The present application relates to a device and a method for providing quick access to information stored on or accessible through a device, and in particular to a device and a method for providing quick access to data stored on or accessible through a device by using tap commands.
More and more electronic devices such as mobile phones, MP3 players, Personal Digital Assistants (PDAS) are becoming smaller and smaller while having more and more information stored and/or accessible through them. Users are relying on these devices and becoming all the more dependant on them. Due to the devices' complexity they can sometimes be difficult for a user to learn and understand. There is a plethora of functionalities, features, applications and shortcuts available through a wide variety of user inputs such as touch input, key pad input, stylus input and recently also sensor based input such as tap input or tilting movement input using accelerometers. The sheer amount of possibilities can thus become bewildering to a user and increase the effort required to learn and understand the device significantly.
The environments in which these devices are used are also becoming more and more hectic with higher demands on fast access and multitasking, and not only in a professional environment but also in private and social environments. For example a user should be able to read a book, while holding a grocery bag in a rattling subway train and still be able to access the information stored in the device for the device to live up to the many requirements posed upon it by a user buying and using the device. This requires that the device is simple to learn and intuitive to use.
On this background, it would be advantageous to provide a device and a method that overcomes or at least reduces the drawbacks indicated above by providing user interface, a device and a method that is easy to learn and understand and intuitive to use.
The disclosed embodiments provide a user interface module comprising a display and a motion detector arranged to detect a motion, said module being arranged to display an emulated movement of a graphical representation of a first object on said display according to a motion detected by said motion detector.
By controlling a user interface with movements, a user interface that is simple to use is achieved.
In one embodiment the first object comprises a physical characteristic and said user interface module further comprises a controller module arranged to generate said emulated movement based on said physical characteristic.
Through having a physical model and basing the movements on this model and thereby on physical characteristics of the objects the object's behaviour becomes more intuitive and easy to understand by a user thereby rendering the user interface easy to learn and use.
In one embodiment the physical characteristic is a mass for emulating inertia of said object, in one embodiment the physical characteristic is a velocity vector and in one embodiment the physical characteristic is an extent. This enables realistic dynamic behaviour to be modelled on physical laws.
In one embodiment the display has a display area and the graphical representation of said object is smaller than the display area. This enables an overview of more than one object and a visual indication of the object's movement and interaction with other objects displayed on the same display and the resulting emulated behaviour. This further increases the intuitive association between a physical motion with a resulting action.
In one embodiment the physical characteristics comprise a spring coefficient and a damping coefficient and wherein said generation of said emulated movement is based on a damped spring dynamic.
In one embodiment the generation of said emulated movement comprises determining an updated position from an original position depending on said physical characteristics and said motion detected by the motion detector and wherein said displaying of said emulated movement comprises displaying said object at said updated position.
In one embodiment the user interface is further arranged to display graphical representations of at least one additional object, wherein said at least one additional object has physical characteristics and said generation of said emulated movement of said first object is further based on said physical characteristics of said at least one additional object. In a user interface with more than one object a co-relation or dependency between data entities can be established thus making the user interface more versatile.
In one embodiment the first object and/or said at least one additional object has a data value wherein said user interface module is further arranged to display said data value as part of said graphical representation of said object. This makes it easy to display information to a user.
In one embodiment the user interface is further arranged to execute a function associated with a movement pattern and wherein said controller module is arranged to execute said function on said object upon detection of said movement pattern. This makes the control and activation of operations or functions easy to initiate as no precise movement, like hitting a specific key, is required and the user interface is further intuitive as the function is visibly connected to an object.
In one embodiment the movement pattern corresponds to a throwing movement and said movement function is a delete operation and in one embodiment the movement pattern corresponds to an upwards movement and said movement function is an open operation.
In one embodiment an object has an associated function. Directly associating a function with an object makes it further intuitive to execute the function and does not clutter the display area with functional labels.
In one embodiment a movement pattern corresponds to an emulated collision between one object having a data value and one object having an associated object function, and wherein said user interface is arranged to execute said function on said data value upon detection of said emulated collision. Causing a collision or forcing to objects to touch provides a mental image of how to execute a function that correlates function and data value in a simple and easy to learn and remember manner.
In one embodiment the function is any taken from the group comprising: a delete operation, a call operation, a send message operation, a postpone operation, an open operation and a read out operation.
In one embodiment the object is an area object. In one embodiment the additional object is static.
In one embodiment the display and the motion detector are arranged in the one and same housing which further increases the intuitive connection or coupling between the motions and the realistically modelled resulting movements and associated actions.
The aspects of the disclosed embodiments are also directed to providing a device having a module as above. In one embodiment the device is a mobile terminal.
The aspects of the disclosed embodiments are also directed to providing a method for controlling a user interface comprising a display, a motion detector and at least one object, said method comprising detecting a motion, emulating a movement for said at least one object according to said motion, wherein an updated position is determined, and displaying said at least one object at said updated position, wherein the movement emulation is based on a physical characteristic of said object. This provides for a dynamic method for controlling a user interface that is easy to control and intuitive to learn yet versatile and expandable.
In one embodiment the method further comprises determining whether a collision between a first and a second object is caused by said emulated movement and emulating said movement accordingly. The collision concept simulates or models co-dependencies between objects in a way that is easy to control and intuitive to use, learn and understand.
In one embodiment an object has an associated function corresponding to a movement pattern and said method further comprises determining whether said detected motion completes said movement pattern and if so execute said function. This associates an object with a functionality in a realistic and intuitive manner.
In one embodiment the movement pattern is a collision.
In one embodiment the at least one object has a data value and said method further comprises executing said associated function on said data value upon a completed movement pattern. This provides a manner in which a data is related to a function in a very intuitive manner.
In one embodiment the execution of said associated function comprises generating an additional object.
According to another aspect of this application the disclosed embodiments are directed to providing a user interface module comprising motion detector means for detecting a motion, and display means for displaying an emulated movement of a graphical representation of a first object according to a motion detected by said motion detector means.
In one embodiment the first object comprises a physical characteristic and said user interface module further comprises controller means for generating said emulated movement based on said physical characteristic.
In one embodiment the first object and/or at least one additional object has a data value wherein said user interface module further comprises display means for displaying said data value as part of said graphical representation.
In one embodiment the user interface further comprises means for executing a function associated with a movement pattern on said object upon detection of said movement pattern.
A user interface such as this has the same benefits as explained for the user interface and method above.
According to another aspect of this application the disclosed embodiments are directed to providing a computer readable medium including at least computer program code for controlling a user interface comprising a display, motion detector and at least one object, said computer readable medium comprising software code for receiving a motion through said motion detector, software code for emulating a movement for said at least one object, and software code for displaying said movement of said at least one object.
In one embodiment the computer readable medium further comprises software code for determining whether said motion completes a movement pattern and if so for executing an associated function corresponding to said movement pattern.
This enables a device to benefit from the advantages as described above and also later in the detailed description by executing the software code.
In one aspect the objectives are achieved by a device incorporating and implementing a computer readable medium according to above.
Further objects, features, advantages and properties of device, method and computer readable medium according to the present application will become apparent from the detailed description.
In the following detailed portion of the present description, the teachings of the present application will be explained in more detail with reference to the example embodiments shown in the drawings, in which:
a, b, c, d, e, f, g, h and i are plane front views of a device according to an embodiment,
a and b are flow charts describing a method each according to an embodiment,
In the following detailed description, the device, the method and the software product according to the teachings for this application in the form of a cellular/mobile phone will be described by the embodiments. It should be noted that although only a mobile phone is described the teachings of this application can also be used in any electronic device such as in portable electronic devices such as laptops, PDAs, mobile communication terminals, electronic books and notepads and other electronic devices offering access to information.
The mobile terminals 100, 106 are connected to a mobile telecommunications network 110 through RF links 102, 108 via base stations 104, 109. The mobile telecommunications network 110 may be in compliance with any commercially available mobile telecommunications standard, such as GSM, UMTS, D-AMPS, CDMA2000, FOMA and TD-SCDMA.
The mobile telecommunications network 110 is operatively connected to a wide area network 120, which may be Internet or a part thereof. An Internet server 122 has a data storage 124 and is connected to the wide area network 120, as is an Internet client computer 126. The server 122 may host a www/wap server capable of serving www/wap content to the mobile terminal 100.
A public switched telephone network (PSTN) 130 is connected to the mobile telecommunications network 110 in a familiar manner. Various telephone terminals, including the stationary telephone 132, are connected to the PSTN 130.
The mobile terminal 100 is also capable of communicating locally via a local link 101 to one or more local devices 103. The local link can be any type of link with a limited range, such as Bluetooth, a Universal Serial Bus (USB) link, a Wireless Universal Serial Bus (WUSB) link, an IEEE 802.11 wireless local area network link, an RS-232 serial link, etc. The local devices 103 can for example be various sensors that can communicate measurement values to the mobile terminal 100 over the local link 101.
An embodiment 200 of the mobile terminal 100 is illustrated in more detail in
In the following a display will be referred to as being inactive when it or the display image on it is not visible to a user and it is not used to display any information or other data. A skilled person will realize that the display can still be functioning although at using less power than when it is active, i.e. the displayed image is visible to a user.
The internal component, software and protocol structure of the mobile terminal 200 will now be described with reference to
The MMI 334 also includes one or more hardware controllers, which together with the MMI drivers cooperate with the first display 336/203, the secondary display 340, the keypad 338/204 and a movement sensor or detector 342 as well as various other I/O devices such as microphone, speaker, vibrator, ringtone generator, LED indicator, etc. As is known to a man skilled in the art the movement detector 342 can be implemented with for example an acceleration sensor or an other sensor capable of detecting a motion. Examples of such sensors are micro-electromechanical systems (MEMS), nano-electromechanical systems (NANS), piezo acceleration sensors, vibration sensors, laser accelerometers, resonance accelerometers, strain gauge accelerometers, capacitive spring Mass based accelerometers, electromechanical accelerometers, optical accelerometers or gyroscopes. As is commonly known, the user may operate the mobile terminal through the man-machine interface thus formed.
The software also includes various modules, protocol stacks, drivers, etc., which are commonly designated as 330 and which provide communication services (such as transport, network and connectivity) for an RF interface 306, and optionally a Bluetooth interface 308 and/or an IrDA interface 310 for local connectivity. The RF interface 306 comprises an internal or external antenna as well as appropriate radio circuitry for establishing and maintaining a wireless link to a base station (e.g. the link 102 and base station 104 in
The mobile terminal also has a SIM card 304 and an associated reader. As is commonly known, the SIM card 304 comprises a processor as well as local work and data memory.
A motion detector 404 (342 in
It should be noted that as the display 402 and the motion detector 404 are arranged in the same housing of a device, in this embodiment a mobile phone 400, the user interface may respond to physical forces which the device is subjected to and it may serve as part of a multimodal feedback.
As is commonly known the display 402 is used to relay information to a user and enable him to interact with the mobile phone 400. The information is relayed by being displayed on the display 402. Traditionally this information is displayed statically. As motion control of a mobile phone is in its very nature dynamic it can be confusing to a user to relate the dynamical control movements to the static functions and behaviour of the mobile phone 400.
To overcome this, a dynamic model, with user interface elements or objects, is used to create a dynamic relationship between objects that are used to relay information. The objects 406, 407 and 408 can have different traits or characteristics which will be discussed in more details below. Three examples of characteristics are a data value, an associated function and if the object is movable or not. An object with a data value is usually used to display this data value. An object with an associated function is used to inform the user that the function is available and if effected to initiate or execute the function. Non-movable objects can be used for interacting with a movable object and to put some movement restraints on the graphical representation of the user interface.
To further increase the understanding of the connection between the physical motion and the resulting emulated movement of an object a physically realistic behaviour is needed. If the resulting emulated movement is not realistic it will be confusing and bewildering to a user.
The dynamic model is based on that all objects have some physical characteristics and that they are affected by the motions detected through a motion sensor in the same way as a normal, physical object would be affected having the same characteristics.
The physical characteristics can be a mass and a physical extent. The mass will emulate inertia in the object determining how quickly it accelerates and rotates as well as how it behaves upon collision with other objects. The physical extent defines the object's borders and is used to determine whether an object collides with another or not.
Some objects are without mass and have no borders this makes them purely graphical and they can accelerate and move at any speed and they do not collide, they merely overlap. Such objects can be used to model information entities for which no function is to be taken such as labels or time notifications. Labels for softkeys should not be movable except as explained with reference to
Other possible characteristics are friction, elasticity (surface elasticity and volume elasticity).
To realistically model all physical aspects of moving objects and their interaction with each other the dynamic model makes use of: physics modelling, friction modelling, multi-object collision modelling, collision detection based feedback, centre of mass modelling and other techniques used to model dynamic movement. In an embodiment algorithms were used to model Rigid body dynamics, such as linear momentum, angular momentum and torque, simulation methods for motions using a Lagrange multiplier velocity based model and a contact and friction model based on the Dantzig LCP solver.
As is known to a man skilled in the art optimisation problems are can be investigated using Lagrange's method of multipliers which is a method for finding the extrema of a function of several variables subject to one or more constraints; it is the basic tool in nonlinear constrained optimization. It reduces finding stationary points of a constrained function in n variables with k constraints to finding stationary points of an unconstrained function in n+k variables.
As is also known to a person skilled in the art The Dantzig LCP solver solves friction modelling problems by applying Linear Complimentary Programming, LCP as introduced by George Dantzig.
This dynamic model requires heavy computing power and an optimization is used for low resource devices such as a mobile phone. The optimization is based on replacing floating point presentations with fixed-points presentations in calculations to be made by the controller 300. This can be done by performing the replacement from floating-point to fixed-point directly as in table 1 in which Q denotes the mantissa of the fixed point operation and “>>” which entity that is to be replaced. For fast calculations values of 16 or 32 for Q are used. Other values are also possible as will be clear to a skilled person depending on the controller used for the replacement. A direct replacement saves time as no further procedural calls are necessary.
In one embodiment a collision detector 530 is also used in the model 500. The collision detector 520 could be made part of the controller 510, but in this description it is described as a separate entity to better illustrate its functionality. If two objects are active, for example one stationary and one dynamic, and a motion is detected the collision detector will start monitoring if any of the objects' positions and extent overlap. A simplified formula for a collision is:
pos A+EXTENT A⊂pos B+EXTENT B OR
pos B+EXTENT B⊂pos A+EXTENT ACOLLISION
where pos is a position that is uniformly added to the extent of an object.
The formula is to be understood as if any part of object A overlaps with any part of object B then there is a collision.
The objects can be either stationary, which can be modelled as having an infinite mass, dynamic, having a finite mass or purely graphical, having a mass of 0. A purely graphical object will be able to travel at any speed and overlap other objects and are used for informative purposes such as labelling.
For dynamic objects an emulated motion is determined between updates of a display. The emulated motion is a function of the current position, current velocity, mass or inertia, the body's orientation, friction of object's surface or surface of surrounding and the force and there from derived applied acceleration subjected to the object. An updated position is calculated from the current position using the known characteristic values and the modelling techniques described herein. The position, velocity and angular velocity can be expressed by vectors and the orientation can be expressed as a 3×3 rotation matrix.
Characteristics such as mass can also be expressed as a matrix. For mass a constant can be used to describe the total mass. A centre vector to express the centre of mass seen from a reference point and an inertia matrix describing how the mass is distributed.
An object can have a data value assigned to it. These data values can be used to notify the user of certain events or they can have other meaning.
An object 540 can additionally or alternatively have one or more functions associated with it. As such an objected is activated the corresponding function is executed. Examples of such functions are: OPEN, DELETE, CLOSE or POSTPONE. A function can also be designed to work on one or more data values, either being carried by the object itself or by another object. If a collision between a data value object and a function object takes place the function is executed using the data value as a parameter. As can be seen in
If an object carries more than one function, the function to be executed can depend upon the object collided with and also on the data carried by the object collided with.
For the special objects referred to as area objects explained above a collision occurs when another object enters the area, or in other words, the areas extent overlaps with another objects extent. Area objects can be used as function carrying objects. An example of such an object is a delete zone modelled through an area object having the associated function DELETE.
An object's position might be so that as the graphical representation is shown on a display the object may be partially or completely missing from the display, i.e. it is not visible as it is outside the displayed area.
It should be understood that in this model a collision can be regarded as a movement pattern and a function is to be executed as a certain movement pattern is detected. The movement pattern can then be a controlled movement or a collision. Collisions are thus assumed to be controlled by a user for initiating a certain action. It should also be understood that a motion can be part of a movement pattern (possibly the only part of the movement pattern) and the movement pattern is completed by said motion which causes any corresponding action or function to be taken or executed.
For example, by having an object area virtually positioned in the top of the screen and assigned the function DELETE another object can easily be deleted by throwing it upwards or turning the phone upside down and allowing the object to fall out of the user interface and thereby be deleted. To safeguard against accidental deletion the area object can be assigned a friction which would slow down any object coming over it and thus prevent unwanted execution of the assigned operation, in this case deletion.
A function could also be activated if the carrying object is subjected to a movement pattern, i.e. a sequence of or a single controlled movement that is specific in its nature. Examples can be throwing away (signified by strong acceleration over a period of time), hoisting (signified by a strong upward acceleration followed by a downward acceleration) or a tap (signified by a short pulse or shock).
To safeguard against accidental execution of functions resulting from random collisions and movement patterns a confirmation object can be created and displayed prompting the user to confirm whether the action is deliberate or not. A tap to the device, thereby inducing a slight shock which is detected by the motion detector will execute the function. Alternatively a double tap can be used to accept the action and a single tap to reject or cancel it.
In one embodiment a tactile feedback is generated by the collision detector as soon as a collision is detected. Such a tactile feedback can be in the form of a vibration. For some purposes it is also possible to give a small electric shock. Naturally, also visible and audible feedbacks are possible either alone or in any combination. If two objects collide one type of vibration can be generated and if an object collides with a wall object another type of vibration can be generated. Thus a user can differentiate between different events taking place on the screen and be able to control the device even with out looking. Especially if the user interface is equipped with a text to speech or other voice coder so that information can be read out loud to the user.
To illustrate with an example: a device receives an incoming message and the user is alerted with an audible signal. As the user is partly occupied with another task, but still wants to see what the message is the user can quickly take out the phone, perform an open action, which can be a hoisting motion that will open the object with the message notification as will be described below. The user knows that in the left hand side of the display there is an area for reading the message out loud and leans or tilts the phone to the left side. Due to other factors influencing the motion (such as if the user is riding a train) the object slightly misses the read out loud area and a vibration followed by a screeching sound is emitted from the device informing the user that the object is about to travel through an area associated with a delete operation. The user reacts to the feedback and changes the movement to be more clearly to the left side and as the object collides with the message read area another softer vibration and a pleasant sound is emitted as a feedback. The user is informed that the action is correct, or at least it does not have irrevocable consequences, and to finish it of exaggerates the motion so as to make sure the action is undertaken and area's function to run a text through a text to speech coder is executed on the object's data value, being the text of the message, and the message is read out loud while the object is in the area. To silence the read out, the user simply moves the object out of the area again by controlling the motion of the device. Thus an incoming message can be opened, read and even paused by simple hand gestures that are easy to learn, intuitive to use and without requiring much attention by a user.
In one embodiment a device is subjected to a keylock function and while the keylock function is active only notifying actions will be accepted. For example, if a keylock is activated and there are missed calls, only actions to show the missed calls will be accepted. Any action to delete or call back will be ignored or cancelled by the keylock function. Thus if the motion triggering an action is by coincidence the status of the device will be the same when the user directs his attention to it as it was before the actions were taken.
Returning to
Alternatively the delete operation initiated by the throwing motion 422 in
Alternatively, if both notifying objects 409 and 411 were in the air at the same time and the both collided with the phone symbol 407 a conference call could be initiated to both of them. Thus a function can also be set to operate on more than one data value.
Other notifications that could be displayed are status reports of incoming calls, missed calls, received messages (SMSes, MMSes, emails etc), download status or a special message fetched by a specially adapted application for example arranged to show cartoons according to preset parameters.
Alternatively, functions can be assigned to areas of the display 402 as can be seen in
Further examples of functions and corresponding movement patters are listed in table 3.
In one embodiment a collision is not necessary to initiate an action. An object that has a data value can also have an associated function with a corresponding movement pattern. In the example above the object 409 could have the associated function of calling the contact with a corresponding movement pattern of a shaking movement. If a user wanted to call the contact displayed he would simply shake the phone and the controller would execute the associated function of calling on the data value being the contact.
Another example is when a downloaded item has been fully downloaded a download box appears. A user can open the item by hoisting it and if the item is a media file a shaking movement would execute a media player to play the downloaded media file.
Most commonly, the more advanced the motion or movement pattern is the safer it is to assume that it has been done on purpose thus safe guarding from coincidental movements. However, a more advanced or complicated motion is more difficult for a user to achieve. Which movement patterns and what combinations that are to be used depend on usability aspects for the phone whether it is a heavy duty model or a fashion model etc as well as the intended user group and a combination of these and other factors.
The model 700 is based on a damped spring and an object 702 is connected by a spring 704 and a damper 706 to a fixed position 708. According to Hooke's law the spring has a spring constant k and the force Fs exerted on the string equals the displacement vector x multiplied by this string constant, Fs=kx. In real life the spring constant is not always constant but varies a little bit with the displacement and a better word would therefore be the spring coefficient. The damper 706 is also subjected to a force Fd which equals a damping coefficient c multiplied with a velocity v of an object 702 attached to the damper 706 in the negative, Fd=−cv. These two relationships in combination with Newton's second law of motion, stating that the force F applied to an object equals the mass m multiplied with the acceleration a, F=ma, make up the damped spring model which is used to emulate an object's 702 movement.
Using this model a stationary object can be made to behave dynamically and respond to user induced commands and thereby confirming the actions taken in an intuitive way. The model can also be used to anchor stationary objects but enable them to have an emulated movement as a result of physical reactions, such when a collision is detected the stationary object could react by shaking or bouncing as a result of the shock from the collision with the moving object.
It can also be used as a safe guard feature as the movements of some objects for which the damped spring is applied become more restricted and to allow an object to collide with another a more forceful and deliberate motion is needed to overcome the simulated resistance offered by the spring. In other words, a realistic bounce back effect provides protection for erroneous movements as a more deliberate movement is needed to touch or collide with other object before bouncing back.
The damped spring model can also be used when moving an object. In
This principle can be applied to key events and scroll events, motion gesture control and touch control such as tap input for example.
It is also possible to maintain a virtual or emulated constant force affecting all dynamic objects, much like a gravitational force. The gravitational force can either be directed internally in the phone for example always towards the bottom of the screen or externally as in coinciding with the direction of the Earths gravitational field. This will enable the objects to behave even more realistic and also safeguard against accidental movements as the objects always strive to fall down and a safe place, object or area like the originating place should be positioned at the lowest point of gravity. For an action to be initiated the controlling motion would thus need to overcome the gravitational field or force and thus be required to be more deliberate. An opened object that is left alone or undisturbed will thus simply fall back into the originating box which in practise will implement a timeout feature for any action taken by the user.
In one embodiment an area object having an associated function DELETE is arranged in the very top of a display. The user interface is also arranged with an externally directed gravitational force. To delete an object a user simply turns a device having such a user interface on its head and allows the object to be deleted to be affected by the simulated gravity and sink into the delete area and be deleted. This leads to the mental image of deleting an object by pouring it out of the top of the device.
It should be understood for all embodiments described herein that an object can also exist outside of the graphical representation, the graphical representation thus only acting as a window into the user interface.
It should also be noted that for some objects a collision is determined to have happened only if there is a total overlap of two objects' extents. This can be used for areas wherein the object to be effected by a function of an area is only affected if it totally enters the area. In the example above this would mean that if the delete area is said to be just outside the displayed area the object would have to leave the screen completely before being deleted.
It could also be possible to introduce an element, possibly as a stationary object, in which the other objects will be moving. Such an element can be used to simulate different environment having particular properties. One example is to simulate a water-filled screen in which the objects float around. Depending on their extent, their body mass and the density of the surrounding element or water, they will either sink or float up as is known from Archimedes' principle.
For example if a user interface surface or area is designed to be half-filled with water a model for functions only applicable to some objects or where some functions requires added security is achieved. One such situation could be where all other objects float and the delete operation is modelled in an object at the bottom. To delete an object a forced movement pushing the object under water is thus required and will most likely not happen by chance.
The elements can also be used to implement different timeouts and timeout functions for different objects by making some float and some sink and at speeds that depend on their density or mass. Some objects will thus rise to one function object and some will sink to another function object if left alone or undisturbed. The density will determine the speed i.e. the timeout time period.
It is also possible to add texture objects having a certain friction or other characteristic influencing the movements of the other objects as well as creating a visual effect that can be used to increase the visual conception of the graphical representation of the user interface and thus further the understanding of how it works leading to an easier and more intuitive user interface.
As the object behaves like a real object, the mental connection between the operation and its effect becomes more intuitive and thus easy to learn.
The various aspects of what is described above can be used alone or in various combinations. The teaching of this application may be implemented by a combination of hardware and software, but can also be implemented in hardware or software. The teaching of this application can also be embodied as computer readable code on a computer readable medium. It should be noted that the teaching of this application is not limited to the use in mobile communication terminals such as mobile phones, but can be equally well applied in Personal digital Assistants (PDAs), MP3 players, personal organizers or any other device designed for providing information while maintaining low power consumption.
The teaching of the present application has numerous advantages. Different embodiments or implementations may yield one or more of the following advantages. It should be noted that this is not an exhaustive list and there may be other advantages which are not described herein. One advantage of the teaching of this application is that a device can be made to display information in a manner that is easy to learn and intuitive to use.
Another advantage of the teaching of the present application is that a user can operate certain functions such as retrieving information from a device with only a simple and imprecise command or movement not requiring the full attention of a user.
Although the teaching of the present application has been described in detail for purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the scope of the teaching of this application.
For example, although the teaching of the present application has been described in terms of a mobile phone, it should be appreciated that the teachings of the present application may also be applied to other types of electronic devices, such as music players, palmtop computers and the like. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the teachings of the present application.
The term “comprising” as used in the claims does not exclude other elements or steps. The term “a” or “an” as used in the claims does not exclude a plurality. A unit or other means may fulfil the functions of several units or means recited in the claims.
Tables
Number | Name | Date | Kind |
---|---|---|---|
5490223 | Nishimura et al. | Feb 1996 | A |
5548667 | Tu | Aug 1996 | A |
5634908 | Loomas | Jun 1997 | A |
5720759 | Green et al. | Feb 1998 | A |
5748769 | Nishimura et al. | May 1998 | A |
6315694 | Osu et al. | Nov 2001 | B1 |
6359621 | Maeda et al. | Mar 2002 | B1 |
6375572 | Masuyama et al. | Apr 2002 | B1 |
6933923 | Feinstein | Aug 2005 | B2 |
6942671 | Smith | Sep 2005 | B1 |
7203635 | Oliver et al. | Apr 2007 | B2 |
7365741 | Chincholle et al. | Apr 2008 | B2 |
7474772 | Russo et al. | Jan 2009 | B2 |
7578742 | Miyamoto et al. | Aug 2009 | B2 |
7612786 | Vale et al. | Nov 2009 | B2 |
7812826 | Ording et al. | Oct 2010 | B2 |
7958456 | Ording et al. | Jun 2011 | B2 |
20040088146 | Forest et al. | May 2004 | A1 |
20040095346 | Tomita | May 2004 | A1 |
20050012714 | Russo et al. | Jan 2005 | A1 |
20050151720 | Cruz-Hernandez et al. | Jul 2005 | A1 |
20050195156 | Pihlaja et al. | Sep 2005 | A1 |
20060189920 | Seeh | Aug 2006 | A1 |
20070150830 | Ording et al. | Jun 2007 | A1 |
20070178974 | Masuyama et al. | Aug 2007 | A1 |
20080125716 | Cruz | May 2008 | A1 |
20080256484 | Kraft et al. | Oct 2008 | A1 |
20090088204 | Culbert et al. | Apr 2009 | A1 |
20090122018 | Vymenets et al. | May 2009 | A1 |
20110035691 | Kim | Feb 2011 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/EP2008/008662, mailed Feb. 19, 2009. |
Extended European Search Report for European Patent Application No. 10252142.4, dated May 20, 2011, 5 pages. |
Office Action for European Application No. EP 08 858 967.6 dated May 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20090201270 A1 | Aug 2009 | US |