The invention relates to an arrangement of a user interface for a rock drilling rig and for a control system thereof.
A rock drilling event comprises a plurality of steps, such as moving feed beam against rock, collaring, full power drilling, and finishing. These steps are very different and a large amount of different information is presented to the operator by means of several meters. Management of the incoming information flow is not easy for the operator monitoring and controlling the drilling event. A rock drilling rig may comprise a plurality of booms capable of simultaneous drilling, i.e. several drilling events may be in progress. Even if the drilling could be coupled to automatic control, the operator still has to be able to monitor the progress of a plurality of different drilling events, if need be. In accordance with a known solution, an active working phase can be indicated for switching on a led light in a control panel, i.e. a led light associated with the active working phase is turned on from a led light beam.
The object of the present invention is to provide a new and improved user interface for rock drilling rigs. The object of the invention is achieved with a control apparatus, a rock drilling rig and a computer program product, which are characterized in what is stated in the independent claims. Some preferred embodiments are described in the dependent claims.
In accordance with an aspect of the invention, the control unit that controls the information displayed on the display of the control apparatus of the rock drilling rig is arranged to display a working phase indicator on the display, and rock drilling phase-specific display information elements are associated with the different working phases of a rock drilling event. The control apparatus is arranged to specify the phase of the rock drilling event and to update the working phase indicator so as to display at least one display information element in accordance with the working phase specified. Generally, a display information element refers to an indication to be displayed to an operator in any form for indicating the working phase of the rock drilling event.
In accordance with an embodiment, the control unit is arranged to display the working phase indicator, wherein space is reserved for indicating the current working phase, the previous working phase and/or the following working phase. Typically, a drilling event includes a given working cycle, i.e. the working phases are advanced in order, allowing the following working phase in the drilling event to be displayed to the operator.
In accordance with another embodiment, the input device of the control apparatus is arranged to receive an input from a user regarding a change of working phase. The control apparatus is arranged to update the display information elements displayed in the working phase indicator in response to an input received from the input device and indicating a change of working phase.
The operator of the drilling apparatus may be offered an improved solution for managing drilling cycles. The operator may be shown, on the display, information on the state of the drilling event (typically a working cycle) what is to be updated on the basis of the changes. Such an updateable working phase indicator improves usability, since the operator is able to easily and fast get an impression from the working phase indicator about the current phase of the drilling event, when otherwise monitoring the display. This is particularly usable for inexperienced operators and in situations wherein there is need to monitor and/or control a plurality of simultaneous drilling events, for example when drilling with a plurality of drilling booms. State information may be displayed consistently at the same position on the display.
Some embodiments of the invention will be described in more detail in the accompanying drawings, in which
a and 2b illustrate some operational units of a control system for a rock drilling rig;
a and 5b show some exemplary user interfaces.
In the figures, some embodiments of the invention are displayed in a simplified manner for the sake of clarity. In the figures, like parts are denoted with the same reference numerals.
The rock drilling rig 1 shown in
a illustrates some operational units of the control apparatus of a rock drilling rig 1, wherein the operational units may be located in the rock drilling rig 1 or in a possible separate monitoring room. A control unit 200 may be part of the general drilling control system 11 of
Computer program codes executed in the processing unit of the rock drilling rig 1 or the external monitoring room may cause the control system to make the control unit 200 implement actions associated particularly with the control of a multi-phase rock drilling event, some embodiments thereof being illustrated below in connection with
a shows a control unit 200 that controls the operation of the user interface and controls at least the display 202. The control unit 200 may be arranged to execute also other control functions. It is to be noted that the rock drilling rig 1 may comprise a plurality of control units for different purposes.
b illustrates a control system configuration of the rock drilling rig 1 that may constitute the drilling control system 11 illustrated in
Information specified by the separate control aggregate and/or process 270a, 270b is transferred to the user interface control unit 250 that is arranged to display data received from these different units on the display 202. In particular, a working phase state machine for a drilling event executable in said drilling unit may be maintained in the drilling unit-specific process 270a, 270b, i.e. the working cycle may be specified on the basis of predetermined working cycle specifications and/or commands received from a user. The process 270a, 270b specifies working phase state information that is transmitted to the user interface control unit 250. By utilizing functions to be described later, the control unit 250 is able to use the received state information to maintain a working cycle indicator on the display 202. Correspondingly, separate control units may be controlled from one input device 204, in which case the control unit 250 transfers control commands to a suitable control aggregate 270a, 270b, for instance to the control device 271a, 271b of the boom currently controlled by the user. In this case, the functions associated with the input device 204 (and the control unit) may vary on the basis of the operating situation and/or the object to be controlled. Information is maintained in the user interface control device 250 about the object to be currently controlled and about the functions selectable with the input device 204 and at least about the control units to which an input supplied to the input device 204 is to be relayed. Alternatively, different input devices 204 are employed for managing the different objects and/or other control units are connected to the input device 204.
The control units 250, 260, 271a, 271b, 272a, 272b are connected to a data transfer bus 280, for instance to a bus based on the CAN bus technique (Controller Area Network).
However, a more detailed description of these control units 260, 271a, 271b, 272a, 272b is not required for understanding the invention. The control system, for instance the system control unit 260, may include a subsystem for data collection and reporting and a separate reporting program may be employed for displaying report data to the operator. In the following, the operation of the control system will be illustrated in more detail with reference to
The control unit 200 that controls the display 202 is arranged to display the working phase indicator on the display 202, and rock drilling phase-specific display information elements are associated with the different working phases of a rock drilling event. The indicator indicating the working phases may also be called a working (phase) cycle indicator or a working state indicator. The control unit 200 is arranged to update the at least one display information element displayed in the working phase indicator in accordance with the current working phase. The display information element may be stored in the memory 206 and it may be text, an image or a combination thereof, for example. Binding information that associates rock drilling phases (indicators) and display information elements with each other may be stored in the memory 206. In connection with a change of working phase, the control unit 200 may retrieve the display information element associated with the working phase from the memory 206 on the basis of the binding information and the working state information or an indicator, and control it to be displayed in the working phase indicator. The working phase may be known to the control unit 200, e.g. stored in the memory 206, in response to a user input or a change of automatic working cycle. Alternatively, if the management of a drilling event is implemented in a different unit, the control unit 200 may receive information from said different unit automatically or in response to a prompt.
In accordance with an embodiment, supplementary information about one or more indicated working phases is displayed in the working phase indicator 300. Some examples are presented in the following. Supplementary information about the current working phase may be displayed in the space 312 or outside thereof. For example, supplementary text information about the state of the working phase is displayed above the information element 312. A given working phase may have sub-phases, e.g. ‘start’, ‘full power’ and ‘stop’, which are displayed as supplementary information Other elements on the display 202 may also be updated on the basis of the working phase. For example, measurement information received from the drilling device 5 may be displayed on the display 202, possibly also in the working phase indicator 300. Naturally, information about the current working phase has to be displayed on the display 202, the drilling plan, for example. Supplementary information may also be provided by different manners of emphasizing.
In accordance with an embodiment, the working phase indicator 300 is part of the display 202 and the control unit 200 is arranged to display it in the different views of the display 202 in a fixed position in a manner allowing the user to always obtain information about at least the current rock drilling phase in the same position.
A rock drilling event includes a plurality of phases, and the working phase indicator 300 may be used to illustrate the working phase cycle to the user better than previously. For example, at lest some of the following phases may be separated from a rock drilling event: boom positioning, moving feed beam against rock, collaring, acceleration ramp, full power drilling, finishing, reverse drifter and reversing feed beam from rock. Accordingly, a hole to be drilled is subjected to these phases, after which the working cycle may again transfer to boom positioning for the following hole. Transfer from one working phase to another is carried out in response to a decision to change working phases by the control process (e.g. process 270a, 270b in
Typically, one drilling unit, such as a boom or a bar, performs one sequential working cycle, but the working cycle may include a phase from which a new working cycle is initiated as a sub-process. The new working cycle may be an auxiliary function, such as a sequence of working phases relating to bar processing, and it is optionally implemented as the original working cycle continues. The new working phase may also have to be initiated because of a state of emergency, for instance when a drill bit is stuck. In accordance with an embodiment, the control unit 200 is arranged to update the working phase indicator 300 or to display a new working phase indicator 300 for a sub-process on the display 202. The control unit 200 may be arranged to specify a plurality of areas 310 in the working phase indicator 300 for the different working cycles of the same drilling unit. In accordance with an embodiment, the control unit 200 is arranged to indicate special situations in the working phase indicator 300.
In accordance with an embodiment, the control unit 200 that controls the display 202 is arranged to check if the working phase is inhibited in the current situation of the rock drilling event. This check may be implemented for instance on the basis of settings stored in advance in the memory 206 in response to a change of working phase or to a need to change working phases. The control unit 200 is arranged to display the inhibited working phase with a display information element different from an allowed working phase. The control unit 200 (or another control unit, such as a possible separate control unit that controls the drilling process) is arranged to inhibit the change of rock drilling phase to the inhibited working phase. Thus, a transfer to an inhibited working phase selected by the user may be prevented or a transfer to the inhibited working phase may be prevented by preventing user selections with the input device 204.
In accordance with an embodiment, the rock drilling rig 1 includes different operating modes, in accordance with which transfer between the different working states is arranged. As was mentioned, the rock drilling rig 1 may have a manual control mode, whereby working states are changed in response to user input, or an automatic control mode, whereby working states may be changed without user input at the end of the previous working phase. Other more detailed operating modes may also be used. For example, the apparatus 1 may include a selectable stepwise (STEP) mode, wherein the working cycle always ends after each working phase. Another exemplary mode is a hole drilling mode (HOLE), wherein the working cycle ends after the drilling of one hole. The working cycle may also be continuous (CONT), in which case the boom is positioned according to planned sequences, i.e. the working cycle is performed for specified drilling objects. In this automatic mode (CONT), too, the operator may, when desired, manually control the functions of the apparatus 1, and changes working phases with the input device 204, for example. The working phase indicator 300 may indicate the operating mode and/or display the display information elements in accordance with the operating mode. The control unit 200 may be arranged to set one or more working states as inhibited in the above-mentioned manner on the basis of the current operating mode. The user interface also provides an option to change operating modes.
In step 404, the specified display information elements are displayed. Typically in a rock drilling event, a transfer either to the following or to the previous working phase takes place one step at a time allowing the working phases to be ‘scrolled’ in step 400. In step 406, a check is made as to whether there is need to update the working phase indicator 300. The control unit 200, 250 may carry out step 406 on the basis of information or a command received from another system part, for example on the basis of state information or other information received from the second control process 270a, 270b of
a and 5b illustrate some user interface parts for a rock drilling rig 1.
b shows a control panel part 500 serving as the input device 204 that the control unit 200 can use for receiving inputs from the user and for controlling, on the basis of the inputs, the working phase indicators 300a, 300b, 300c. For example, the control panel 500 may be located in an armrest of the rock drilling rig 1. For each boom, the control panel 500 comprises a special control aggregate 510a, 510b and 510c. Each control aggregate has three buttons with related working cycle control operations ‘previous’ (working phase) 511, ‘following’ 513, ‘start-up’ 512, and ‘stop’ 514 indicated with icons denoted below the buttons. When the user interface according to
In accordance with an embodiment, the working situation and/or a change therein is also indicated in one or more input devices 204. In this case, a small display or another means for displaying said information may be arranged in connection with the input device 204, for example. In connection with the update of the working phase indicator 300 illustrated above, the control unit 200 is also able to update the data indicated in the input device. At its simplest this can be arranged for instance by means of lights in the input device 204. For example, a signal light controlled by the control unit 200 on the basis of the working phase may be arranged in the keys 511 to 514 of the control panel 500 illustrated in
In some cases, the characteristics disclosed in the present application may be used as such, irrespective of the other characteristics. On the other hand, the characteristics disclosed in the present application may be combined for generating different combinations, if need be. The drawings and the related description are only intended to illustrate the idea of the invention. The details of the invention may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20055461 | Aug 2005 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2006/050366 | 8/29/2006 | WO | 00 | 5/14/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/026051 | 3/8/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4354233 | Zhukovsky et al. | Oct 1982 | A |
4407017 | Zhilikov et al. | Sep 1983 | A |
4507735 | Moorehead et al. | Mar 1985 | A |
4875530 | Frink et al. | Oct 1989 | A |
5240082 | Hayabuchi et al. | Aug 1993 | A |
5358058 | Edlund et al. | Oct 1994 | A |
5842149 | Harrell et al. | Nov 1998 | A |
6021377 | Dubinsky et al. | Feb 2000 | A |
6152245 | Nilsson | Nov 2000 | A |
6152246 | King et al. | Nov 2000 | A |
6233498 | King et al. | May 2001 | B1 |
6282452 | DeGuzman et al. | Aug 2001 | B1 |
6389360 | Alft et al. | May 2002 | B1 |
6629572 | Womer et al. | Oct 2003 | B2 |
20020060093 | Womer et al. | May 2002 | A1 |
20040182606 | Goldman et al. | Sep 2004 | A1 |
20040210392 | Fleury et al. | Oct 2004 | A1 |
20040216922 | Koivunen et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1 193 366 | Apr 2002 | EP |
10-096627 | Apr 1998 | JP |
10-306676 | Nov 1998 | JP |
10-311192 | Nov 1998 | JP |
2003-013686 | Jan 2003 | JP |
2003-085594 | Mar 2003 | JP |
0198631 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090038847 A1 | Feb 2009 | US |