, Calif. Background information about LDAP, RADIUS and AFP is available at Wikipedia.


Access governor 150 may be one or more local machine access controllers. Access governor 150 may be one or more authorization servers, such as a database server or an application server.


In lieu of access governor 150, the endpoints and/or servers of network 100 determine their local access rights.


Credentials for accessing endpoint computers 110 and databases 120 include inter alia server account credentials such as <address> <username> <password> for an FTP server, an SQL server, or an SSH server. Credentials for accessing endpoint computers 110 and databases 120 also include user login credentials <username> <password>, or <username> <ticket>, where “ticket” is an authentication ticket, such as a ticket for the Kerberos authentication protocol or NTLM hash used by Microsoft Corp., or login credentials via certificates or via another implementation used today or in the future. Background information about the Kerberos protocol and the LM hash is available at Wikipedia.


Access governor 150 may maintain a directory of endpoint computers 110, databases 120 and their users. Access governor 150 authorizes users and computers, assigns and enforces security policies, and installs and updates software. When a user logs into an endpoint computer 110, access governor 150 checks the submitted password, and determines if the user is an administrator (admin), a normal user (user) or other user type.


Endpoint computers 110 may run a local or remote security service, which is an operating system process that verifies users logging in to computers and other single sign-on systems and other credential storage systems.


Network 100 may include a security information and event management (SIEM) server 160, which provides real-time analysis of security alerts generated by network hardware and applications. Background information about SIEM is available at Wikipedia.


Network 100 may include a domain name system (DNS) server 170, or such other name service system, for translating domain names to IP addresses. Background information about DNS is available at Wikipedia.


Network 100 may include a firewall 180 located within a demilitarized zone (DMZ), which is a gateway between organization network 100 and external internet 10. Firewall 180 controls incoming and outgoing traffic for network 100. Background information about firewalls and DMZ is available at Wikipedia.


One of the most prominent threats that organizations face is a targeted attack; i.e., an individual or group of individuals that attacks the organization for a specific purpose, such as leaking data from the organization, modifying data and systems, and sabotaging data and systems.


Targeted attacks are carried out in multiple stages, typically including inter alia reconnaissance, penetration, lateral movement and payload. Lateral movement involves establishing a foothold within the organization and expanding that foothold to additional systems within the organization.


In order to carry out the lateral movement stage, an attacker, whether a human being who is operating tools within the organization's network, or a tool with “learning” capabilities, learns information about the environment it is operating in, such as network topology, organization structure, and implemented security solutions, and then operates in accordance with that data. One method to defend against such attacks is to plant misleading information/decoys/bait with the aim that the attacker learns of their existence and consumes those bait resources, which are monitored so as to notify an administrator of malicious activity. In order to monitor usage of deceptive information, decoy servers, referred to as “honeypots”, are deployed in the organization. Background information about honeypots is available at Wikipedia.


Decoy servers try to mimic attractive real servers. However, a challenge in deploying decoy servers is to make then appear authentic. Specifically, an effective honeypot needs to appear reliable to an attacker, in particular matching attributes of real hosts such as operating system types, and local installed products.


Planting deceptions that appear reliable is a challenging issue. Conventionally, a lot of research must be carried out in order to generate reliable deceptions to plant in network resources, and the administrator, or such other user, does of have the capability to customize deceptions. I.e., the selection of deceptions is limited to those that the conventional security system provides.


SUMMARY

Embodiments of the present invention enable an administrator or other such user to generate custom deceptions. The administrator or such other user can conduct their own research and plant their own generated deceptions, irrespective of what conventional security systems offer.


Embodiments of the present invention provide a formal language for defining customize deceptions, and a formal language translation unit to generate deceptions that are installable in endpoints of the network.


There is thus provided in accordance with an embodiment of the present invention a system for generating and deploying custom deceptions for a network, including an administrator computer for generating custom deception entities (CDEs), each CDE including parameters including inter alia (i) a type of entity, (ii) conditions for deployment of the CDE, and (iii) a deception type, and a management server, comprising an application programming interface for use by the administrator computer to generate CDEs through the medium of a formal language for specifying deceptions, and a translator for translating formal language CDEs to deceptions that are installable in network endpoint computers, wherein the management computer receives a request from a network endpoint computer to retrieve CDEs, selects CDEs that are relevant to the requesting network endpoint computer based on the parameters of the CDE, translates the requested CDEs to installable deceptions, and transmits the installable deceptions to the network endpoint computer for installation thereon.


There is additionally provided in accordance with an embodiment of the present invention a method performed by a management server of a network for generating and deploying custom deceptions for the network, including generating custom deception entities (CDEs) through the medium of a formal language for specifying deceptions, each CDE including parameters including inter alia (i) a type of entity, (ii) conditions for deployment of the CDE, and (iii) a deception type, receiving a request from a network endpoint computer to retrieve CDEs, selecting CDEs that are relevant to the requesting network endpoint computer based on the parameters of the CDE, translating the selected CDEs from their formal language description to installable deceptions, and transmitting the installable deceptions to the network endpoint computer for installation thereon.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:



FIG. 1 is a simplified diagram of a prior art enterprise network connected to an external internet;



FIG. 2 is a simplified diagram of a system that generates and deploys custom deceptions, in accordance with an embodiment of the present invention;



FIG. 3 is a simplified diagram showing how custom deceptions are deployed, in accordance with an embodiment of the present invention; and



FIG. 4 is a simplified flowchart of a method for generating and deploying custom deceptions, in accordance with an embodiment of the present invention.





For reference to the figures, the following index of elements and their numerals is provided. Similarly numbered elements represent elements of the same type, but they need not be identical elements.









TABLE I







Elements in the figures










Element
Description







 10
Internet



100
enterprise network



110
endpoint computer



120
network databases



130
network switches and routers



140
mobile devices



150
access governor (optional)



160
SIEM server



170
DNS server



180
firewall



200
enterprise network with custom deceptions



210
management server



211
API for custom deceptions



212
translator



213
deployer



214
forensic application



215
policy manager



230
policies database



240
trap servers



242
forensic alert module










Elements numbered in the 1000's are operations of flow charts.


DETAILED DESCRIPTION

In accordance with embodiments of the present invention, systems and methods are provided for generating, deploying and managing custom deceptions. These systems and methods employ a special formal language for defining deceptions of various types.


Reference is made to FIG. 2, which is a simplified diagram of a system that generates and deploys custom deceptions, in accordance with an embodiment of the present invention. In addition to the conventional components of FIG. 1, FIG. 2 shows a network 200 that includes a management server 210 and a policy database 230. FIG. 2 also shows several endpoint computers 110 that have custom deceptions, designated D, planted therewithin. FIG. 2 also shows an endpoint computer used by an administrator of network 200, designated A.


Management server 210 includes an application programming interface (API) 211 for generating, editing and deleting custom deceptions, a translator 212 for translating from the native formal language for defining deceptions to actual deceptions that may be installed in endpoints of network 200, a deployer 213 that changes the deployment flow so as to include installation or uninstallation of custom deceptions. Generally, the administrator of network 200 generates, edits and deletes the custom deceptions using API 211.


Management server 210 also includes a forensic application 214, which is a real-time application that is transmitted to an endpoint computer 110 in the network, when a deception is accessed by that computer 110, this indicating that that computer has been breached by an attacker. When forensic application 214 is launched on the endpoint computer, it identifies a process running within that endpoint computer 110 that accessed the deception, logs the activities performed by the thus-identified process in a forensic report, and transmits the forensic report to management server 210.


Management server 210 also includes a policy manager 215. Policy manager 215 defines a decoy and response policy. The response policy defines different decoy types, different decoy combinations, response procedures, notification services, and assignments of policies to specific network nodes, network users, groups of nodes or users or both. Once policies are defined, they are stored in policy database 230 with the defined assignments.


Each decoy server 240 includes a forensic alert module 242, which alerts management system 210 that an attacker is accessing the decoy server via an endpoint computer 110 of the network, and causes management server 210 to send forensic application 214 to the endpoint computer 110 that is accessing the decoy server. In an alternative embodiment of the present invention, decoy server 240 may store forensic application 214, in which case decoy server 240 may transmit forensic application 214 directly to the endpoint computer 110 that is accessing decoy server 240. In another alternative embodiment of the present invention, management server 210 or decoy server 240 may transmit forensic application 214 to a destination computer other than the endpoint computer 110 that is accessing decoy server 240.


Based on a current policy, deployer 213 receives a request from an endpoint computer 110 for deceptions to install, and deployer 213 decides what should be installed and what should be uninstalled, based on inter alia the assignment of endpoint computer 110 and the deception settings. CDGs are assigned to policies. If a CDG is assigned to a current policy that includes endpoint computer 110, then deployer 213 sends the CDG to endpoint computer 110 for installation. Otherwise, if the current policy does not include endpoint computer 110 and the CDG was previously installed on endpoint computer 110, then deployer 213 sends an instruction to endpoint computer 110 to uninstall the CDG.


Reference is made to FIG. 3, which is a simplified diagram showing how custom deceptions are deployed by deployer 213, in accordance with an embodiment of the present invention. FIG. 3 shows three phases, as follows.

    • 1. Endpoint computer 110 sends a “get deception to install” request to management server 210;
    • 2. Management server 210 determines the relevant deceptions for the specific endpoint computer 110, based on the endpoint computer context, such as logged in users and running processes, and translates the relevant deceptions from their native formal language description to an actual deception that is installable on endpoint computer 110; and
    • 3. Management server 210 transmits to endpoint computer 110 relevant deceptions to install/uninstall, based on a snapshot of endpoint computer 110.


In order to add a CDG to the flow, when management server 210 determines the relevant deceptions to install, management server 210 chooses from the regular deceptions and the CDGs that are configured on the system. Translator 212 then validates the conditions of the CDG, and translates the CDG from their formal language description into an actual deception to install.


When endpoint computer 110 finishes the installation process, it sends the status of each deception to management server 210. Management server 210 saves the status in a snapshot of endpoint computer 110. As such, when the administrator or such other user deletes the CDG, or unassigns endpoint computer 110 from the policy, management server 210 knows the exact file or registry to look for, in order to uninstall the CDG.


Formal Deception Language


A basic construct is a custom deception entity (CDE), which has parameters inter alia as shown in TABLE II below.









TABLE II







Custom Deception Entity (CDE)










Parameter
Description







Type
File/Registry/Executable



Conditions
Operating system (Windows/Mac/Linux)




Running process




Files existence




Registry key existence




Binary operators on these items



Deception Type
SSH/FTP/RDP/User










The type parameter specifies whether the deception is a file-based custom deception, a registry-based custom deception, or an executable deception. TABLES III-V below indicate inter alia the parameters for each of these types of deceptions.









TABLE III







File-based custom deception










Parameter
Description







Location
An absolute path of a contextual path.




E.g., a user home folder has a placeholder




<HOME_FOLDER>



Filename
The filename of the file deception



Permissions
The permissions of the file, including




contextual permissions <PERMISSION>



Visibility
Whether the file is hidden or unhidden



Content
The file content with keywords to be replaced

















TABLE IV







Registry-based custom deception










Parameter
Description







Location
An absolute registry key path or a contextual




path. E.g., a user home folder has a




placeholder <HKEY_USERS>



Registry key
The registry key name of the file deception



Content
The registry value containing the keywords to




be replaced

















TABLE V







Executable deception








Parameter
Description





Executable to install
An executable that contains the keywords to



be replaced for deception installation


Executable to uninstall
An executable that contains the keywords to



be replaced for deception uninstallation









The following keywords inter alia are used for the formal deception language. Each keyword is to be replaced with actual deceptive content.

    • <SERVER_NAME1>, <SERVER_NAME2>, . . .
    • <USER_NAME1>, <USER_NAME2>, . . .
    • <PASSWORD1>, <PASSWORD2>, . . .
    • <PORT1>, <PORT2>, . . .
    • <HKEY_USERS>
    • <HOME_FOLDER>
    • <PERMISSION>
    • <HIDDEN>


A custom deception group (CDG) is a set of CDEs. Custom deceptions API 211 exposes inter alia the following methods.

    • GET returns the CDGs as configured in the system
    • POST CREATE CDG receives a CDG as input, and generates the CDG in the system
    • DELETE CDG receives a CDG as input, and deletes the CDG from the system


The input to translator 212 is combined with custom deception parameters and the contextual parameters vis-à-vis the specific endpoint; e.g., contextual users, running processes and installed applications. Translator 212 replaces keywords with the given input. E.g., if the deception type is SSH, management server 210 chooses an SSH trap server and replaces <SERVER_NAME> with the name of the trap server. If there are multiple <SERVER_NAME> keywords, then management server 210 finds a number of trap servers to replace the keywords.


It is noted that each CDG has its own specific conditions; e.g., processes that run on the system, and a file that exists on the file system. When translator 212 translates a CDG to deceptions, translator 212 must validate that the conditions are met in order to transmit the deceptions.


It will be appreciated by those skilled in the art that the above formal language for defining deceptions may be extended. E.g., plant deception file_deception(name, location, file_name, permission, visibility, content) with values(“deception_name”, “C:\Users”, “file.txt”, “READ-ONLY”, “hidden”, “content with <SERVER_NAME> and <USER_NAME>) where “process1” is in running_processes and operating_system=“Windows”


In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A system for generating and deploying custom deceptions for a network, comprising: an administrator computer for generating custom deception entities (CDEs), each CDE comprising parameters including inter alia (i) a type of entity, (ii) conditions for deployment of the CDE, and (iii) a deception type; anda management server, comprising: an application programming interface (API) for use by said administrator computer to generate CDEs through a medium of a formal language for specifying deceptions, the formal language comprising keyword placeholders for servers, usernames and passwords; anda translator for translating formal language CDEs to deceptions that are installable in network endpoint computers, comprising replacing the keyword placeholders for servers, usernames and passwords with actual server names, usernames and passwords,
  • 2. The system of claim 1 wherein said management server further comprises: a policy manager for selecting a deception policy and enforcing it; anda deployer for planting deceptions in endpoint computers of the network in accordance with the selected deception policy.
  • 3. The system of claim 1 wherein said management server further comprises a forensic application for transmission to a network endpoint computer on which a CDE is installed when an attacker who has breached the network endpoint computer attempts to access the CDE, in order to collect forensics of the attacker's activities.
  • 4. The system of claim 1 wherein said management server receives a request from said administration computer to delete designated CDEs, in response to which said management server deletes the designated CDEs from its storage.
  • 5. A method performed by a management server of a network for generating and deploying custom deceptions for the network, comprising: providing an application programming interface for generating custom deception entities (CDEs) through a medium of a formal language for specifying deceptions, the formal language comprising keyword placeholders for servers, usernames and passwords, each CDE comprising parameters including inter alia (i) a type of entity, (ii) conditions for deployment of the CDE, and (iii) a deception type;receiving a request from a network endpoint computer to retrieve CDEs;selecting CDEs that are relevant to the requesting network endpoint computer based on the parameters of the CDE;translating the selected CDEs from their formal language description to installable deceptions, comprising replacing the keyword placeholders for servers, usernames and passwords with actual server names, usernames and passwords; andtransmitting the installable deceptions to the network endpoint computer for installation thereon.
  • 6. The method of claim 5 further comprising: selecting a deception policy; andplanting deceptions in endpoint computers of the network in accordance with the selected deception policy.
  • 7. The method of claim 5 further comprising transmitting a forensic application to a network endpoint computer on which a CDE is installed when an attacker who has breached the network endpoint computer attempts to access the CDE, in order to collect forensics of the attacker's activities.
  • 8. The method of claim 5 further comprising: further receiving a request to delete designated CDEs; andin response to said further receiving a request, deleting the designated CDEs from its storage.
US Referenced Citations (143)
Number Name Date Kind
6363489 Comay et al. Mar 2002 B1
6618709 Sneeringer Sep 2003 B1
7065657 Moran Jun 2006 B1
7089589 Chefalas et al. Aug 2006 B2
7093291 Bailey Aug 2006 B2
7516227 Cohen Apr 2009 B2
7574741 Aviani et al. Aug 2009 B2
7636944 Raikar Dec 2009 B2
7665134 Hernacki et al. Feb 2010 B1
7694339 Blake et al. Apr 2010 B2
7725937 Levy May 2010 B1
7752664 Satish et al. Jul 2010 B1
7945953 Salinas et al. May 2011 B1
8015284 Isenberg et al. Sep 2011 B1
8181249 Chow et al. May 2012 B2
8181250 Rafalovich May 2012 B2
8250654 Kennedy et al. Aug 2012 B1
8375447 Amoroso et al. Feb 2013 B2
8499348 Rubin Jul 2013 B1
8528091 Bowen et al. Sep 2013 B2
8549642 Lee Oct 2013 B2
8549643 Shou Oct 2013 B1
8719938 Chasko et al. May 2014 B2
8739281 Wang et al. May 2014 B2
8739284 Gardner May 2014 B1
8769684 Stolfo et al. Jul 2014 B2
8819825 Keromytis et al. Aug 2014 B2
8856928 Rivner et al. Oct 2014 B1
8881288 Levy et al. Nov 2014 B1
8925080 Hebert Dec 2014 B2
9009829 Stolfo et al. Apr 2015 B2
9043905 Allen et al. May 2015 B1
9124622 Falkowitz et al. Sep 2015 B1
9152808 Ramalingam et al. Oct 2015 B1
9240976 Murchison Jan 2016 B1
9325728 Kennedy et al. Apr 2016 B1
9356942 Joffe May 2016 B1
9386030 Vashist et al. Jul 2016 B2
9495188 Ettema Nov 2016 B1
20020066034 Schlossberg et al. May 2002 A1
20020194489 Almogy et al. Dec 2002 A1
20030084349 Friedrichs et al. May 2003 A1
20030110396 Lewis et al. Jun 2003 A1
20030145224 Bailey Jul 2003 A1
20040088581 Brawn et al. May 2004 A1
20040128543 Blake et al. Jul 2004 A1
20040148521 Cohen et al. Jul 2004 A1
20040160903 Gai et al. Aug 2004 A1
20040172557 Nakae et al. Sep 2004 A1
20040255155 Stading Dec 2004 A1
20050114711 Hesselink et al. May 2005 A1
20050132206 Palliyil et al. Jun 2005 A1
20050149480 Deshpande Jul 2005 A1
20050235360 Pearson Oct 2005 A1
20060010493 Piesco et al. Jan 2006 A1
20060041761 Neumann et al. Feb 2006 A1
20060069697 Shraim et al. Mar 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060161982 Chari et al. Jul 2006 A1
20060224677 Ishikawa et al. Oct 2006 A1
20060242701 Black et al. Oct 2006 A1
20070028301 Shull et al. Feb 2007 A1
20070039038 Goodman et al. Feb 2007 A1
20070157315 Moran Jul 2007 A1
20070192853 Shraim et al. Aug 2007 A1
20070226796 Gilbert et al. Sep 2007 A1
20070299777 Shraim et al. Dec 2007 A1
20080016570 Capalik Jan 2008 A1
20080086773 Tuvell et al. Apr 2008 A1
20080155693 Mikan et al. Jun 2008 A1
20090019547 Palliyil et al. Jan 2009 A1
20090144827 Peinado et al. Jun 2009 A1
20090222920 Chow et al. Sep 2009 A1
20090241173 Troyansky Sep 2009 A1
20090241191 Keromytis et al. Sep 2009 A1
20090241196 Troyansky et al. Sep 2009 A1
20090328216 Rafalovich Dec 2009 A1
20100058456 Jajodia et al. Mar 2010 A1
20100071051 Choyi et al. Mar 2010 A1
20100077483 Stolfo Mar 2010 A1
20100082513 Liu Apr 2010 A1
20100251369 Grant Sep 2010 A1
20100269175 Stolfo et al. Oct 2010 A1
20110016527 Yanovsky et al. Jan 2011 A1
20110154494 Sundaram et al. Jun 2011 A1
20110167494 Bowen Jul 2011 A1
20110214182 Adams et al. Sep 2011 A1
20110258705 Vestergaard et al. Oct 2011 A1
20110302653 Frantz et al. Dec 2011 A1
20110307705 Fielder Dec 2011 A1
20120005756 Hoefelmeyer et al. Jan 2012 A1
20120084866 Stolfo Apr 2012 A1
20120167208 Buford et al. Jun 2012 A1
20120210388 Kolishchak Aug 2012 A1
20120246724 Sheymov et al. Sep 2012 A1
20120311703 Yanovsky et al. Dec 2012 A1
20130061055 Schibuk Mar 2013 A1
20130086691 Fielder Apr 2013 A1
20130139256 Tegreene May 2013 A1
20130139257 Tegreene May 2013 A1
20130139258 Tegreene May 2013 A1
20130139259 Tegreene May 2013 A1
20130212644 Hughes et al. Aug 2013 A1
20130227697 Zandani Aug 2013 A1
20130263226 Sudia Oct 2013 A1
20140082730 Vashist et al. Mar 2014 A1
20140101724 Wick et al. Apr 2014 A1
20140115706 Silva et al. Apr 2014 A1
20140201836 Amsler Jul 2014 A1
20140208401 Balakrishnan et al. Jul 2014 A1
20140237599 Gertner et al. Aug 2014 A1
20140259095 Bryant Sep 2014 A1
20140298469 Marion et al. Oct 2014 A1
20140310770 Mahaffey Oct 2014 A1
20140337978 Keromytis et al. Nov 2014 A1
20140359708 Schwartz Dec 2014 A1
20150007326 Mooring et al. Jan 2015 A1
20150013006 Shulman et al. Jan 2015 A1
20150047032 Hannis et al. Feb 2015 A1
20150047035 Arrowood Feb 2015 A1
20150074750 Pearcy Mar 2015 A1
20150074811 Capalik Mar 2015 A1
20150096048 Zhang et al. Apr 2015 A1
20150128246 Feghali et al. May 2015 A1
20150156211 Chi Tin et al. Jun 2015 A1
20150264062 Hagiwara et al. Sep 2015 A1
20150326587 Vissamsetty et al. Nov 2015 A1
20150326598 Vasseur et al. Nov 2015 A1
20160019395 Ramalingam et al. Jan 2016 A1
20160080414 Kolton et al. Mar 2016 A1
20160182545 Stolfo Jun 2016 A1
20160212167 Dotan et al. Jul 2016 A1
20160261608 Hu et al. Sep 2016 A1
20160300227 Subhedar et al. Oct 2016 A1
20160308895 Kotler et al. Oct 2016 A1
20160314111 Fougner Oct 2016 A1
20160323316 Kolton et al. Nov 2016 A1
20160373447 Akiyama et al. Dec 2016 A1
20170032130 Durairaj et al. Feb 2017 A1
20170134423 Sysman May 2017 A1
20170324777 Ohayon Nov 2017 A1
20170344750 Ekambaram Nov 2017 A1
20180018657 Sawant Jan 2018 A1
Foreign Referenced Citations (3)
Number Date Country
2006131124 Dec 2006 WO
2015001969 Jan 2015 WO
2015047555 Apr 2015 WO
Non-Patent Literature Citations (39)
Entry
Wikipedia, Active Directory, https://en.wikipedia.org/wiki/Active_Directory, Jun. 24, 2015.
Wikpedia, Apple Filing Protocol, https://en.wikipedia.org/wiki/Apple_Filing_Protocol, Aug. 14, 2015.
Wikipedia, DMZ (computing), https://en.wikipedia.org/wiki/DMZ_(computing), Jun. 17, 2015.
Wikipedia, Domain Name System, https://en.wikipedia.org/wiki/Domain_Name_System, Jul. 14, 2015.
Wikipedia, Firewall (computing), https://en.wikipedia.org/wiki/Firewall_(computing), Jul. 14, 2015.
Wikipedia, Honeypot (computing), https://en.wikipedia.org/wiki/Honeypot_(computing), Jun. 21, 2015.
Wikipedia, Kerberos (protocol), https://en.wikipedia.org/wiki/Kerberos_(protocol), Jun. 30, 2015.
Wikipedia, Lightweight Directory Access Protocol, https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol, Aug. 15, 2015.
Wikipedia, LM hash, https://en.wikipedia.org/wiki/LM_hash, Jun. 8, 2015.
Wikipedia, RADIUS, https://en.wikipedia.org/wiki/RADIUS, Aug. 16, 2015.
Wikipedia, Rainbow table, https://en.wikipedia.org/wiki/Rainbow_table, Jul. 14, 2015.
Wikipedia, Secure Shell, https://en.wikipedia.org/wiki/Honeypot_(computing), Jul. 12, 2015.
Wikipedia, Security Information and Event Management, https://en.wikipedia.org/wiki/Security_information_and_event_management, Jun. 23, 2015.
Wikipedia, Tarpit (networking), https://en.wikipedia.org/wiki/Tarpi_networking), Jul. 3, 2014.
Mishra et al., Intrusion detection in wireless ad hoc networks, IEEE Wireless Communications, Feb. 2004, pp. 48-60.
Zhang et al., Intrusion detection techniques for mobile wireless networks, Journal Wireless Networks vol. 9(5), Sep. 2003, pp. 545-556, Kluwer Academic Publishers, the Netherlands.
U.S. Appl. No. 15/004,904, Office Action, dated May 27, 2016, 16 pages.
U.S. Appl. No. 15/004,904, Notice of Allowance, dated Oct. 19, 2016, 13 pages.
U.S. Appl. No. 15/175,048, Notice of Allowance, dated Oct. 13, 2016, 17 pages.
U.S. Appl. No. 15/175,050, Office Action, dated Aug. 19, 2016, 34 pages.
U.S. Appl. No. 15/175,050, Office Action, dated Nov. 30, 2016, 31 pages.
U.S. Appl. No. 15/175,050, Notice of Allowance, dated Mar. 21, 2017, 13 pages.
U.S. Appl. No. 15/175,052, Office Action, dated Feb. 13, 2017, 19 pages.
U.S. Appl. No. 15/175,052, Office Action, dated Jun. 6, 2017, 19 pages.
U.S. Appl. No. 15/175,054, Notice of Allowance, dated Feb. 21, 2017, 13 pages.
U.S. Appl. No. 15/403,194, Office Action, dated Feb. 28, 2017, 13 pages.
U.S. Appl. No. 15/403,194, Notice of Allowance, dated Jun. 16, 2017, 9 pages.
U.S. Appl. No. 15/406,731, Notice of Allowance, dated Apr. 20, 2017.
PCT Application No. PCT/IL16/50103, International Search Report and Written Opinion, dated May 26, 2016, 9 pages.
PCT Application No. PCT/IL16/50579, International Search Report and Written Opinion, dated Sep. 30, 2016, 7 pages.
PCT Application No. PCT/IL16/50581, International Search Report and Written Opinion, dated Nov. 29, 2016, 10 pages.
PCT Application No. PCT/IL16/50582, International Search Report and Written Opinion, dated Nov. 16, 2016, 11 pages.
PCT Application No. PCT/IL16/50583, International Search Report and Written Opinion, dated Dec. 8, 2016, 10 pages.
U.S. Appl. No. 15/175,052, Notice of Allowance, dated Jan. 2, 2018, 9 pages.
U.S. Appl. No. 15/679,180, Notice of Allowance, dated Mar. 26, 2018, 14 pages.
U.S. Appl. No. 15/722,351, Office Action, dated Mar. 9, 2018, 17 pages.
U.S. Appl. No. 15/722,351 Office Action, dated Aug. 8, 2018, 8 pages.
U.S. Appl. No. 15/682,577, Notice of Allowance, dated Jun. 14, 2018, 15 pages.
U.S. Appl. No. 15/641,817, Office Action, dated Jul. 26, 2018, 29 pages.