USER EQUIPMENT IDENTIFICATION SPECIFIC SCRAMBLING

Abstract
A base station for use in a code division multiple access communication system comprises circuitry configured to process a user equipment identification (UE ID) by ½ rate convolutionally encoding the UE ID to produce a sequence. The sequence is used by the base station for scrambling a high speed shared control channel (HS-SCCH). The base station is configured to transmit a wireless signal. The wireless signal provides the user equipment with payload data carried on a high speed physical downlink shared channel (HS-PDSCH). The HS-PDSCH is associated with the HS-SCCH.
Description
BACKGROUND

The present invention relates to wireless communication systems. More particularly, the present invention relates to user equipment identification specific scrambling sequences for high speed shared control channels (HS-SCCH).


A high speed downlink packet access (HSDPA) is proposed for wideband code division multiple access communication systems. HSDPA allows for high downlink data rates to support multimedia services.


To support HSDPA, high speed shared control channels (HS-SCCHs) are used. The HS-SCCHs are used to signal vital control information to the user equipments (UEs). Each HS-SCCH has two parts, referred to as Part-1 and Part-2. Part-1 carries time critical information needed by the UE. This information includes the channelization code set and the modulation type used by the high speed physical downlink shared control channel (HS-PDSCH) which carries the HSDPA payload. This information is vital to support HSDPA, since HSDPA uses adaptive modulation and coding (AMC).


To obtain its Part-1 information, each HSDPA UE monitors up to four HS-SCCHs for its information. The information for a particular UE is distinguished from other UEs by its UE identification (UE ID) specific scrambling sequence. The UE processes each monitored HS-SCCH with its UE ID specific scrambling sequence to detect the HS-SCCH intended for the UE. After processing, the UE determines on which HS-SCCH, if any, information was carried using its scrambling sequence. The UE descrambles the data carried on Part-1 of its HS-SCCH using its scrambling sequence.


Until recently, a 10 bit UE ID was used as the basis for the UE ID specific scrambling sequence. In this case, this UE ID was converted into a 40 bit scrambling sequence. To turn the 10 bit UE ID into the 40 bit UE ID specific scrambling sequence, the 10 bit UE ID is processed by a Reed-Muller block to produce a 32 bit code. The first 8 bits of the produced code are repeated and appended onto the back of the 32 bit code to produce a 40 bit code.


Although it is proposed to extend the UE ID length to 16 chips, the current proposal for the HS-SCCHs uses a 10 bit UE ID. This UE ID is converted into a 40 bit scrambling sequence. To turn the 10 bit UE ID into the 40 bit scrambling sequence, the 10 bit UE ID is processed by a Reed-Muller block to produce a 32 bit code. The first 8 bits of the produced code are repeated and appended onto the back of the 32 bit code to produce a 40 bit code.


To reduce the occurrence of false detections, it is desirable to have good separation between the produced scrambling codes for each UE ID. Accordingly, it is desirable to have alternate approaches to producing scrambling codes.


SUMMARY

A base station for use in a code division multiple access communication system comprises circuitry configured to process a user equipment identification (UE ID) by ½ rate convolutionally encoding the UE ID to produce a sequence. The sequence is used by the base station for scrambling a high speed shared control channel (HS-SCCH). The base station is configured to transmit a wireless signal. The wireless signal provides the user equipment with payload data carried on a high speed physical downlink shared channel (HS-PDSCH). The HS-PDSCH is associated with the HS-SCCH.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a preferred diagram of a circuit for producing a code associated with a particular user for a HS-SCCH.



FIG. 1B is a diagram of a rate matching block used in conjunction with FIG. 1A.



FIG. 2A is a preferred diagram of a circuit for producing a code associated with a user identification of 16 bits.



FIG. 2B is a diagram of a rate matching block used in conjunction with FIG. 2A.



FIG. 3 is a simplified user equipment using the UE ID specific scrambling code.



FIG. 4 is a simplified base station using the UE ID specific scrambling code.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Although the preferred embodiments are described in conjunction with the preferred application of the invention for use with the HSDPA of the third generation partnership project (3GPP) wideband code division multiple access (W-CDMA) communication system, the invention can be applied to other code division multiple access communication systems. FIGS. 1A and 1B are diagrams of a preferred UE ID specific scrambling sequence circuit. A UE ID, XUE, of length L is input into the circuit. L can be any length, such as 8 bits, 10 bits, 16 bits, etc. The UE ID, XUE={XUE1, . . . , XUEL}, is input into a ½ rate convolutional encoder 10 as shown in FIG. 1A. Along with the UE ID, extra bits, such as zeros, may be added to the end of the input string to extend the length of the input string and, accordingly, the output string. The use of a ½ rate convolutional encoder 10 provides for a high level of code separation between the output strings produced by different UE IDs. Additionally, current proposed 3GPP W-CDMA communication systems utilize a ½ rate convolutional encoder 10 for a forward error correction (FEC) technique. Accordingly, no additional hardware is required to generate the convolutionally encoded UE ID specific scrambling sequence. After encoding, based on the length of the output string, a rate matching stage 12 may be added to puncture bits to obtain a desired string length.



FIGS. 2A and 2B are diagrams of preferred UE ID specific scrambling sequence circuit for preferred UE ID codes of length 16, L=16. The 16 bit UE ID, XUE={XUE1, . . . , XUE16}, is input into a ½ rate convolutional encoder 14 along with eight zero bits appended onto the end of the input string. As a result, the input string is XUE1, . . . , XUE16, 0, 0, 0, 0, 0, 0, 0, 0. After being processed by the ½ rate convolutional encoder 14, the output code is 48 bits in length, CUE={CUE1, . . . , CUE48}.


To reduce the length of the code to a preferred length of 40 bits, eight bits are preferably punctured. FIG. 2B illustrates the rate matching stage 16 to perform the puncturing. After the rate matching stage 16, the effective length of the scrambling code is 40 bits.



FIG. 4 is a simplified diagram of a user equipment descrambling a HS-SCCH using the UE ID specific scrambling code. The UE ID scrambling code is mixed, such as by exclusive-or gate 18, with the received HS-SCCH for use in recovering the encoded HS-SCCH data.



FIG. 3 is a simplified diagram of a base station scrambling encoded data with the UE ID specific scrambling code for transfer over the HS-SCCH. The encoded data is mixed with the UE ID scrambling code, such as by an exclusive-or gate 20, for a particular user. The scrambled data is used to produce the HS-SCCH for transfer to the particular user.

Claims
  • 1. A wideband code division multiple access (WCDMA) base station (BS) comprising: circuitry configured to transmit bits over a high speed shared control channel (HS-SCCH) wherein the bits are a result of a combining of control information and a user specific scrambling sequence associated with a user equipment (UE), the user specific scrambling sequence being a result of a ½ rate convolutional encoding of a UE identification (ID) associated with the UE; andcircuitry configured to transmit payload data to the UE over a high speed physical downlink shared channel (HS-PDSCH) associated with the HS-SCCH.
  • 2. The WCDMA BS of claim 1 wherein the control information includes channelization and modulation information of the HS-PDSCH.
  • 3. The WCDMA BS of claim 1 wherein the user specific scrambling sequence is a result of rate matching of the ½ rate convolutional encoded UE ID.
  • 4. A wideband code division multiple access (WCDMA) system comprising: a base station (BS) comprising: circuitry configured to transmit bits over a high speed shared control channel (HS-SCCH) wherein the bits are a result of a combining of control information and a user specific scrambling sequence associated with a user equipment (UE), the user specific scrambling sequence being a result of a ½ rate convolutional encoding of a UE identification (ID) associated with the UE; andcircuitry configured to transmit payload data to the UE over a high speed physical downlink shared channel (HS-PDSCH) associated with the HS-SCCH; andthe UE comprising: circuitry configured to process the HS-SCCH; andcircuitry configured to recover the payload data from the PDSCH associated with the HS-SCCH in response to the HS-SCCH including the bits.
  • 5. The WCDMA system of claim 4 wherein the control information includes channelization and modulation information of the HS-PDSCH.
  • 6. The WCDMA system of claim 4 wherein the user specific scrambling sequence is a result of rate matching of the ½ rate convolutional encoded UE ID.
  • 7. A wideband code division multiple access (WCDMA) base station (BS) comprising: circuitry configured to transmit control information over a high speed shared control channel (HS-SCCH) wherein the control information is processed with a user specific scrambling sequence associated with a user equipment (UE), the user specific scrambling sequence being a result of a ½ rate convolutional encoding of a UE identification (ID) associated with the UE; andcircuitry configured to transmit a high speed physical downlink shared channel (HS-PDSCH) associated with the HS-SCCH.
  • 8. The WCDMA BS of claim 7 wherein the control information includes channelization and modulation information of the HS-PDSCH.
  • 9. The WCDMA BS of claim 7 wherein the user specific scrambling sequence is a result of rate matching of the ½ rate convolutional encoded UE ID.
  • 10. A wideband code division multiple access (WCDMA) system comprising: a base station (BS) comprising: circuitry configured to transmit control information over a high speed shared control channel (HS-SCCH) wherein the control information is processed with a user specific scrambling sequence associated with a user equipment (UE), the user specific scrambling sequence being a result of a ½ rate convolutional encoding of a UE identification (ID) associated with the UE; andcircuitry configured to transmit a high speed physical downlink shared channel (HS-PDSCH) associated with the HS-SCCH; andthe UE comprising: circuitry configured to process the HS-SCCH; andcircuitry configured to process the HS-PDSCH in response to the HS-SCCH including the control information processed with the user specific scrambling sequence associated with the UE.
  • 11. The WCDMA system of claim 10 wherein the control information includes channelization and modulation information of the HS-PDSCH.
  • 12. The WCDMA system of claim 10 wherein the user specific scrambling sequence is a result of rate matching of the ½ rate convolutional encoded UE ID.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/467,694 filed May 18, 2009, which issued as U.S. Pat. No. 7,970,127 on Jun. 28, 2011; which is a continuation of U.S. patent application Ser. No. 11/796,534 filed Apr. 24, 2007 [sic], which issued as U.S. Pat. No. 7,536,013 on May 19, 2009; which is a continuation of U.S. patent application Ser. No. 10/779,431, filed Feb. 13, 2004, which issued as U.S. Pat. No. 7,349,540 on Mar. 25, 2008; which is a continuation of U.S. patent application Ser. No. 10/187,640, filed Jul. 1, 2002, which issued as U.S. Pat. No. 6,973,579 on Dec. 6, 2005, which claims priority from U.S. Provisional Application No. 60/378,170, filed May 13, 2002, and U.S. Provisional Application No. 60/378,509, filed May 7, 2002, which are incorporated by reference as if fully set forth.

Provisional Applications (2)
Number Date Country
60378170 May 2002 US
60378509 May 2002 US
Continuations (4)
Number Date Country
Parent 12467694 May 2009 US
Child 13168809 US
Parent 11796534 Apr 2007 US
Child 12467694 US
Parent 10779431 Feb 2004 US
Child 11796534 US
Parent 10187640 Jul 2002 US
Child 10779431 US