This invention relates generally to touch sensitive user interfaces, and more specifically to a new and useful mountable systems and methods for selectively raising portions of touch sensitive displays.
Touch sensitive displays, e.g., touch screens, are able to provide a dynamic user input interface and are useful in applications where the user interface is applied to a variety of uses, for example, in a universal remote control where the user interface may change to adapt to the device that is being controlled by the user or in a cellular phone with multiple functionalities. However, unlike a static user input interface with a dedicated input device, such as a keypad with discrete well-defined keys, most touch sensitive displays are generally flat. As a result, touch sensitive displays do not provide many of the tactile guidance that may be seen and/or felt in static user interfaces. The importance of tactile guidance is readily apparent in the competition between Apple's iPhone and RIM's Blackberry products. Without tactile guidance, several disadvantages exist; for example, the user may have difficulty distinguishing one input selection from another without keeping their eye on the display or have difficulty determining where to place their finger when entering an input. Many electronic devices such as smartphones, remote controls, personal navigation devices, cellular phones, and portable gaming devices are increasing in functionality, and it is becoming increasingly more difficult for manufacturers to provide a static user interface that can adapt to the various functions of each device. In an attempt to provide a better user experience, many electronic devices are increasingly using touch sensitive displays to provide a dynamic user interface that can adapt to the various functions of each device, thus there are a significant number of commonly available electronic devices that rely on a touch sensitive display as the main user input receiving device and lack the tactile guidance of a mechanical keypad. This invention provides a new and useful user interface that may be appended to such a device to provide tactile guidance.
a and 1b are a top view of the user interface system of the preferred embodiments and a cross-sectional view illustrating the operation of a button array in accordance to the preferred embodiments, respectively.
a and 2b are schematic views of the user interface system of the preferred embodiments coupled to a device.
a, 3b, and 3c are cross-sectional views of the retracted, expanded, and user input modes of the preferred embodiments, respectively.
a and 4b are cross-sectional views of a second variation of the sheet with a combination of a channel and a cavity and a third variation of the sheet with a split layer portion and a substrate portion.
a and 7b are cross-sectional views of the sheet, the cavity, and a displacement device of the first preferred embodiment that modifies the existing fluid in the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 10b are schematic views of the sheet, the cavity, and a displacement device of a third example of the first preferred embodiment that displaces additional fluid into and out of the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a, 11b, 12a, and 12b are schematic views of the displacement device of a first and second example of a first variation of the second preferred embodiment.
a and 13b are schematic views of the displacement device of a second variation of the second preferred embodiment.
a, 17b, 18a, and 18b are schematic views of the displacement device of a third version of the first example of the third variation of the second preferred embodiment.
a, 19b, 20a, and 20b, are schematic views of the locking mechanism of a first and second example in the disengaged and engaged states, respectively.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The user interface enhancement system 100 of the preferred embodiments has been specifically designed to be appended to the user interface of an electronic device 10, more preferably in an electronic device 10 that utilizes a touch sensitive display as the main means to receive user input. This may include, for example, a laptop computer, a tablet computer, a mobile phone, a PDA, a personal navigation device, a remote control, a personal media player, a camera, a trackpad, or a keyboard. The user interface enhancement system 100 may, however, be used as the user interface for any suitable device that interfaces with a user in a tactile and/or visual manner (such as an automotive console, a desktop computer, a television, a radio, a desk phone, a watch, a remote, and a mouse). As shown in
As shown in
The shape of the deformation of the particular region 113 is preferably one that is felt by a user through their finger and preferably acts as (1) a button that can be pressed by the user, (2) a slider that can be pressed by the user in one location along the slider or that can be swept in a sliding motion along the slider (such as the “click wheel” of the second generation Apple iPod), and/or (3) a pointing stick that can be pressed by the user from multiple directions and/or locations along the surface whereby the user is provided with tactile feedback that distinguishes a first directional touch from a second directional touch and/or a touch in a first location from a touch in a second location (such as the pointing stick trademarked by IBM as the TRACKPOINT and by Synaptics as the TOUCHSTYK (which are both informally known as the “nipple”)). The deformation may, however, act as any other suitable device or method that provides suitable tactile guidance and feedback.
As shown in
The sheet 102 may be manufactured using well-known techniques for micro-fluid arrays to create one or more cavities and/or micro channels. The sheet 102 may be constructed using multiple layers from the same material or from different suitable materials, for example, the sheet 102 may include a layer portion 110 of one material that defines the surface 115 and a substrate portion 120 of a second material (as shown in
The layer portion no is preferably attached to the substrate portion 120 (or fluid outlet layer) at an attachment point 117 that at least partially defines the size and/or shape of the particular region 113. In other words, the attachment point 117 functions to define a border between a deformable particular region of the surface 113 and the rest of the surface 115 and the size of the particular region 113 is substantially independent of the size of the cavity 124 and/or the channel 138. The attachment point 117 may be a series of continuous points that define an edge, but may alternatively be a series of non-continuous points. The attachment point 117 may be formed using, for example, adhesive, chemical bonding, surface activation, welding, or any other suitable attachment material and/or method. The method and material used to form the attachment point 117 is preferably of a similar optical property as the layer portion no and the substrate portion 120, but may alternatively be of any other optical property. Other portions of the layer portion 110 and substrate portion 120 not corresponding to a particular region of the surface 113 may also be adhered using similar or identical materials and methods to the attachment point 117. Alternatively, the layer portion 110 and substrate portion 120 may be left unattached in other portions not corresponding to a particular region of the surface 113. However, the sheet 102 may be arranged in any other suitable manner.
As shown in
The substrate 120 of the preferred embodiments functions to support the layer 110 and to at least partially define the cavity 125. In one version, as shown in
The fluid vessel 127 of the preferred embodiment functions to hold a volume of fluid 112 and to have at least two volumetric settings: a retracted volume setting (as shown in
As shown in
As described above, the user interface enhancement system 100 is preferably one of two preferred embodiments: a first preferred embodiment where the displacement device 130 is electrically powered and a second preferred embodiment where the displacement device 130 is manually powered. In both preferred embodiments, the displacement device 130 functions to influence the volume of fluid 112 within fluid vessel 127 to expand and retract at least a portion of the fluid vessel 127, thereby deforming a particular region 113 (and/or a second particular region 113) of the surface 115. When used with a mobile phone device 10, for the variation of the fluid vessel 127 that includes a cavity 125, the displacement device 130 preferably increases the volume of the fluid 112 within the fluid vessel 127 by approximately 0.003-0.5 ml to expand the cavity 125 to outwardly deform a particular region 113 but may alternatively increase the volume of fluid 112 by any other suitable amount. When used with this or other applications, however, the volume of the fluid may be increased (or possibly decreased) by any suitable amount. Although the cause of the deformation of a particular region 113 of the surface 115 has been described as a modification of the volume of the fluid in the fluid vessel 127, it is possible to describe the cause of the deformation as an increase or decrease in the pressure below the surface 115 relative to the pressure above the surface 115. When used with a mobile phone device 10, an increase of approximately 0.1-10.0 psi between the pressure below the surface 115 relative to the pressure above the surface 115, is preferably enough to outwardly deform a particular region 113 of the surface 115. When used with this or other applications, however, the modification of the pressure may be increased (or possibly decreased) by any suitable amount.
The displacement device 130 of the first preferred embodiment is preferably electrically powered and modifies the volume of the fluid 112 by (1) modifying the volume of the existing fluid in the fluid vessel 127, or (2) displacing fluid to and from the fluid vessel 127. The displacement device 130 may, however, influence the volume of the fluid 112 by any suitable electrically powered device or method. Modifying the volume of the existing fluid in the fluid vessel 127 (or cavity 125 and/or channel 138) most likely has an advantage of lesser complexity, while displacing fluid to and from the fluid vessel 127 (or cavity 125 and/or channel 138) most likely has an advantage of maintaining the deformation of the surface 115 without the need for additional energy (if valves or other lockable mechanisms are used). The following examples are described as expanding a fluid vessel 127 that includes a cavity 125 and a channel 138, but the fluid vessel 127 may be any other suitable combination of combination of cavity 125 and channel 138.
Modifying the existing fluid in the cavity 125 may be accomplished in several ways. In a first example, as shown in
Displacing fluid to and from the cavity 125 may also be accomplished in several ways. In a first example, as shown in
The user interface system 100 of the first preferred embodiment preferably includes a native power source 200, as shown in
The displacement device 130 of the second preferred embodiment is preferably manually powered, which may allow the user interface enhancement system 100 to rely on relatively simple mechanics. The actuation of the displacement device 130 of the second preferred embodiment also preferably powers the displacement device 130 Alternatively, the actuation of the displacement device 130 may be decoupled from the power of the displacement device 130. For example, power provided by the user to the displacement device 130 may be stored until the user actuates the displacement device 130 by releasing the stored power. In a more specific example, the displacement device 130 may include an accumulator 323, as shown in
The manual power is preferably provided by the user directly (for example, directly onto the user interface enhancement system 100) or indirectly (for example, indirectly to the user interface enhancement system 100 through the device), but may alternatively be any other suitable manual power. The following examples are described as expanding a fluid vessel 127 that includes a cavity 125 and a channel 138, but the fluid vessel 127 may be any other suitable combination of combination of cavity 125 and channel 138.
The displacement device 130 of the second preferred embodiment is preferably one of several variations. The manually powered displacement device 130 preferably includes a reservoir 132 that contains a volume of fluid 112 and is fluidly coupled to the cavity 125 through a channel 138 and fluid 112 is preferably displaced between the reservoir 132 and the cavity 125 through manipulation of the reservoir 132. In a first variation, the reservoir 132 is compressed to displace fluid into the cavity 125. Because the reservoir 132 is gradually compressed, the amount of expansion of the cavity 125 may be tuned to any state along the compression of the reservoir 132, which may provide the advantage of a relatively high degree of personalization of the deformation of the particular region 113. Alternatively, the reservoir 132 may be compressed to a first state and a second state, providing two stages of expansion of the cavity 125. In an example of the first variation, the reservoir 132 functions as a button 310 that is accessible to the user, as shown in
In a second variation, the displacement device 130 may include a plunger 314 contained within the reservoir 132 that is manually moved relative to the fluid to displace fluid between the reservoir 132 and the cavity 125. In an example of the second variation, the plunger 314 may include a lever 316 that is accessible to the user and the user may push the lever 316 to displace fluid 112 between the reservoir 132 and the cavity 125, as shown in
In a third variation, the displacement device 130 may be coupled to a portion of the device 10 such that movement of the portion of the device actuates and powers the displacement device 130 to displace fluid from the reservoir 132 to the cavity 125. The portion of the device that is coupled to the displacement device 130 may be one that the user provides a force to during normal use of the device 10. There are at least two examples: (1) when the user interface enhancement system 100 is applied to mobile device 10 with a flip cover and a hinge, the power provided by the user to flip open the cover is used to pump the fluid into the cavity 125, and (2) the device may include a button that the user pushes to turn on the device 10.
In a first example of the third variation, when the user interface enhancement system 100 is applied to mobile device 10 with a flip cover and a hinge, the power provided by the user to flip open the cover is used to pump the fluid into the cavity 125. The reservoir 132 is a channel reservoir 322 and the displacement device 130 includes a piston 320 contained within the channel reservoir 322. The displacement device 130 is preferably incorporated into the hinge of the device. A first set of threads on the piston 320 and a second set of threads on the channel reservoir 322 forms the interface in between the piston 320 and the channel reservoir 322. The hinge of the flip cover of the device 10 may be coupled to the channel reservoir 322 such that as the flip cover is opened, the channel reservoir 322 is also rotated while the piston 320 is anchored to prevent rotation but allow translation along the channel reservoir 322 (as shown in
The displacement device 130 may alternatively be coupled to the flip cover of the device. The piston 320 and the channel reservoir 322, function to slide relative to each other. The piston 320 may be coupled to the flip cover while the channel reservoir 322 is coupled to the rest of the device. As the flip cover is opened, the piston translates within the channel reservoir 322 and the fluid is pumped to the cavity 125 (as shown in
Another version of the first example is substantially similar to the first variation of the second preferred embodiment where the displacement device 130 includes a reservoir 132 that is compressed to displace fluid 112 into the cavity 125. The reservoir 132 is preferably a pliable cavity 318 that is coupled to the flip cover of the device, wherein the opening of the flip cover functions to squeeze or twist the pliable cavity 318 (as shown in
In a second example of the third variation, the device 10 may include a slider that covers a portion of the device that is moved to reveal the portion of the device, for example, a slider that hides a keyboard of a mobile phone and is slid to reveal a keyboard or a slider that protects a lens of a camera and is slid to reveal the lens and/or turn on the device 10. The sliding motion may be used to actuate and/or power the displacement device 130. For example, the slider of the device 10 may be coupled to the slider 312 or the lever 316 of the first and second variation of the second preferred embodiment and the motion of the slider of the device 10 may actuate the slider 312 or the lever 316 to compress the reservoir 132 to expand the cavity 125.
In a third example of the third variation, the device 10 may include a button, for example, a button that the user pushes to turn on the device 10. The pushing force used to turn on the device 10 may be coupled to the displacement device 130 and used to pump the fluid into the cavity 125. The displacement device 130 of this example may be a button similar to button 310 described in the first example of the first variation of the second preferred embodiment as described above, wherein the button is coupled to the button of the device 10 and is concurrently actuated with the button of the device 10. However, any other suitable device or method to harness the power provided by the user in the normal operation of the device 10 and transfer the power to actuate the expansion of the cavity 125 may be used.
In a fourth variation, the cavity 125 may be biased into either a retracted or an expanded state. For example, the cavity 125 may be biased into an expanded state until the user performs an action to switch the cavity 125 into the retracted state. The actuation of the retracted state may be performed using a method and system similar or identical to those described in the first and second examples of the first variation of the second preferred embodiment for the actuation of the expanded state of the cavity 125. In a first example, the button 310 of the first example of the first variation described above may be biased to expand the cavity 125. The button 310 of this example may include a lever arm that, when pushed, functions to counteract the bias of the button 310. The lever arm is preferably in contact with the flip cover such that when the flip cover is returned to the closed state, the bias of the flip cover to remain closed is used to push against the lever arm, thus counteracting the bias of the button 310 and returning the cavity 125 into the retracted state. In a second example, the piston 320 and channel reservoir 322 of the third variation described above may be biased by a spring into maintaining the expanded mode of the cavity 125. When the user closes the flip cover of the device 10, the piston 320 is translated within 322 such that the biasing force of the spring is overcome and the cavity 125 is retracted. This variation may alternatively be described as a user inputting energy into an energy storage mechanism to be used for a future actuation of the expansion of the cavity 125. For example, a user may compress a compression spring, extend a tension spring, or twist a torsion spring, and then select to use the stored energy to actuate the expansion of the cavity 125. In the variation that includes a second cavity 125b, the user preferably chooses the cavity 125 or second cavity 125b to be expanded with the stored energy. For example, a reservoir may be fluidly coupled to both the cavity 125 and the second cavity 125 through a Y-junction that includes a valve. The valve may include a mechanical switch that directs fluid to one of (or both of) the cavity 125 and second cavity 125b. The user may actuate the switch to expand the desired cavity (or cavities). The user interface enhancement system 100 preferably also includes an energy storage facilitator that allows the user to more easily store energy into the energy storage mechanism. The facilitator preferably provides the user with mechanical leverage (for example, a lever), but may alternatively be of any other suitable type. However, any other suitable system or method suitable to bias the cavity 125 into the expanded state until a power input is received from the user may be used.
In the variation wherein the user interface enhancement system 100 includes a second cavity 125b, the second cavity 125b may be expanded independently of the cavity 125. Alternatively, the cavities 125 and 125b may be expanded concurrently. However, any other suitable cavity expansion combination may be used. In the first example of the first variation of the second preferred embodiment, the user interface enhancement system 100 may include a second button 310 that functions as a second displacement device 130 to move fluid into the second cavity 125b. In the second example of the first variation where the displacement device 130 includes a slider 312 that actuates a paddle to “squeeze” a reservoir 132, the displacement device 130 may include a second reservoir 132 and the slider 312 may be moved in one direction to “squeeze” a first reservoir 132 to expand the cavity 125 and the slider 312 may then be moved in a second direction to “squeeze” the second reservoir 132 to expand the second cavity 125b. The displacement device 130 may alternatively include a second slider 312 to squeeze the second reservoir 132 to actuate the expansion of the second cavity 125b. In the second variation of the second preferred embodiment that includes a plunger with a lever, the lever may be shifted to one side to actuate the expansion of the cavity 125 and to another side to actuate the expansion of the second cavity 125b, similar to the system and method shown in
In the third variation, where the displacement device 130 may be coupled to a portion of the device 10, the channel reservoir 322 may include a second set of threads that cause the piston 320 to translate in a second direction relative to the channel reservoir 322 to pump fluid into the second cavity 125b. Alternatively, the displacement device 130 may include a second channel reservoir 322 and a second piston 320 that function to pump fluid into the second cavity 125b. In the third variation, the user interface enhancement system 100 preferably includes a selector that allows the user to select one or both of the cavities 125 and 125b. The selector may be a temporary coupler that functions to couple the desired channel reservoir 322 or piston 32o to the rotation movement of the flip cover, but may alternatively be any other suitable selector system or method. The selector is preferably accessible to the user prior to the action used to actuate the expansion of the cavity 125. For example, in the example wherein force used in the opening of the flip cover is used to actuate the expansion (or retraction) of the cavity 125, the user is preferably able to select the cavity they wish to expand (for example, through a selector button on the exterior of the device 10) prior to opening the flip cover such that the correct cavity is expanded upon opening of the flip cover. This allows for the user to have immediate tactile guidance once the device 10 is turned on and accessible. Alternatively, the user may select the cavity after the device 10 has been turned on and accessible. In this variation, one of the cavities will already be expanded and the selector functions to switch the expansion over to the other cavity or to both cavities. In the variation wherein the hinge is coupled to the piston 320, the selector may function to allow the user to translate the piston 320 in a second direction to expand the second cavity 125b. The selector may also allow for a combination of the two variations mentioned here. The selector may alternatively also be used to adjust the level of expansion of the cavity 125. However, any other suitable system or method may be used for the expansion of the second cavity 125b.
In the first, second, and third variations of the second preferred embodiment, once the cavity 125 is expanded, the cavity 125 is preferably held in the expanded state without further force provided by the user. Because of the force that may be necessary to push against the walls of the cavity 125 to expand the cavity 125, the fluid may be naturally biased to flow backwards and allow the cavity 125 to return to the retracted state. In the first example of the first variation, the button 310 may include a locking mechanism 315 to lock the button 310 into the actuated state to prevent the fluid from moving back into the button 310 and away from the cavity 125, as shown in
The displacement device 130 of both preferred embodiments may be actuated by the device, but may alternatively be actuated by the user. In the variation where the displacement device 130 is actuated by the device, the user interface enhancement system 100 functions to communicate with the device 10 and the device 10 functions to actuate the expansion of the cavity 125. In this preferred embodiment, the device 10 actuates the expansion of the cavity 125 whenever the device 10 determines that tactile guidance is to be provided to the user. The device 10 may alternatively actuate the expansion of the cavity 125 when the user inputs into the device 10 that tactile guidance is desired. The device 10 also preferably determines the length of time the cavity 125 is to be expanded, the rate of expansion of the cavity 125, the level of expansion of the cavity 125, and/or any other characteristic of the expansion of the cavity 125 that may affect the tactile guidance provided to the user may be controlled by the device 10. In the variation wherein the user interface enhancement system 100 includes a second cavity 125b, the device 10 may also function to selectively actuate the expansion of one of or both of the cavity 125 and the second cavity 125b. The selection of the cavity or cavities to be expanded may depend on whether tactile guidance is to be provided to the user at the location of the corresponding particular regions 113. However, any other factors suitable to determining the actuation of the expansion of the cavity 125 and/or the second cavity 125b may be used.
As shown in
Alternatively, the user may actuate the displacement device 130. By allowing the user to actuate the expansion of the cavity 125, a data-link 205 is not necessary as in the variation where the device 10 actuates the displacement device 130 because communication between the user interface enhancement system 100 and the device 10 is not required for operation of the user interface enhancement system 100. Because electronic devices from different manufacturers generally have different criteria for communication, removing the need to communicate with the device 10 upon which the user interface enhancement system 100 is appended may allow the user interface enhancement system 100 of the second preferred embodiment to be applicable to a wider variety of electronic device with substantially little development time. In general, to adapt the user actuated variation of the user interface enhancement system 100 to different electronic devices, relatively simple changes in the placement of the cavity 125, the geometry of cavity 125, the overall size of the user interface enhancement system 100, and the number of cavities 125 and 125b may be made.
Because of the manually powered nature of the second preferred embodiment, the displacement device 130 of the second preferred embodiment is preferably user actuated. The displacement device 130 of the first preferred embodiment may also be user actuated. For example, the user interface enhancement system 100 of the first preferred embodiment may include a button (or a switch) that functions to allow the user to activate the expansion of the cavity 125. The button may be a two state button that functions to signal the displacement device 130 to expand the cavity 125 and/or to retract the cavity 125, but may alternatively be a button with more than two states that function to allow the user to select the level of expansion of the cavity 125. The actuation of the button may signal the displacement device 130 to expand the cavity 125 until a second actuation of the button is received, wherein the second actuation of the button signals the displacement device 130 to retract the cavity 125. Alternatively, the actuation of the button may result in the expansion of the cavity 125 until the button is released or returned to an initial state (for example, a slider button that remains in one position until the user moves the slider into a second position). The actuation of the expansion of the cavity 125 may alternatively be of any other suitable sequence. In the variation wherein the user interface enhancement system 100 includes a second cavity 125b, the button may also function to signal to the displacement device 130 to expand the second cavity 125b. For example, the button may be a slider with a first slider position to signal no expansion, a second position to signal expansion of the cavity 125, a third position to signal expansion of the second cavity 125b, and/or a fourth position to signal expansion of both the cavities 125 and 125b. The slider may alternatively include a first slider position to signal no expansion, a second position to signal a first degree of expansion of the cavity 125, and a third position to signal a second degree of expansion of the cavity 125. The slider of this variation may be used to indicate the range of degrees of expansion available with the displacement device 130. Alternatively, the user interface enhancement system 100 may include a second button that functions to signal to the displacement device 130 to expand the second cavity 125b. However, any other suitable user interface may be used to allow the user to selectively expand the cavity 125 and/or the second cavity 125b electrically.
The user preferably actuates the expansion of the cavity 125 when he or she desires tactile guidance, for example, the user may be performing an activity where it is difficult or undesirable to keep their eye on the device 10 (for example, while typing at substantially high-speeds or while driving). In another example, the device 10 may be low on portable power and the display may be dimmed to conserve power, resulting in the lack of visual cues and the need for the alternative of tactile guidance. In such situations, the user actuates the expansion of the cavity 125 to obtain tactile guidance that allows them to use the device 10 without visual guidance. The user may also configure the level of expansion of the cavity 125. The user may also configure the user interface enhancement system 100 to expand the cavity 125 upon activation of the device 10 or they may configure the cavity 125 to remain expanded whether the device 10 is on or off. In the variation wherein the user interface enhancement system 100 includes a second cavity 125b, the user also selects whether to actuate the expansion of the cavity 125 or the second cavity 125b, or both. However, any other suitable usage scenario may be applicable.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation of prior U.S. application Ser. No. 12/830,430, filed on 5 Jul. 2010, which is incorporated by reference. This application is related to U.S. application Ser. No. 11/969,848, filed on 4 Jan. 2008, and U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009, both of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3034628 | Wadey | May 1962 | A |
3659354 | Sutherland | May 1972 | A |
3759108 | Borom et al. | Sep 1973 | A |
3780236 | Gross | Dec 1973 | A |
3818487 | Brody et al. | Jun 1974 | A |
4109118 | Kley | Aug 1978 | A |
4209819 | Seignemartin | Jun 1980 | A |
4290343 | Gram | Sep 1981 | A |
4307268 | Harper | Dec 1981 | A |
4467321 | Volnak | Aug 1984 | A |
4477700 | Balash et al. | Oct 1984 | A |
4517421 | Margolin | May 1985 | A |
4543000 | Hasenbalg | Sep 1985 | A |
4584625 | Kellogg | Apr 1986 | A |
4700025 | Hatayama et al. | Oct 1987 | A |
4772205 | Chlumsky et al. | Sep 1988 | A |
4920343 | Schwartz | Apr 1990 | A |
4940734 | Ley et al. | Jul 1990 | A |
5194852 | More et al. | Mar 1993 | A |
5195659 | Eiskant | Mar 1993 | A |
5212473 | Louis | May 1993 | A |
5222895 | Fricke | Jun 1993 | A |
5286199 | Kipke | Feb 1994 | A |
5369228 | Faust | Nov 1994 | A |
5412189 | Cragun | May 1995 | A |
5459461 | Crowley et al. | Oct 1995 | A |
5488204 | Mead et al. | Jan 1996 | A |
5496174 | Garner | Mar 1996 | A |
5666112 | Crowley et al. | Sep 1997 | A |
5717423 | Parker | Feb 1998 | A |
5729222 | Iggulden et al. | Mar 1998 | A |
5742241 | Crowley et al. | Apr 1998 | A |
5754023 | Roston et al. | May 1998 | A |
5766013 | Vuyk | Jun 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5835080 | Beeteson et al. | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5917906 | Thornton | Jun 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5977867 | Blouin | Nov 1999 | A |
5982304 | Selker et al. | Nov 1999 | A |
6067116 | Yamano et al. | May 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6154201 | Levin et al. | Nov 2000 | A |
6160540 | Fishkin et al. | Dec 2000 | A |
6169540 | Rosenberg et al. | Jan 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6218966 | Goodwin et al. | Apr 2001 | B1 |
6243074 | Fishkin et al. | Jun 2001 | B1 |
6243078 | Rosenberg | Jun 2001 | B1 |
6268857 | Fishkin et al. | Jul 2001 | B1 |
6271828 | Rosenberg et al. | Aug 2001 | B1 |
6278441 | Gouzman et al. | Aug 2001 | B1 |
6300937 | Rosenberg | Oct 2001 | B1 |
6310614 | Maeda et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6337678 | Fish | Jan 2002 | B1 |
6354839 | Schmidt et al. | Mar 2002 | B1 |
6356259 | Maeda et al. | Mar 2002 | B1 |
6359572 | Vale | Mar 2002 | B1 |
6366272 | Rosenberg et al. | Apr 2002 | B1 |
6369803 | Brisebois et al. | Apr 2002 | B2 |
6384743 | Vanderheiden | May 2002 | B1 |
6414671 | Gillespie et al. | Jul 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6437771 | Rosenberg et al. | Aug 2002 | B1 |
6462294 | Davidson et al. | Oct 2002 | B2 |
6469692 | Rosenberg | Oct 2002 | B2 |
6486872 | Rosenberg et al. | Nov 2002 | B2 |
6498353 | Nagle et al. | Dec 2002 | B2 |
6501462 | Garner | Dec 2002 | B1 |
6509892 | Cooper et al. | Jan 2003 | B1 |
6529183 | MacLean et al. | Mar 2003 | B1 |
6573844 | Venolia et al. | Jun 2003 | B1 |
6636202 | Ishmael, Jr. et al. | Oct 2003 | B2 |
6639581 | Moore et al. | Oct 2003 | B1 |
6655788 | Freeman | Dec 2003 | B1 |
6657614 | Ito et al. | Dec 2003 | B1 |
6667738 | Murphy | Dec 2003 | B2 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6686911 | Levin et al. | Feb 2004 | B1 |
6697086 | Rosenberg et al. | Feb 2004 | B2 |
6700556 | Richley et al. | Mar 2004 | B2 |
6703924 | Tecu et al. | Mar 2004 | B2 |
6743021 | Prince et al. | Jun 2004 | B2 |
6788295 | Inkster | Sep 2004 | B1 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6850222 | Rosenberg | Feb 2005 | B1 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6877986 | Fournier et al. | Apr 2005 | B2 |
6881063 | Yang | Apr 2005 | B2 |
6930234 | Davis | Aug 2005 | B2 |
6937225 | Kehlstadt et al. | Aug 2005 | B1 |
6975305 | Yamashita | Dec 2005 | B2 |
6979164 | Kramer | Dec 2005 | B2 |
6982696 | Shahoian | Jan 2006 | B1 |
6995745 | Boon et al. | Feb 2006 | B2 |
7027032 | Rosenberg et al. | Apr 2006 | B2 |
7056051 | Fiffie | Jun 2006 | B2 |
7061467 | Rosenberg | Jun 2006 | B2 |
7064655 | Murray et al. | Jun 2006 | B2 |
7081888 | Cok et al. | Jul 2006 | B2 |
7096852 | Gregorio | Aug 2006 | B2 |
7102541 | Rosenberg | Sep 2006 | B2 |
7104152 | Levin et al. | Sep 2006 | B2 |
7106305 | Rosenberg | Sep 2006 | B2 |
7106313 | Schena et al. | Sep 2006 | B2 |
7109967 | Hioki et al. | Sep 2006 | B2 |
7112737 | Ramstein | Sep 2006 | B2 |
7113166 | Rosenberg et al. | Sep 2006 | B1 |
7116317 | Gregorio et al. | Oct 2006 | B2 |
7124425 | Anderson, Jr. et al. | Oct 2006 | B1 |
7129854 | Arneson et al. | Oct 2006 | B2 |
7131073 | Rosenberg et al. | Oct 2006 | B2 |
7136045 | Rosenberg et al. | Nov 2006 | B2 |
7138977 | Kinerk et al. | Nov 2006 | B2 |
7138985 | Nakajima | Nov 2006 | B2 |
7143785 | Maerkl et al. | Dec 2006 | B2 |
7144616 | Unger et al. | Dec 2006 | B1 |
7148875 | Rosenberg et al. | Dec 2006 | B2 |
7151432 | Tierling | Dec 2006 | B2 |
7151527 | Culver | Dec 2006 | B2 |
7151528 | Taylor et al. | Dec 2006 | B2 |
7154470 | Tierling | Dec 2006 | B2 |
7158112 | Rosenberg et al. | Jan 2007 | B2 |
7159008 | Wies et al. | Jan 2007 | B1 |
7161276 | Face | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7168042 | Braun et al. | Jan 2007 | B2 |
7176903 | Katsuki et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7191191 | Peurach et al. | Mar 2007 | B2 |
7193607 | Moore et al. | Mar 2007 | B2 |
7195170 | Matsumoto et al. | Mar 2007 | B2 |
7196688 | Schena | Mar 2007 | B2 |
7198137 | Olien | Apr 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7205981 | Cunningham | Apr 2007 | B2 |
7208671 | Chu | Apr 2007 | B2 |
7209028 | Boronkay et al. | Apr 2007 | B2 |
7209117 | Rosenberg et al. | Apr 2007 | B2 |
7209118 | Shahoian et al. | Apr 2007 | B2 |
7210160 | Anderson, Jr. et al. | Apr 2007 | B2 |
7215326 | Rosenberg | May 2007 | B2 |
7216671 | Unger et al. | May 2007 | B2 |
7218310 | Tierling et al. | May 2007 | B2 |
7218313 | Marcus et al. | May 2007 | B2 |
7233313 | Levin et al. | Jun 2007 | B2 |
7233315 | Gregorio et al. | Jun 2007 | B2 |
7233476 | Goldenberg et al. | Jun 2007 | B2 |
7236157 | Schena et al. | Jun 2007 | B2 |
7245202 | Levin | Jul 2007 | B2 |
7245292 | Custy | Jul 2007 | B1 |
7249951 | Bevirt et al. | Jul 2007 | B2 |
7250128 | Unger et al. | Jul 2007 | B2 |
7253803 | Schena et al. | Aug 2007 | B2 |
7253807 | Nakajima | Aug 2007 | B2 |
7265750 | Rosenberg | Sep 2007 | B2 |
7280095 | Grant | Oct 2007 | B2 |
7283120 | Grant | Oct 2007 | B2 |
7283123 | Braun et al. | Oct 2007 | B2 |
7289106 | Bailey et al. | Oct 2007 | B2 |
7289111 | Asbill | Oct 2007 | B2 |
7307619 | Cunningham et al. | Dec 2007 | B2 |
7308831 | Cunningham et al. | Dec 2007 | B2 |
7319374 | Shahoian | Jan 2008 | B2 |
7336260 | Martin et al. | Feb 2008 | B2 |
7336266 | Hayward et al. | Feb 2008 | B2 |
7339572 | Schena | Mar 2008 | B2 |
7339580 | Westerman et al. | Mar 2008 | B2 |
7342573 | Ryynaenen | Mar 2008 | B2 |
7355595 | Bathiche et al. | Apr 2008 | B2 |
7369115 | Cruz-Hernandez et al. | May 2008 | B2 |
7382357 | Panotopoulos et al. | Jun 2008 | B2 |
7390157 | Kramer | Jun 2008 | B2 |
7391861 | Levy | Jun 2008 | B2 |
7397466 | Bourdelais et al. | Jul 2008 | B2 |
7403191 | Sinclair | Jul 2008 | B2 |
7432910 | Shahoian | Oct 2008 | B2 |
7432911 | Skarine | Oct 2008 | B2 |
7432912 | Cote et al. | Oct 2008 | B2 |
7433719 | Dabov | Oct 2008 | B2 |
7471280 | Prins | Dec 2008 | B2 |
7489309 | Levin et al. | Feb 2009 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7522152 | Olien et al. | Apr 2009 | B2 |
7545289 | Mackey et al. | Jun 2009 | B2 |
7548232 | Shahoian et al. | Jun 2009 | B2 |
7551161 | Mann | Jun 2009 | B2 |
7561142 | Shahoian et al. | Jul 2009 | B2 |
7567232 | Rosenberg | Jul 2009 | B2 |
7567243 | Hayward | Jul 2009 | B2 |
7589714 | Funaki | Sep 2009 | B2 |
7592999 | Rosenberg et al. | Sep 2009 | B2 |
7605800 | Rosenberg | Oct 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7659885 | Kraus et al. | Feb 2010 | B2 |
7671837 | Forsblad et al. | Mar 2010 | B2 |
7679611 | Schena | Mar 2010 | B2 |
7679839 | Polyakov et al. | Mar 2010 | B2 |
7688310 | Rosenberg | Mar 2010 | B2 |
7701438 | Chang et al. | Apr 2010 | B2 |
7728820 | Rosenberg et al. | Jun 2010 | B2 |
7733575 | Heim et al. | Jun 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7755602 | Tremblay et al. | Jul 2010 | B2 |
7808488 | Martin et al. | Oct 2010 | B2 |
7834853 | Finney et al. | Nov 2010 | B2 |
7843424 | Rosenberg et al. | Nov 2010 | B2 |
7864164 | Cunningham et al. | Jan 2011 | B2 |
7869589 | Tuovinen | Jan 2011 | B2 |
7890257 | Fyke et al. | Feb 2011 | B2 |
7890863 | Grant et al. | Feb 2011 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7924145 | Yuk et al. | Apr 2011 | B2 |
7944435 | Rosenberg et al. | May 2011 | B2 |
7952498 | Higa | May 2011 | B2 |
7956770 | Klinghult et al. | Jun 2011 | B2 |
7973773 | Pryor | Jul 2011 | B2 |
7978181 | Westerman | Jul 2011 | B2 |
7978183 | Rosenberg et al. | Jul 2011 | B2 |
7978186 | Vassallo et al. | Jul 2011 | B2 |
7979797 | Schena | Jul 2011 | B2 |
7982720 | Rosenberg et al. | Jul 2011 | B2 |
7986303 | Braun et al. | Jul 2011 | B2 |
7986306 | Eich et al. | Jul 2011 | B2 |
7989181 | Blattner et al. | Aug 2011 | B2 |
7999660 | Cybart et al. | Aug 2011 | B2 |
8002089 | Jasso et al. | Aug 2011 | B2 |
8004492 | Kramer et al. | Aug 2011 | B2 |
8013843 | Pryor | Sep 2011 | B2 |
8020095 | Braun et al. | Sep 2011 | B2 |
8022933 | Hardacker et al. | Sep 2011 | B2 |
8031181 | Rosenberg et al. | Oct 2011 | B2 |
8044826 | Yoo | Oct 2011 | B2 |
8047849 | Ahn et al. | Nov 2011 | B2 |
8049734 | Rosenberg et al. | Nov 2011 | B2 |
8059104 | Shahoian et al. | Nov 2011 | B2 |
8059105 | Rosenberg et al. | Nov 2011 | B2 |
8063892 | Shahoian et al. | Nov 2011 | B2 |
8063893 | Rosenberg et al. | Nov 2011 | B2 |
8068605 | Holmberg | Nov 2011 | B2 |
8077154 | Emig et al. | Dec 2011 | B2 |
8077440 | Krabbenborg et al. | Dec 2011 | B2 |
8077941 | Assmann | Dec 2011 | B2 |
8094121 | Obermeyer et al. | Jan 2012 | B2 |
8094806 | Levy | Jan 2012 | B2 |
8103472 | Braun et al. | Jan 2012 | B2 |
8106787 | Nurmi | Jan 2012 | B2 |
8115745 | Gray | Feb 2012 | B2 |
8123660 | Kruse et al. | Feb 2012 | B2 |
8125347 | Fahn | Feb 2012 | B2 |
8125461 | Weber et al. | Feb 2012 | B2 |
8130202 | Levine et al. | Mar 2012 | B2 |
8144129 | Hotelling et al. | Mar 2012 | B2 |
8144271 | Han | Mar 2012 | B2 |
8154512 | Olien et al. | Apr 2012 | B2 |
8154527 | Ciesla et al. | Apr 2012 | B2 |
8159461 | Martin et al. | Apr 2012 | B2 |
8162009 | Chaffee | Apr 2012 | B2 |
8164573 | Dacosta et al. | Apr 2012 | B2 |
8169306 | Schmidt et al. | May 2012 | B2 |
8169402 | Shahoian et al. | May 2012 | B2 |
8174372 | Da Costa | May 2012 | B2 |
8174495 | Takashima et al. | May 2012 | B2 |
8174508 | Sinclair et al. | May 2012 | B2 |
8174511 | Takenaka et al. | May 2012 | B2 |
8178808 | Strittmatter | May 2012 | B2 |
8179375 | Ciesla et al. | May 2012 | B2 |
8179377 | Ciesla et al. | May 2012 | B2 |
8188989 | Levin et al. | May 2012 | B2 |
8195243 | Kim et al. | Jun 2012 | B2 |
8199107 | Xu et al. | Jun 2012 | B2 |
8199124 | Ciesla et al. | Jun 2012 | B2 |
8203094 | Mittleman et al. | Jun 2012 | B2 |
8203537 | Tanabe et al. | Jun 2012 | B2 |
8207950 | Ciesla et al. | Jun 2012 | B2 |
8212772 | Shahoian | Jul 2012 | B2 |
8217903 | Ma et al. | Jul 2012 | B2 |
8217904 | Kim | Jul 2012 | B2 |
8223278 | Kim et al. | Jul 2012 | B2 |
8224392 | Kim et al. | Jul 2012 | B2 |
8228305 | Pryor | Jul 2012 | B2 |
8232976 | Yun et al. | Jul 2012 | B2 |
8243038 | Ciesla et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8253703 | Eldering | Aug 2012 | B2 |
8279172 | Braun et al. | Oct 2012 | B2 |
8279193 | Birnbaum et al. | Oct 2012 | B1 |
8310458 | Faubert et al. | Nov 2012 | B2 |
8345013 | Heubel et al. | Jan 2013 | B2 |
8350820 | Deslippe et al. | Jan 2013 | B2 |
8362882 | Heubel et al. | Jan 2013 | B2 |
8363008 | Ryu et al. | Jan 2013 | B2 |
8367957 | Strittmatter | Feb 2013 | B2 |
8368641 | Tremblay et al. | Feb 2013 | B2 |
8378797 | Pance et al. | Feb 2013 | B2 |
8384680 | Paleczny et al. | Feb 2013 | B2 |
8390594 | Modarres et al. | Mar 2013 | B2 |
8395587 | Cauwels et al. | Mar 2013 | B2 |
8395591 | Kruglick | Mar 2013 | B2 |
8400402 | Son | Mar 2013 | B2 |
8400410 | Taylor et al. | Mar 2013 | B2 |
8749489 | Ito et al. | Jun 2014 | B2 |
20010008396 | Komata | Jul 2001 | A1 |
20010043189 | Brisebois et al. | Nov 2001 | A1 |
20020104691 | Kent et al. | Aug 2002 | A1 |
20020106614 | Prince et al. | Aug 2002 | A1 |
20020110237 | Krishnan | Aug 2002 | A1 |
20020149570 | Knowles et al. | Oct 2002 | A1 |
20030087698 | Nishiumi et al. | May 2003 | A1 |
20030117371 | Roberts et al. | Jun 2003 | A1 |
20030179190 | Franzen | Sep 2003 | A1 |
20030206153 | Murphy | Nov 2003 | A1 |
20040001589 | Mueller et al. | Jan 2004 | A1 |
20040056876 | Nakajima | Mar 2004 | A1 |
20040056877 | Nakajima | Mar 2004 | A1 |
20040106360 | Farmer et al. | Jun 2004 | A1 |
20040114324 | Kusaka et al. | Jun 2004 | A1 |
20040164968 | Miyamoto | Aug 2004 | A1 |
20040178006 | Cok | Sep 2004 | A1 |
20050007339 | Sato | Jan 2005 | A1 |
20050007349 | Vakil et al. | Jan 2005 | A1 |
20050020325 | Enger et al. | Jan 2005 | A1 |
20050030292 | Diederiks | Feb 2005 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050073506 | Durso | Apr 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050162408 | Martchovsky | Jul 2005 | A1 |
20050212773 | Asbill | Sep 2005 | A1 |
20050231489 | Ladouceur et al. | Oct 2005 | A1 |
20050253816 | Himberg et al. | Nov 2005 | A1 |
20050285846 | Funaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060087479 | Sakurai et al. | Apr 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060098148 | Kobayashi et al. | May 2006 | A1 |
20060118610 | Pihlaja et al. | Jun 2006 | A1 |
20060119586 | Grant et al. | Jun 2006 | A1 |
20060152474 | Saito et al. | Jul 2006 | A1 |
20060154216 | Hafez et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060214923 | Chiu et al. | Sep 2006 | A1 |
20060238495 | Davis | Oct 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060256075 | Anastas et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20070013662 | Fauth | Jan 2007 | A1 |
20070036492 | Lee | Feb 2007 | A1 |
20070085837 | Ricks et al. | Apr 2007 | A1 |
20070108032 | Matsumoto et al. | May 2007 | A1 |
20070122314 | Strand et al. | May 2007 | A1 |
20070130212 | Peurach et al. | Jun 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070165004 | Seelhammer et al. | Jul 2007 | A1 |
20070171210 | Chaudhri et al. | Jul 2007 | A1 |
20070182718 | Schoener et al. | Aug 2007 | A1 |
20070229233 | Dort | Oct 2007 | A1 |
20070236466 | Hotelling | Oct 2007 | A1 |
20070236469 | Woolley et al. | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070254411 | Uhland et al. | Nov 2007 | A1 |
20070257634 | Leschin et al. | Nov 2007 | A1 |
20070273561 | Philipp | Nov 2007 | A1 |
20070296702 | Strawn et al. | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20080010593 | Uusitalo et al. | Jan 2008 | A1 |
20080024459 | Poupyrev et al. | Jan 2008 | A1 |
20080054875 | Saito | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080136791 | Nissar | Jun 2008 | A1 |
20080138774 | Ahn et al. | Jun 2008 | A1 |
20080143693 | Schena | Jun 2008 | A1 |
20080150911 | Harrison | Jun 2008 | A1 |
20080165139 | Hotelling et al. | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080202251 | Serban et al. | Aug 2008 | A1 |
20080238448 | Moore et al. | Oct 2008 | A1 |
20080248836 | Caine | Oct 2008 | A1 |
20080251368 | Holmberg et al. | Oct 2008 | A1 |
20080252607 | De Jong et al. | Oct 2008 | A1 |
20080266264 | Lipponen et al. | Oct 2008 | A1 |
20080286447 | Alden et al. | Nov 2008 | A1 |
20080291169 | Brenner et al. | Nov 2008 | A1 |
20080297475 | Woolf et al. | Dec 2008 | A1 |
20080303796 | Fyke | Dec 2008 | A1 |
20090002140 | Higa | Jan 2009 | A1 |
20090002205 | Klinghult et al. | Jan 2009 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090009480 | Heringslack | Jan 2009 | A1 |
20090015547 | Franz et al. | Jan 2009 | A1 |
20090033617 | Lindberg et al. | Feb 2009 | A1 |
20090066672 | Tanabe et al. | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090106655 | Grant et al. | Apr 2009 | A1 |
20090115733 | Ma et al. | May 2009 | A1 |
20090115734 | Fredriksson et al. | May 2009 | A1 |
20090128376 | Caine et al. | May 2009 | A1 |
20090128503 | Grant et al. | May 2009 | A1 |
20090129021 | Dunn | May 2009 | A1 |
20090135145 | Chen et al. | May 2009 | A1 |
20090140989 | Ahlgren | Jun 2009 | A1 |
20090160813 | Takashima et al. | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090167567 | Halperin et al. | Jul 2009 | A1 |
20090167677 | Kruse et al. | Jul 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090174673 | Ciesla | Jul 2009 | A1 |
20090174687 | Ciesla et al. | Jul 2009 | A1 |
20090181724 | Pettersson | Jul 2009 | A1 |
20090182501 | Fyke et al. | Jul 2009 | A1 |
20090195512 | Pettersson | Aug 2009 | A1 |
20090207148 | Sugimoto et al. | Aug 2009 | A1 |
20090215500 | You et al. | Aug 2009 | A1 |
20090243998 | Wang | Oct 2009 | A1 |
20090250267 | Heubel et al. | Oct 2009 | A1 |
20090289922 | Henry | Nov 2009 | A1 |
20090303022 | Griffin et al. | Dec 2009 | A1 |
20090309616 | Klinghult | Dec 2009 | A1 |
20100043189 | Fukano | Feb 2010 | A1 |
20100073241 | Ayala et al. | Mar 2010 | A1 |
20100097323 | Edwards et al. | Apr 2010 | A1 |
20100103116 | Leung et al. | Apr 2010 | A1 |
20100103137 | Ciesla et al. | Apr 2010 | A1 |
20100109486 | Polyakov et al. | May 2010 | A1 |
20100121928 | Leonard | May 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100171719 | Craig et al. | Jul 2010 | A1 |
20100171720 | Craig et al. | Jul 2010 | A1 |
20100177050 | Heubel et al. | Jul 2010 | A1 |
20100182245 | Edwards et al. | Jul 2010 | A1 |
20100232107 | Dunn | Sep 2010 | A1 |
20100237043 | Garlough | Sep 2010 | A1 |
20100295820 | Kikin-Gil | Nov 2010 | A1 |
20100296248 | Campbell et al. | Nov 2010 | A1 |
20100298032 | Lee et al. | Nov 2010 | A1 |
20100321335 | Lim et al. | Dec 2010 | A1 |
20110001613 | Ciesla et al. | Jan 2011 | A1 |
20110011650 | Klinghult | Jan 2011 | A1 |
20110012851 | Ciesla et al. | Jan 2011 | A1 |
20110018813 | Kruglick | Jan 2011 | A1 |
20110029862 | Scott et al. | Feb 2011 | A1 |
20110043457 | Oliver et al. | Feb 2011 | A1 |
20110074691 | Causey et al. | Mar 2011 | A1 |
20110148793 | Ciesla et al. | Jun 2011 | A1 |
20110148807 | Fryer | Jun 2011 | A1 |
20110157056 | Karpfinger | Jun 2011 | A1 |
20110157080 | Ciesla et al. | Jun 2011 | A1 |
20110163978 | Park et al. | Jul 2011 | A1 |
20110175838 | Higa | Jul 2011 | A1 |
20110175844 | Berggren | Jul 2011 | A1 |
20110181530 | Park et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110241442 | Mittleman et al. | Oct 2011 | A1 |
20110254672 | Ciesla et al. | Oct 2011 | A1 |
20110254709 | Ciesla et al. | Oct 2011 | A1 |
20110254789 | Ciesla et al. | Oct 2011 | A1 |
20120032886 | Ciesla et al. | Feb 2012 | A1 |
20120038583 | Westhues et al. | Feb 2012 | A1 |
20120043191 | Kessler et al. | Feb 2012 | A1 |
20120056846 | Zaliva | Mar 2012 | A1 |
20120062483 | Ciesla et al. | Mar 2012 | A1 |
20120098789 | Ciesla et al. | Apr 2012 | A1 |
20120105333 | Maschmeyer et al. | May 2012 | A1 |
20120193211 | Ciesla et al. | Aug 2012 | A1 |
20120200528 | Ciesla et al. | Aug 2012 | A1 |
20120200529 | Ciesla et al. | Aug 2012 | A1 |
20120206364 | Ciesla et al. | Aug 2012 | A1 |
20120218213 | Ciesla et al. | Aug 2012 | A1 |
20120223914 | Ciesla et al. | Sep 2012 | A1 |
20120235935 | Ciesla et al. | Sep 2012 | A1 |
20120242607 | Ciesla et al. | Sep 2012 | A1 |
20120306787 | Ciesla et al. | Dec 2012 | A1 |
20130019207 | Rothkopf et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1260525 | Jul 2000 | CN |
1530818 | Sep 2004 | CN |
1882460 | Dec 2006 | CN |
10255106 | Sep 1998 | JP |
2006268068 | Oct 2006 | JP |
2006285785 | Oct 2006 | JP |
2009064357 | Mar 2009 | JP |
100677624 | Jan 2007 | KR |
2004028955 | Apr 2004 | WO |
2008037275 | Apr 2008 | WO |
2009002605 | Dec 2008 | WO |
2009044027 | Apr 2009 | WO |
2009067572 | May 2009 | WO |
2009088985 | Jul 2009 | WO |
2010077382 | Jul 2010 | WO |
2010078596 | Jul 2010 | WO |
2010078597 | Jul 2010 | WO |
2011003113 | Jan 2011 | WO |
2011087816 | Jul 2011 | WO |
2011087817 | Jul 2011 | WO |
2011112984 | Sep 2011 | WO |
2011133604 | Oct 2011 | WO |
2011133605 | Oct 2011 | WO |
Entry |
---|
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html. |
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 pages. |
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011. |
Number | Date | Country | |
---|---|---|---|
20120218214 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12830430 | Jul 2010 | US |
Child | 13465772 | US |