The present disclosure relates to the field of wireless communication, and in particular, to a user equipment (UE), an eNode B (eNB) and a wireless communication method for Licensed-Assisted Access (LAA).
Rapid growth of mobile data forces operators to utilize the finite frequency spectrum with higher and higher efficiency, while plenty of unlicensed frequency spectra are utilized less efficiently only by Wi-Fi, Bluetooth, etc. LTE-U (LTE-unlicensed) and LAA (Licensed Assisted Access) can extend the LTE spectrum to unlicensed band that would augment the LTE network capacity directly and dramatically.
One non-limiting and exemplary embodiment provides an approach to facilitate UL multiplexing, especially UL FDMA between PRACH (Physical Random Access Channel) and PUSCH (Physical Uplink Shared Channel)/PUCCH (Physical Uplink Control Channel).
In one general aspect, the techniques disclosed here feature a user equipment (UE) for licensed-assisted access (LAA) comprising: a first circuit operative to perform a first listen-before-talk (LBT) in a system bandwidth; a second circuit operative to perform a second LBT in an allocated bandwidth; and a transmitter operative to transmit a signal in the allocated bandwidth if the first LBT is unsuccessful and the second LBT is successful.
It should be noted that general or specific embodiments may be implemented as a system, a method, an integrated circuit, a computer program, a storage medium, or any selective combination thereof.
Additional benefits and advantages of the disclosed embodiments will become apparent from the specification and drawings. The benefits and/or advantages may be individually obtained by the various embodiments and features of the specification and drawings, which need not all be provided in order to obtain one or more of such benefits and/or advantages.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:
In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. It will be readily understood that the aspects of the present disclosure can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
In LAA, random access procedure at unlicensed carrier would be required for UL timing adjustment in case of contention-free random access or stand-alone operation in unlicensed spectrum in case of contention-based random access. LBT may be required in most cases. However, current LBT which is performed over the system bandwidth is difficult to support UL multiplexing since independent LBT at each UE would mutually block each other.
In order to support UL multiplexing, especially UL FDMA between PRACH and PUSCH/PUCCH, a new LBT mechanism is introduced in the present disclosure. In the new mechanism, LBTs will be performed at both the system bandwidth and an allocated bandwidth (for example, PRACH). With such LBT mechanism, UEs assigned with different PRBs in one subframe would not block each other during LBT.
In an embodiment of the present disclosure, there is provided a wireless communication method for LAA performed by a UE.
An embodiment of the present disclosure also provides a UE for LAA to perform the above communication method.
The UE 300 according to the present disclosure may optionally include a CPU (Central Processing Unit) 310 for executing related programs to process various data and control operations of respective units in the UE 300, a ROM (Read Only Memory) 313 for storing various programs required for performing various process and control by the CPU 310, a RAM (Random Access Memory) 315 for storing intermediate data temporarily produced in the procedure of process and control by the CPU 310, and/or a storage unit 317 for storing various programs, data and so on. The above first circuit 301, second circuit 302, transmitter 303, CPU 310, ROM 313, RAM 315 and/or storage unit 317 etc. may be interconnected via data and/or command bus 320 and transfer signals between one another.
Respective components as described above do not limit the scope of the present disclosure. According to one implementation of the disclosure, the functions of the above first circuit 301, second circuit 302 and transmitter 303 may be implemented by hardware, and the above CPU 310, ROM 313, RAM 315 and/or storage unit 317 may not be necessary. Alternatively, the functions of the above first circuit 301, second circuit 302 and transmitter 303 may also be implemented by functional software in combination with the above CPU 310, ROM 313, RAM 315 and/or storage unit 317 etc.
In an embodiment of the present disclosure, the PRACH resource can be assigned per UL burst by an eNB. In other words, the eNB assigns the PRACH resource for each UL burst. The PRACH resource can be indicated by the eNB or other UE(s). Accordingly, the above UE 300 can also comprise a receiver operative to receive an indication (i.e., which subframe(s) and which PRB(s) in the burst should be used for PRACH) of a PRACH resource for a UL burst sent by an eNode B (eNB) or another UE. Two examples for indicating the PRACH resource in a UL burst are described in the following.
In a first example, the PRACH resource in a UL burst (one or more subframes) can be indicated by UE/UEs which has/have UL grant (i.e. UL data transmission). It is noted that multiple UEs can indicate same or different PRACH resource(s). PUSCH/PUCCH can be scheduled by an eNB via (E)PDCCH as current LTE design up to release 12. The eNB assigns the PRACH resource in the UL burst and also assigns which UE(s) will indicate the PRACH resource. For contention-free random access, the preamble order for a UE to perform random access will also be assigned by the eNB. For contention-based random access, the preamble order for a UE to perform random access will be randomly selected by the UE. After LBT succeeds at a UE with UL grant, the UE will send its UL data and also an indication of the PRACH resource in the scheduled resource. The indication of the PRACH resource is broadcast information which can be decoded by other UEs in the same cell. As shown in
In a second example, the PRACH resource can be directly indicated by an eNB for example in the unlicensed band. The PRACH resource can be indicated by the eNB in a burst structure indication which is sent at the beginning of a burst structure consisting of both DL and UL.
In order to support indication of the PRACH resource, embodiments of the present disclosure also provide an eNB and a wireless communication method performed by the eNB.
The eNB 600 according to the present disclosure may optionally include a CPU (Central Processing Unit) 610 for executing related programs to process various data and control operations of respective units in the eNB 600, a ROM (Read Only Memory) 613 for storing various programs required for performing various process and control by the CPU 610, a RAM (Random Access Memory) 615 for storing intermediate data temporarily produced in the procedure of process and control by the CPU 610, and/or a storage unit 617 for storing various programs, data and so on. The above circuit 601, and transmitter 602, CPU 610, ROM 613, RAM 615 and/or storage unit 617 etc. may be interconnected via data and/or command bus 620 and transfer signals between one another.
Respective components as described above do not limit the scope of the present disclosure. According to one implementation of the disclosure, the functions of the above circuit 601 and transmitter 602 may be implemented by hardware, and the above CPU 610, ROM 613, RAM 615 and/or storage unit 617 may not be necessary. Alternatively, the functions of the above circuit 601 and transmitter 602 may also be implemented by functional software in combination with the above CPU 610, ROM 613, RAM 615 and/or storage unit 617 etc.
In addition, for the example of indicating the PRACH resource by a UE, embodiments of the present disclosure provide a UE for indicating the PRACH resource and a communication method performed by the UE. The UE can comprise a receiver operative to receive a grant of a UL resource and an indication of a PRACH resource for a UL burst sent from an eNB; and a transmitter operative to broadcast the indication of the PRACH resource in the UL resource. It is noted that the structure and the implementation described for UE 300 can also be applied to the UE here.
According to the above manners of indicating PRACH resource in embodiments of the present disclosure, PRACH multiplexing with PUSCH/PUCCH can be supported by dynamic PRACH resource indication per burst.
In addition, further enhancement on multiplexing within PRACH is introduced according to an embodiment of the present disclosure. Usually, CDM (Code Division Multiplexing) at PRACH is less likely because of mutual blocking between UEs with different sending time. In order to support CDM in PRACH under the LBT requirement, to add an idle period (e.g. maximum single trip delay assumed in unlicensed spectrum) after LBT and before the boundary for sending PRACH is beneficial. According to an embodiment of the present disclosure, the transmitter of the UE 300 can be operative to transmit the preamble (first preamble) in the PRACH after a time period (idle period) from the time when the first LBT and the second LBT are finished, instead of transmitting the preamble right after the LBTs are finished.
The present disclosure can be realized by software, hardware, or software in cooperation with hardware. Each functional block used in the description of each embodiment described above can be realized by an LSI as an integrated circuit, and each process described in the each embodiment may be controlled by LSI. They may be individually formed as chips, or one chip may be formed so as to include a part or all of the functional blocks. They may include a data input and output coupled thereto. The LSI here may be referred to as an IC, a system LSI, a super LSI, or an ultra LSI depending on a difference in the degree of integration. However, the technique of implementing an integrated circuit is not limited to the LSI and may be realized by using a dedicated circuit or a general-purpose processor. In addition, a FPGA (Field Programmable Gate Array) that can be programmed after the manufacture of the LSI or a reconfigurable processor in which the connections and the settings of circuits cells disposed inside the LSI can be reconfigured may be used.
It is noted that the present disclosure intends to be variously changed or modified by those skilled in the art based on the description presented in the specification and known technologies without departing from the content and the scope of the present disclosure, and such changes and applications fall within the scope that claimed to be protected. Furthermore, in a range not departing from the content of the disclosure, the constituent elements of the above-described embodiments may be arbitrarily combined.
Embodiments of the present disclosure can at least provide the following subject matters.
1. A user equipment (UE) for licensed-assisted access (LAA) comprising:
2. The user equipment according to 1, wherein
3. The user equipment according to 2, wherein
4. The user equipment according to 2, wherein
5. The user equipment according to any of 2-4, further comprising:
6. The user equipment according to 2, wherein
7. An eNode B for licensed-assisted access (LAA) comprising:
8. The eNode B according to 7, further comprising:
9. A user equipment for licensed-assisted access (LAA) comprising:
10. A wireless communication method for licensed-assisted access (LAA) performed by a UE, comprising:
11. The wireless communication method according to 10, wherein
12. The wireless communication method according to 11, further comprising:
13. The wireless communication method according to 11, wherein
14. The wireless communication method according to any of 11-13, further comprising:
15. The wireless communication method according to 11, wherein
16. A wireless communication method for licensed-assisted access (LAA) performed by an eNB, comprising:
17. The wireless communication method according to 16, further comprising:
18. A wireless communication method for licensed-assisted access (LAA) performed by a UE, comprising:
In addition, embodiments of the present disclosure can also provide an integrated circuit which comprises module(s) for performing the step(s) in the above respective communication methods. Further, embodiments of the present can also provide a computer readable storage medium having stored thereon a computer program containing a program code which, when executed on a computing device, performs the step(s) of the above respective communication methods.
Number | Name | Date | Kind |
---|---|---|---|
10742562 | Si | Aug 2020 | B2 |
20140112289 | Kim et al. | Apr 2014 | A1 |
20150049712 | Chen et al. | Feb 2015 | A1 |
20170099126 | Yoo | Apr 2017 | A1 |
20170118728 | Harada et al. | Apr 2017 | A1 |
20180235005 | Ansari | Aug 2018 | A1 |
20180352537 | Zhang | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
102548015 | Jul 2012 | CN |
2015-179994 | Oct 2015 | JP |
2015066326 | May 2015 | WO |
Entry |
---|
The Extended European Search Report dated Dec. 12, 2019 for the related European Patent Application No. 19193983.4. |
Intel Corporation: “Uplink transmission for LAA”, 3GPP Draft; R2-152214_LAA_UP_LBT_V1, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, No. Fukuoka, Japan; May 25, 2015-May 29, 2015 May 16, 2015 (May 16, 2015), XP050973840, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_90/Docs/ [retrieved on May 16, 2015]. |
Alcatel-Lucent Shanghai Bell et al: “UL LBT and DL/UL Frame Structure for LAA”, 3GPP Draft; R1-154574_UL_LBT-Final, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG1, No. Beijing, China; Aug. 25, 2015-Aug. 28, 2015 Aug. 23, 2015 (Aug. 23, 2015), XP051039505, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Aug. 23, 2015]. |
International Search Report of PCT application No. PCT/CN2015/092393 dated Jul. 6, 2016. |
The partial supplementary European Search Report (R.164 EPC), dated Sep. 5, 2018, for the related European Patent Application No. 15906450.0. |
Number | Date | Country | |
---|---|---|---|
20200092921 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15927614 | Mar 2018 | US |
Child | 16692208 | US | |
Parent | PCT/CN2015/092393 | Oct 2015 | US |
Child | 15927614 | US |