Scientists and engineers have made remarkable advances with medical imaging technologies, including imaging probes that are portable, provide facile use and ready transport and produce clinically excellent images. Such devices allow doctors and other clinicians to use medical imaging for patients who are remote from hospitals and clinics with imaging equipment or who treat patients who are confined to home. As such, these portable systems provide patients access to the excellent care that advanced medical imaging can provide.
Examples of such portable imaging systems include those described in U.S. Pat. No. 10,856,840 which is granted to the assignee hereof. Other systems such as those in U.S. Pat. No. 8,695,429 include imaging devices with wireless data transmission and battery power to reduce the use of cumbersome data and power cables and which conserve battery power by activating a sleep-mode after some period of inactivity.
Although these portable systems work well, medical devices, particularly handheld devices, face a number of operational challenges related to patient care, safety and hygiene and these additional constraints mean there is a remaining need for improved systems.
A The systems and methods described herein provide, in one aspect, improved User Interface (UI) systems for a portable medical imaging device, providing improved systems that, inter alia, more easily allow a clinician to use a device that will reduce thermal output and conserve power.
In another aspect, the systems and methods described herein provide improved power control features that detect when the operation of an imaging device has suspended and responsive to that suspension, place the device into a low-power mode and reconfigure the UI of the device to configure a sterile control button for releasing the device from its low-power state.
The systems and methods described herein allow a doctor performing a sterile procedure, during which the doctor cannot touch non-sterile surfaces, such as a touch screen, to alter the operation of an imaging probe. This is beneficial because sterile procedures may take a long time. Operational changes to the imaging device during that time, which reduce thermal output or conserve battery power, may improve patient care. In particular, reduction of thermal output can preserve battery life for battery powered units. It can also improve the patient experience and patient comfort.
In one embodiment, the systems include an imaging device having an improved user interface and having a power control module that monitors the use of the system and enters the system into a low-power mode if use has been suspended for a predetermined and set period of time and, once in the low-power mode, the system activates a reconfiguration module to reconfigure a UI button. The reconfiguration module reconfigures a UI control button on the probe of the imaging device to operate as a wake-up button control that, when activated, removes the imaging device from the low-power mode and places it into an operational power mode suitable for imaging operations.
In one embodiment, the systems and methods described herein provide a medical imaging device having at least one UI button that connects to a reconfiguration module. The reconfiguration module monitors the UI button and determines if the button is activated. The reconfiguration module responds to the operating power state of the imaging device to detect whether the device is operating in a low-power mode or in a power mode suitable for imaging operations. The reconfiguration circuit multiplexes an activation signal from the UI button based, at least in part, on the power mode of the imaging device. To this end, the reconfiguration module responds based at least in part on whether the device is in an imaging power mode. If the device is in an imaging power mode, the reconfiguration module can generate an image capture signal that it may pass to the CPU to instruct the CPU to capture an image, or activate various functions such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe. Alternatively, if the imaging device is in a low-power mode the reconfiguration module may deliver a signal to a power control module. The power control module may initiate a wake-up process that releases the imaging device from the low-power mode and places the imaging device in an imaging power mode so that the device is ready for imaging operations.
As such, the clinician may use the UI button as a UI that controls both imaging operations and power control. The improved UIs described herein are understood to reduce the need to have the clinician monitor the power state of the device during use. They further reduce the need to have control buttons for both image capture and power-up control. They still further reduce the need for the clinician to use control buttons located on components of the imaging device that may lack sterility.
In certain embodiments the imaging devices described herein may include a probe and a handheld device. The UI button may be positioned on the probe or the handheld device. In one embodiment, the UI button, whether on the probe or the handheld device, may be a physical button of the type operated by applying a mechanical force to the button. In other optional embodiments the UI button may be a software control of the type presented on a touchscreen display. Further optionally, the reconfiguration module may be part of the probe or the handheld device. In operation, releasing the imaging device from a low-power mode and to a power mode ready for imaging may include releasing the probe from a low-power mode, releasing the handheld device from a low-power mode or releasing both the probe and the handheld device from a low-power mode.
In certain embodiments the imaging device has multiple UI buttons and may have one or more UI buttons on the probe and one or more UI buttons on the handheld device. When in a low-power mode, one or more of the UI buttons may be configured to release the imaging device from low-power mode. Once the imaging device is released from the low-power mode, the UI buttons may be configured to activate various functions such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, gain, capturing one image or a series of images, switch modes, color on and/or off, controlling a wireless pairing process, and for soft resetting of the probe.
In optional embodiments, the device has a data memory, which may be positioned in the probe or in the handheld device, that stores a preset parameter. The preset parameter represents a preset operation. A preset operation provides one or more parameter settings for a particular type of imaging operation, such as for imaging a patient's carotid artery. In one embodiment, the reconfiguration module determines if the device is in a low-power mode and determines if the stored preset parameter represents a procedure for which the clinician will want sterile conditions. If the device is in a low-power mode and if the preset parameter is for an operation indicated for sterile conditions, in one embodiment the reconfiguration module may generate a signal for the power control circuit to initiate a wake-up mode that releases the device from low-power mode.
In other embodiments, the systems described herein include an ultrasound imaging system having a handheld device and a probe that generates ultrasound images and comprising a UI control button disposed on the probe, a power control module configured to activate a low-power mode to reduce power consumed by at least one of the handheld device and the probe, and to generate a wake-up configuration signal representative of a command to reconfigure a function of the UI control button, and a reconfiguration module configured to receive the wake-up configuration signal and reconfigure an interface coupled to the UI control button to detect activation of the UI control button and, in response to activation of the UI control button, to deactivate the low-power mode and have the handheld device and the probe consume power sufficient to perform imaging procedures.
In further embodiments, the ultrasound imaging system may further comprise a timer module configured to generate a timeout signal, wherein the power control module activates the low-power mode responsive to receiving the timeout signal from the timer module wherein the timeout signal represents expiration of a timeout period. Additionally, the system may comprise a data memory that stores a preset timeout parameter representative of a timeout period, and wherein the timer module counts down in response to the stored preset timeout period to generate the timeout signal. Further optionally, the system may comprise a preset memory for storing preset parameters for configuring the probe for a predetermined imaging procedure and wherein the power control module is configured to process the preset parameters to determine whether the preset parameters indicate that the predetermined imaging procedure is a sterile imaging procedure and to activate a low power mode if the preset parameter indicates a sterile imaging procedure. Optionally, the preset memory may store preset parameters for a plurality of predetermined imaging procedures and stores a timeout period for each of the respective predetermined imaging procedures. Further, the preset memory may store an override parameter representative of an operator instruction for the reconfiguration module to override the preset parameters for a predetermined imaging procedure and implement the operator instruction for reconfiguring the UI control button. Further, the reconfiguration module may deactivate the low-power mode by sending a signal to the power control module to activate a power mode sufficient to perform imaging procedures.
In further embodiments, the ultrasound imaging system may include an image comparator module to detect changes in a sequence of ultrasound images and to reset the timer module responsive to detecting changes in the sequence of ultrasound images.
In certain embodiments, the ultrasound imaging system has a probe that is a hand-held ultrasound probe having a transducer for transmitting and receiving ultrasound signals and a housing connected to the transducer and shaped to allow a clinician to grip the probe with a hand and thereby position the transducer proximate a patient and wherein the UI control button is disposed on the housing at a location that can be reached by a hand holding the probe. In some embodiments the UI control button, when not in low-power mode, may operate the probe to generate a reading of remaining battery power or perform an image capture procedure to capture ultrasound images.
In another aspect, methods are disclosed for ultrasound imaging using a handheld device and a probe with a UI control button disposed on the probe, and including activating a low-power mode to reduce power consumed by at least one of the handheld device and the probe, generating a wake-up configuration signal representative of a command to reconfigure a function of the UI control button, and in response to the wake-up configuration signal, reconfiguring an interface coupled to the UI control button to respond to activation of the UI control button by deactivating the low-power mode and having the probe or the handheld device enter a power mode that consumes an amount of power sufficient to perform ultrasound imaging procedures. The method may further include providing a timer module configured to generate a timeout signal, and activating the low-power mode responsive to the timeout signal from the timer module wherein the timeout signal represents expiration of a timeout period. The method may further include storing a preset timeout parameter representative of a timeout period, and wherein the timer module counts down from the stored preset timeout parameter to generate the timeout signal. Further embodiments may include storing preset parameters for configuring the probe for a predetermined imaging procedure and reconfiguring the interface if the preset parameters indicate a sterile imaging procedure and refrain from reconfiguring the interface if the preset parameters indicate a non-sterile imaging procedure. Storing preset parameters may include storing preset parameters for a plurality of predetermined imaging procedures and storing a timeout period for each of the respective predetermined imaging procedures. Optionally, the method may include providing a memory for storing an override parameter representative of an operator instruction to override the wake-up configuration signal and thereby prevent reconfiguring the interface.
In further embodiments, the method may include detecting changes in a sequence of ultrasound images and resetting the timer module to the timeout period in response to detecting changes in the sequence of ultrasound images. Optionally, detecting changes in a sequence of images may include performing an edge detection and comparison process to determine whether similar edges of images the sequence of images are changing.
In further embodiments, the method may provide the probe as a hand-held ultrasound probe having a transducer for transmitting and receiving ultrasound signals and a housing shaped to allow a clinician to grip the probe with a hand and disposing the UI control button on the probe at a location that can be reached by a hand holding the probe. Optionally the UI control button, when not in low-power mode, may operate the probe to generate a reading of remaining battery power or perform an image capture procedure to capture ultrasound images.
The systems and methods described herein are set forth in the appended claims. However, for purpose of explanation, several embodiments are set forth in the following figures.
In the following description, numerous details are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the embodiments described herein may be practiced without the use of these specific details. Further, for clarity, well-known structures and devices are shown in block diagram form to not obscure the description with unnecessary detail.
In one embodiment, the systems and methods described herein include, among other things, the system 100 depicted in
The probe 102, in this embodiment, is an ultrasound probe of the type disclosed in U.S. Pat. No. 10,856,840, assigned to the assignee hereof. The probe 102 is a handheld ultrasonic imaging probe that can be used by the clinician to image a patient and collect medical images useful in the clinical process of diagnosing and treating the patient. In the depicted embodiment the probe 102 is a handheld battery powered unit, although in other embodiments the probe 102 may draw power from the handheld device 108 or from a remote power supply. The probe 102 has a transducer head 106 that the clinician may place against the tissue of the patient, such as by placing the transducer head 106 in contact with the patient's chest proximate to the heart of the patient or proximate the carotid artery. The depicted probe 102 has a single UI control button 104, although in other embodiments there may be more than one UI control button. In typical operation, the clinician uses the UI control button 104 as a UI by which the clinician may get a reading of remaining battery power or in other embodiments the UI control button 104 may activate various other functions such as image capture operations that cause the application 109 executing on the handheld device 108 to store one of the images generated by the transducer head 106. That application 109 may render the captured image in the image window 110 for the clinician to view. The UI window 112 may provide the clinician with a series of optional user interface controls that the clinician may use to operate the application 109 executing on the handheld device 108 to change how the captured image is rendered, store the image, mark the image, and perform other types of operations useful during the tomographic procedure.
During a tomographic procedure, the clinician adjusts the position and angle of the probe 102 until an image of interest appears in the image window 110. In some embodiments, the clinician may activate the UI control button 104 to capture images to study, or activate various functions such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe. The depicted UI control button 104 is a mechanical button and activation of the UI control button 104 is, in this embodiment, done through the conventional means of applying a mechanical force, typically force from the clinician's thumb against the UI control button 104. The UI control button 104 will detect the applied mechanical force of the clinician and generate an electrical signal that can be processed by probe 102.
In the embodiment depicted in
In the embodiment depicted in
In the depicted embodiment, the executing application 109 may display the constructed images, including video images, such as the ultrasound images 116 and 117, on the image window 110 so that the clinician can see live images of the patient as those images are being generated by the probe 102. In the depicted embodiment, the application 109 also provides a UI window 112 that has a series of software control buttons, sometime called widgets, that the clinician may use for controlling the operation of the probe 102. These controls allow the clinician to change how images, such as image 116 and image 117, are rendered, captured, and displayed on the handheld device 108. In the embodiment of
In any case,
While generating images for the clinician, the transducer head 106 may generate heat due to the circuitry in the transducer head 106, such as the A/D converters and amplifiers. Consequently, in the embodiments described herein, the probe 102 has a low-power mode that reduces the consumption of power by circuitry (e.g., circuitry formed on the same chip as the transducers) within transducer head 106 as well as other components of the probe 102, such as any CPU, signal processing unit, FPGA and other such circuits within the probe 102.
In one embodiment, the low-power mode is activated by an auto-freeze function in which the system 100 automatically puts the probe 102 and/or the handheld device 108 into a battery conservation mode after device inactivity has been detected. The auto-freeze feature may include a timer maintained by the system 100. In one embodiment, the timer tracks the amount of time between events, where the events are indications that the probe 102 is in use by the clinician. Such events may include a sequence of changing images generated by the probe 102 and thereby indicating that the clinician is using the probe to collect images of the patient. In other embodiments, the system may detect events by monitoring inputs such as the activation of the UI control button 104, or inputs received through the UI window 112, or in those embodiments having accelerometers, gyroscopes, magnetometers or other motion sensors, movement of the probe 102. If the duration of time from the last event exceeds a set threshold timeout period, for example ninety seconds, the system 100 may automatically place the transducer head 106 and select other components of the system 100 into a low-power mode.
In low-power mode typically little to no power is consumed by the transducer head 106. Similarly, in low-power mode a signal may be sent to one or more of the on-board CPUs, FPGAs, and/or signal processors to activate functionality to reduce power consumption by those elements. In some embodiments, the CPUs, FPGAs, and/or signal processors that are designed into the probe 102 and handheld device 108 are of the type that have a built-in low-power mode function. In such embodiments, an activation signal applied to the CPUs, FPGAs, and/or signal processors may activate that low-power mode function to place CPUs, FPGAs, and/or signal processors into a low-power mode. In any case, these particular embodiments have an auto-freeze feature that will place the system 100 into a low-power or “sleep” mode when the system 100 detects that use of the system 100 has been suspended as indicated by lack of use of the system for longer than a predetermined and set timeout period.
In one embodiment, the application 109 implements an auto-freeze function by comparing successive images within a stream of images generated by the probe 102 to detect changes within the image stream. The application 109 also monitors a timeout period and if the application 109 fails to detect changes within the image stream before expiration of the timeout period, the application 109 may place the system 100 into a low-power mode. In one embodiment, placing the system 100 in low-power mode essentially freezes the probe 102 and prevents the probe 102 from generating a stream of ultrasound images.
In one embodiment, the timeout period may be implemented by having the application 109 store a data value in a data memory where the data value represents a timeout period, such as a specific number of seconds. In one example, an integer value between 0 and 255 may be stored in a data memory and the value may represent a number of seconds. The application 109 may include a timer function and the timer function will use a clock on the handheld device 108 to count down the number of seconds that correspond to the stored integer value. For example, a stored integer value of 90 will instruct the timer function to count down 90 seconds. Preset parameters may include a timeout period value, such as a value between 0 and 255, and that value will be loaded into the data memory for use by the timer function as part of the preset configuration. If successive-in-time images lack sufficient variation during the timeout period, for example ninety (90) seconds, for a procedure such as a vascular access preset, or twenty (20) seconds for conventional B-mode scanning procedure, then the application 109 places the system 100 into a low-power mode.
The application 109 may monitor the UI control button 104 on the probe 102 to detect when the UI control button 104 is pressed and activated. Responsive to detecting the UI control button 104 being activated, the application 109 will, if in a low-power mode, transition the system 100 from the low-power mode to a power mode for imaging. This essentially “unfreezes” the probe 102 and allows the probe 102 to generate a stream of ultrasound images that can be transmitted to the handheld device 108 for display to the clinician.
In
In certain embodiments of the systems and methods described herein one of the preset parameters may be a timeout period representative of a period of time during which the system 100 monitors the image stream to detect changes in the images. If after the timeout period expires, the system 100 determines that the image stream lacks variation between successive images, the system 100 may enter a low-power mode. In certain other embodiments of the systems and methods described herein the timeout period is a parameter that is independent of preset and constant for all procedures. In still other embodiments, the timeout period may be a parameter that controls for imaging procedures that were not associated with a preset by the clinician but may be overridden if a preset is selected that has an associated timeout period.
To detect changes between the images 208 and 210, the image comparator module 214 may execute any suitable image comparison program process capable of comparing two or more images and determining differences between those images. In one embodiment, the image comparator module 214 performs an edge detection and comparison procedure to determine whether similar edges in the images 208 and 210 are changing location. The image comparator module 214 first performs edge detection and then compares the location of the detected edges in image 208 against the location of the edges detected in image 210. Locations of edges may, in some embodiments, be understood as the (x,y) pixel coordinate of an edge within the image data. If the images 208 and 210 have edges in different locations, the image comparator module 214 may determine that the images 208 and 210 are different and these differences indicate the probe 220 is in use during the time period of this image sequence. In another embodiment, the image comparator module 214 compares the images 208 and 210 on a pixel-by-pixel basis, comparing the grayscale value of each pixel in image 208 against the grayscale value of the corresponding pixel in image 210. For example, a pixel (Xn, Ym) in image 208 may be compared against pixel (Xn, Ym) in image 210. In this embodiment, video module 219 stores the images captured by probe 220 as grayscale images, often referred to as black and white images. Each pixel in a stored image is given a grayscale value. For a grayscale image, the grayscale value is typically a single number that represents the brightness of the pixel. In one embodiment, the pixel value is stored as a data byte, in some examples as an 8-bit integer giving a range of values from 0 to 255. The image comparator module 214 compares the grayscale value for each pixel in image 208 against the grayscale value for the corresponding pixel in image 210 and identifies the difference between the two grayscale images. The image comparator module 214 may have a threshold difference value, such as 10 or 25, where that threshold difference value must be exceeded before the pixel value of image 208 is identified as different from the corresponding pixel value in image 210. This threshold difference value can be used to address the typical noise that occurs in an ultrasound image. That noise may create differences in pixel values but does not represent differences between the images 208 and 210 arising from a clinician using the probe 220 in the procedure. The image comparator module 214 may compare each pixel of image 208 against the corresponding pixel in image 210, and record for each pixel pair the amount, if any, of difference above for that pixel pair. The image comparator module 214 may generate a summation of the differences to determine a total difference value representative of the difference in grayscale values between the pixels of image 208 and the pixels in image 210. If the total pixel value difference is above a particular total difference threshold, such as for example a total difference threshold of 2000, the image comparator module 214 may determine that differences have been detected between the images 208 and 210. Alternatively, if the total pixel value is less than the total threshold value, the image comparator module 214 may determine that the images 208 and 210 are not different.
As further depicted in
In one embodiment, the image comparator module 214 compares images 208 and 210 and determines if the images are different. If the images 208 and 210 are different, the image comparator module 214 activates the reset function and transmits via path 216 a reset signal to timer module 212. The reset signal directs the timer module 212 to reset the timeout period to the full timeout period. Alternatively, if the image comparator module 214 determines that the images are not different according to the criteria being applied, the image comparator module 214 may continue to compare successive images. To this end, the image comparator module 214 may use data path 222 to store at memory spaces 202 and 204, the next pair of subsequent images to compare, such as for example images Tn+1 and Tn+2. In one embodiment the image comparator module 214 continues to compare successive images. Each time the image comparator module 214 detects a change between the images that meets the threshold set to indicate a change suggesting the probe is in use, the image comparator module 214 will reset the timer module 212. If the image comparator module 214 fails to find a difference in the image sequence during the timeout period being countdown by the timer module 212, the image comparator module 214 will not reset the timer module 212 as the timer module 212 counts down until expiration of the predetermined and set time. If the timer module 212 counts down to expiration of the predetermined and set timeout period, such as for example 90 seconds or 20 seconds, the timer module 212 issues an instruction via path 217 to the power control module 218. The instruction from timer module 212 directs the power control module 218 to place the system 200 into a low power mode. Additionally, the power control module 218 transmits an instruction via data path 213 to the reconfiguration module 215 to reconfigure the UI control button 230 to operate as a control to release the system 200 from the low-power mode. In the depicted embodiment the data path 224 is a bi-directional path. In one embodiment, the instruction to the reconfiguration module 215 to reconfigure the UI control button 230 to operate as a release from low-power mode may also cause the reconfiguration module 215 to send an instruction over path 224 to have the probe 220 enter a low-power mode. As discussed above, this may cause the probe 220 to reduce the power and voltage delivered to the transducer head 106 (e.g., to a chip including transducers and circuitry in the transducer head 106). Additionally, the application 206 may cause the handheld device 225 to enter a low-power mode, thus having both the handheld device 225 and the probe 220 in a low-power mode.
When the power control module 218 has placed the system 200 into a low-power mode, the reconfiguration module 215 monitors the UI control button of probe 220 via the path 224. If the clinician activates the UI control button 230, an instruction is passed to the reconfiguration module 215. The instruction directs the reconfiguration module 215 to send an instruction via data path 213 to the power control module 218 to release the system 200 from the low-power mode and place the system 200 into a power mode suitable for imaging operations. In one optional embodiment, the reconfiguration module 215 then operates the UI control button 230 as an image capture button that will cause the video module 219 to grab an image from the image stream on data path 226 and will record that image to a capture reel stored in data memory 203, or operates the UI control button 230 for other functions such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe. In other embodiments, the reconfiguration module 215 then operates the UI control button 230 as a probe battery indicator that will cause the video module 219 to display on handheld device 225 an indication of the amount of power left in the probe battery. In other embodiments, the reconfiguration module 215 may reconfigure the UI control button for other operations.
In one embodiment, the handheld device 225 can display on its screen a graphic image indicating visually that the system 200 is transitioning from low-power mode to a power mode suitable for imaging. Once the system 200 is in a power mode suitable for imaging the handheld device 225 can provide a visual indicator to the clinician that the system 200 is ready for imaging operations and the clinician so can use probe 220 to generate a stream of ultrasound video data images. One such visual indicator is depicted in
From 302 the process 300 proceeds to an image data comparison operation in 304. The image data comparison operation can be any of the image data comparison processes that are suitable for comparing two images generated by an ultrasound probe to determine whether there are differences between the two images. In the process 300 after two successive images are compared the process 300 proceeds to 308 where the process 300 determines whether the time period set in 302 has expired. If the timeout period has expired the process will place the system into a low-power mode in 318. Alternatively, if the timeout period has not expired, the process 300 will proceed to 312 and determine whether a change was detected in the images. If there was a change detected in the images, the process 300 determines that time has not expired, and a change between images has been detected and therefore the system should proceed to 314 wherein it resets the timer to start the timer for the full timeout period. After 314 the timer is reset and the process 300 begins again at 302. Alternatively, if in 312 no change is detected between the images, the process 300 will proceed to 304, collect a subsequent sequence of images and begin the image data comparison operation over again.
Returning to 308 if the timeout period has expired the process 300 will proceed to 318 and enter the system into the low-power mode. From 318, the process 300 proceeds to 320 where the process 300 continually monitors the UI control button to determine whether it has been activated by the clinician. If the UI control button has not been activated, the system loops continuously as shown in
The UI button 408 may be a mechanical button that responds to a force applied by the clinician. When the force is applied to UI button 408 it activates and generates a control signal that is passed to the reconfiguration module 412. As such, the UI button 408 acts as a UI that collects a command representing activation of the UI button 408 by the user and generates a signal representative of that command and passes that signal to the reconfiguration module 412.
The power control module 420 may, in one embodiment, activate a low-power mode to reduce power consumed by the probe 400 and optionally by a handheld device that will interface to the probe 400 via the handheld device interface 424. For ease of illustration, the handheld device that connects to handheld device interface 424 is not shown in
Additionally, in some embodiments, the power control module 420 is responsive to the image comparator module 416. The image comparator module 416 compares the sequence of images generated based on signals received by the transducer head 402, to determine whether changes have occurred between two or more successive images. The process for comparing images may be include the processes disclosed above with reference to
To this end, the power control module 420 may implement a countdown timer that is set for a timeout period. Once the timeout period has expired if no activities have occurred representing use of the device by the clinician, the power control module 420 may determine that use of the system 100 has been suspended and may place the system 100 into the low-power mode. Once in the low-power mode, the power control module 420 may generate a wake-up configuration signal representative of a command to reconfigure the UI control button 408 to operate as a power mode control. In the embodiment depicted in
In some embodiments, placing a device into a low-power mode includes activating a transistor switch to reduce the current and/or voltage delivered to components of the device. In one embodiment, the power control module 420 may activate a switch to reduce current and/or voltage delivered to the transducer head 402, which as discussed above may include CMUTs or PMUTs, amplifiers and converters. Additionally, the power control module 420 may reduce power consumed by CPUs, FPGAs and signal processors. For example, certain CPUs have on board sleep-modes that have internal power transistor switches that turn off the current delivered to certain other transistors in the CPU. This reduces the power consumed by the CPU, although it deactivates any of the functions of the CPU that had been provided by the transistors that are now turned off. Once the transducer head 402 and other elements, such as CPUs, FPGAs and signal processors, are in a power mode for imaging operations, the power control module 420 may issue a wake-up configuration signal to the reconfiguration module 412.
The reconfiguration module 412 monitors the UI button 408 and determines if the UI button 408 is activated. The reconfiguration module 412 will respond to an activation signal from the activated UI button 408 based on how the reconfiguration module 412 is configured to respond. For example, when the reconfiguration module 412 receives the wake-up configuration signal from the power control module 420, the reconfiguration module 412 is configured to operate the UI button 408 as a control to have the handheld device 108 and the probe 400 consume power sufficient to perform imaging operations. Alternatively, if the power control module 420 has sent the reconfiguration module 412 an imaging configuration signal, the reconfiguration module 412 will be configured to perform imaging operations, or indicate battery power, or provide some other operation. These other operations are typically of the type that cannot be performed in a low-power mode and require that the probe 400 and handheld device 108 to be in a power mode suitable for imaging operations. In the embodiment depicted in
In operation, the reconfiguration module 412 multiplexes the activation signal from the UI button 408 based, at least in part, on the power mode of the device 400. In the embodiment depicted in
Alternatively, if the power control module 420 has issued a wake-up configuration signal to the reconfiguration module 412, the reconfiguration module 412 may generate a wake-up signal and pass that signal to the CPU via path 430. The CPU 410 may respond to the wake-up signal by releasing the probe 400 from the low-power mode and placing the probe 400 into the imaging power mode and further optionally and additionally causing the system 100 to capture an image for display to the clinician or activate another function such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe.
In further embodiments, the CPU 410 may issue a wake-up signal to a handheld device via the handheld device interface 424. This will instruct the handheld device to transition from low-power mode to a power mode suitable for imaging.
In operation, the clinician can use the UI button 408 on the device 400 to control both imaging operations and power control, thereby reducing the need to have the clinician monitor the power state of the device 400 during operations and reducing the need to have additional control buttons built onto the device 400 or additional control buttons presented within the UI window 112 on the handheld device 108. The inventors recognized that the handheld device 108 may not meet sterility protocols and as such having a control button on the handheld device 108 that the clinician must operate is a burden as it requires the clinician to follow a sterility protocol due to touching a control button presented on the non-sterile UI window 112.
In operation, the UI button 502 generates the activation signal which is passed to the button interface circuit 508. The button interface circuit 508 can be CMOS logic that receives the activation signal. As further depicted, the button interface circuit 508 may also connect to the CPU interface 514 via data path 506 to receive the wake-up configuration signal from the power control module 420. The wake-up configuration signal may configure that button interface logic 508 to respond to the UI button activation signal as a wake-up control. To that end, the button interface 508 will generate a wake-up signal by sending an activate signal to the wake-up circuit 512. The wake-up circuit 512 will generate the wake-up signal that can be delivered through the CPU interface 514 to the CPU 410. The wake-up signal in some embodiments is a digital data command transferred over a data bus, such as the data path 430, to the CPU 410 and in some embodiments, it is an interrupt signal sent to the CPU 410. However, any suitable form of wake-up signal may be employed with the systems and methods described herein.
In the embodiment described with reference to
Returning to
In optional embodiments, the systems described herein may be responsive to the type of imaging operation that the clinician is undertaking. In certain imaging devices, such as those described in U.S. Pat. No. 10,709,415 assigned to the assignee hereof, the probe 102 may be placed into a preset. Table 1 below lists certain example presets.
T Each preset is a mode adapted for a particular type of imaging study. Presets may help with imaging studies and may be employed within systems that have the auto-freeze feature described herein, but optionally, presets may be employed within systems that do not have such an auto-freeze feature. Some of these presets are used with procedures that benefit from a sterility protocol. In some embodiments, the systems described herein are, at least in part, responsive to the preset. For example, for the embodiment of
If the data stored in a preset parameter memory represents a preset that is associated with a sterility protocol, then the system described herein may reconfigure the UI button responsive to the stored preset data. For example, if the data stored in preset parameter memory 504 represents a preset that is associated with a sterility protocol, then the button reconfiguration module 500 will reconfigure the UI button 502 to generate a wake-up control signal to remove the device from a low-power mode when the UI button 502 is activated. For example, such presets that may be associated with a sterility protocol may include the presets of Vascular Access, Nerve, MSK, MSK Soft Tissue, Small Organ, Vascular Deep Vein, Vascular Carotid, and Face presets. Additionally, in veterinary applications, presets that may be associated with a sterility protocol may include Vascular and Bladder presets for a veterinarian probe. Similarly, for the embodiment of
In such embodiments, if the device is in a low-power mode during a non-sterile preset imaging study, the clinician may need to activate a software switch on the display of the handheld device to release the device from the low-power mode.
In optional embodiments, the memories 232 or 504 may further store data representative of a clinician instruction to override the reconfigure operation of reconfiguration module. In this optional embodiment, an application executing on the handheld device may provide the clinician with software switches that the clinician can use to override the reconfiguration operation of reconfiguring the UI button to act as a wake-up control by storing a clinician override data signal in memory 232 or 504. The respective reconfiguration module can check the override data signal stored in memory and if the clinician has instructed the reconfiguration module to override the reconfiguration the respective UI button, the reconfiguration module will not operate to reconfigure the operation of the UI button and that button will, typically, continue to act as an image capture button or a battery power indicator button or a button for some other functions such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe.
In a further optional embodiments, the clinician may override the preset parameter described above and require the reconfiguration modules 215 and 500 to reconfigure the respective UI control button 230 and 502 for all operations regardless of the stored preset data. Thus, the clinician can require the reconfiguration modules 215 and 500 to reconfigure the UI button to act as a wake-up control button for when the device is in a low-power mode for all operations and procedures. The reconfiguration modules 215 and 500 will be responsive to the clinician override data and will reconfigure the operation of the UI button regardless of whether the stored preset parameters in memory 232 and 504 are associated with a sterile procedure.
If the device is in a low-power mode, the process 600 proceeds from 604 to 606 wherein the process 600 checks whether the device is in a preset often used for a sterile operation. To this end, the process 600 may check the preset parameter memory (232, 504). If the device is in a preset for a sterile operation the process 600 proceeds from 606 to 610 to generate a power-up signal of the type capable of moving the device from a low power state to an operational power state suitable for imaging. Alternatively, if in 606 the process 600 determines that the device is not in a preset or is in a preset that does not indicate sterile operation, the process 600 proceeds from 606 to 612 where, in one embodiment, an image capture signal may be generated to capture an image for display within the image window 110 on the handheld device 108. In alternate embodiments, process, 612 may generate other signals for other functions such as indicating battery power level, or any other function that the UI button may be configured to activate, such as, but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe.
Returning to 604, if the process 600 determines in 604 that the device is not in a low-power mode but is instead in a mode suitable for performing an imaging operation the process 600 can proceed from 604 to 612 where, in one embodiment, an image capture signal may be generated to capture an image for display within the image window 110 on the handheld device 108. In alternate embodiments, process, 612 may generate other signals for other functions such as indicating battery power level, or any other function that the UI button may be configured to activate, such as but not limited to, making battery status readings, performing imaging control such as for controlling depth, controlling gain, switching modes, turning color on and/or off, controlling a wireless pairing process, or for soft resetting of the probe.
The systems and methods described herein reference circuits, CPUs and other devices, and those of skill in the art will understand that these embodiments are examples, and the actual implementation of these circuits may be carried out as software modules running on microprocessor devices and may comprise firmware, software, hardware, or any combination thereof that is configured to perform as the systems and processes described herein. Further, some embodiments may also be implemented by the preparation of application-specific integrated circuits or by interconnecting an appropriate network of conventional component circuits. To illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described herein generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the embodiments described herein.
Accordingly, it will be understood that the invention is not to be limited to the embodiments disclosed herein and extend to the subject matter of the claims herein.
This application claims the benefit under 35 USC 119 (e) of U.S. Provisional Application 63/310,738, filed Feb. 16, 2022, and entitled User Interface for Ultrasound Imaging System and which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63310738 | Feb 2022 | US |