The present invention relates to a user interface that includes one or more images that are perceived by an observer to be suspended in space relative to the user interface.
Various articles have been published about how the human visual system can only process a small number of visual elements simultaneously. The more elements that are added to a visual array, the longer and more resource intensive it is for the person, such as requiring more time to search for elements in the visual array and greater concentration to process such elements. This limitation of the human visual system poses a problem for human-interface designers because it is common that human interfaces typically have more elements in the interface than can be simultaneously processed by the user. As such, user interface designers are often forced to choose between overwhelming the user and severely limiting the number of elements that can be simultaneously displayed in the interface. Various methods have been developed to help decrease the amount of time a user needs to search for elements in a visual array, some of which are discussed in the following publications: Rothrock, L., Barron, K., Simpson, T. W., Frecker, M., Ligetti, C., & Barton, R. R. (2006), “Applying the proximity compatibility and the control-display compatibility principles to engineering design interfaces.” Human Factors and Ergonomics in Manufacturing, 16 (1), 61-81; Wickens, C. D., & Carswell, C. M. (1995), “The proximity compatibility principle: its psychological foundation and relevance to display design.” Human Factors, 37 (3), 473-494; and Mazza, V., Turatto, M. & Umilta, C. (2005), “Foreground-background segmentation and attention: A change blindess study.” Psychological Research 69(3), 201-210.
One embodiment of the present invention provides a user interface. In this embodiment, the user interface comprises: a sheeting, comprising: at least one layer of microlenses, the layer having first and second sides; a layer of material disposed adjacent the first side of the layer of microlenses; and an at least partially complete image formed in the material associated with each of a plurality of the microlenses, wherein the image contrasts with the material; a first composite image, provided by the individual images, that appears to the unaided eye to float at a first distance above the sheeting; a second composite image, provided by the individual images, that appears to the unaided eye to float at a second distance above the sheeting, wherein the first and second distances are approximately the same distance, wherein the first and second composite images are related to the same task or mental operation.
Another embodiment of the present invention provides an alternative user interface. In this embodiment, the user interface comprises: a sheeting, comprising: at least one layer of microlenses, the layer having first and second sides; a layer of material disposed adjacent the first side of the layer of microlenses; and an at least partially complete image formed in the material associated with each of a plurality of the microlenses, wherein the image contrasts with the material; a first composite image, provided by the individual images, that appears to the unaided eye to float at a first distance below the sheeting; a second composite image, provided by the individual images, that appears to the unaided eye to float at a second distance below the sheeting, wherein the first and second distances are approximately the same distance, wherein the first and second composite images are related to the same task or mental operation.
Another embodiment of the present invention provides another alternative user interface. In this embodiment, the user interface comprises: a sheeting, comprising: an array of microlenses; a material layer adjacent the array of microlenses; and a first donor material in contact with the material layer, wherein the donor material forms individual, partially complete images on the material layer associated with each of a plurality of the microlenses; a first composite image, provided by the individual images, that appears to the unaided eye to float at a first distance above the sheeting; a second composite image, provided by the individual images, that appears to the unaided eye to float at a second distance above the sheeting, wherein the first and second distances are approximately the same distance, wherein the first and second composite images are related to the same task or mental operation.
Another embodiment of the present invention provides yet another alternative user interface. In this embodiment, the user interface, comprising: a sheeting, comprising: an array of microlenses; a material layer adjacent the array of microlenses; and a first donor material in contact with the material layer, wherein the donor material forms individual, partially complete images on the material layer associated with each of a plurality of the microlenses; a first composite image, provided by the individual images, that appears to the unaided eye to float at a first distance below the sheeting; a second composite image, provided by the individual images, that appears to the unaided eye to float at a second distance below the sheeting, wherein the first and second distances are approximately the same distance, wherein the first and second composite images are related to the same task or mental operation.
The invention will be described herein with reference to the appended drawings, in which:
a and 4b schematically illustrate one embodiment of a method of creating composite images using a donor sheet;
As mentioned in the Background of the Invention, various articles have been published about how the human visual system can only process a relatively small number of visual elements simultaneously. As more elements are added to a visual array or user interface, it takes longer and requires a greater concentration by the person to search for particular elements in that visual array or user interface and to process such elements. As a result, user interface designers are often forced to choose between overwhelming the user and severely limiting the number of elements that can be simultaneously displayed in the interface. When using the term “user interface” herein, including the claims, this means any interface designed to allow a person to receive information from and/or to interact with. For example, a user interface could be included in automotive dashboards, aircraft cockpit surfaces, nuclear control rooms, control towers, informational kiosks for advertising, ordering, processing, etc., phones, personal/portable digital assistants (PDAs), global positioning systems (GPS) units, screens of computers, voice-activated screens, or any other type of interface where a person is receiving information or interacting with the interface. In the example of an automotive instrument panel having a user interface, some of the information displayed could include automotive speed, various warning lights affiliated with the engine, miles or kilometers affiliated with the travel distance of the automobile, a tachometer, turn signals, the temperature of the interior of the automobile or of the engine, fuel indicators, etc. As another example, a user may interact with the automobile instrument panel by observing that the temperature of the interior has dropped and as a result, increases the temperature gauge on the instrument panel. As yet another example, a user may interact with the automobile instrument panel by noticing that his speed is above the speed limit, and as a result, decreases his pressure on the accelerator until he observes that the speed of his automobile has decreased until it is within the speed limit. As yet another example, a user may interact with the automobile instrument panel by observing a warning signal in the form of a floating image indicating that another vehicle is in the driver's blind spot, so the driver may react by being more careful about a lane change maneuver. Such a floating image warning would be convenient when an audible warning might be bothersome to the driver.
One method to deploy the present invention is through the use of 3M Company's Floating Image technology. 3M Company's Floating Image technology provides a sheeting having a composite image, provided by individual partially complete images and/or individual complete images associated with a number of microlenses, that appears to be suspended, or to float above, in the plane of, and/or below the sheeting. These suspended images are referred to for convenience as floating images, and they can be located above or below the sheeting (either as two or three-dimensional images), or can be a three-dimensional image that appears above, in the plane of, and below the sheeting. The images can be in black and white or in color. The perspective of the composite image changes with the viewing angle. For example, the composite image can appear to move with the observer or can appear to disappear and then reappear, when the angle at which the sheeting is viewed changes. Unlike some holographic sheetings, imaged sheeting of the user interfaces of the present invention cannot be used to create a replica of itself. Additionally, the floating image(s) can be observed by a viewer with the unaided eye.
One embodiment of the present invention provides user interfaces including floating images. The use of floating images in user interfaces provides depth or height as a factor to certain images when viewing or receiving information from the user interface. Such user interfaces do not require thick user interfaces, expensive display technology, or invasive tools, such as goggles. Specifically, the use of this technology assists a user in searching in the user interface for certain information quicker and potentially processing information with less mistakes, thus improving the viewer's overall performance when interacting with the user interface of the present invention. The inventors have discovered that if certain information is displayed at certain depth ranges relative to the user, whether it appears to be floating above or floating below the user interface, the user is more easily able to find the information displayed and thus, able to process such information quicker. Specifically, the inventors have discovered that if floating images are related to the same task or method operation, then it is preferred that they appear to float approximately the same distances above or below the user interface and are preferably viewed stereoscopically. In addition, the floating images are created in a single plane sheeting (as discussed in more detail below), but appear to be floating either above, in, or below the sheeting, which allows the user interface to include several perceived depth levels, but in actuality, the user interface is generally along one plane and thin, compared to its perceived depth. This configuration is especially useful for user interfaces where space is generally limited for displaying information at various actual depth locations relative to the display, such as in the instrument panel of an automobile or airplane.
One embodiment of imaged sheeting having floating composite images useful for user interfaces of the present invention is disclosed in U.S. Pat. No. 6,288,842 (Florczak et al.), which is hereby incorporated by reference. Florczak et al. discloses microlens sheeting with composite images, in which the composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. Methods for providing such sheeting, including by the application of radiation to a material layer adjacent the microlenses are also disclosed. This patent discloses that composite images are created as a result of a compositional change, a removal or ablation of the material, a phase change, or a polymerization of the coating disposed adjacent to one side of the microlens layer or layers.
Another embodiment of imaged sheeting having floating composite images useful for user interfaces of the present invention is disclosed in U.S. patent application Ser. No. 11/248,950 (Endle et al.), which is hereby incorporated by reference. Endle et al. discloses microlens sheeting with composite images, in which the composite image floats above or below the sheeting, or both. The composite image may be two-dimensional or three-dimensional. Methods for providing such an imaged sheeting are also disclosed. This patent application discloses composite images that are created as a result of transferring a portion of a donor substrate to a microlens layer using a radiation source.
Yet another embodiment of imaged sheeting having microlenses and microimages useful for a user interface of the present invention is disclosed in U.S. Pat. No. 5,712,731, “Security Device for Security Documents Such as Bank Notes and Credit Cards,” (Drinkwater et al.), which is hereby incorporated by reference. Drinkwater et al. discloses a security device that includes an array of microimages which, when viewed through a corresponding array of substantially spherical microlenses, generates a magnified image. In some cases, the array of microlenses is bonded to the array of microimages.
This patent application will first describe at least two embodiments for methods for creating composite floating images in sheeting that may be incorporated into user interfaces. Although two exemplary methods are described herein, other methods of creating composite images or similar images may be used. Next, the patent application describes use of composite images in user interfaces.
I. Methods for Creating Composite Floating Images
One example of a method for creating composite floating images useful in the user interfaces of the present invention includes using a radiation source to transfer a portion of radiation sensitive donor material that is placed adjacent a material layer of a microlens sheeting to form an image on the material layer.
Microlens sheeting in which the composite floating images can be formed comprise one or more discrete layers of microlenses with a layer of material adjacent to one side of the microlens layer or layers. For example,
As another example,
As yet another example,
The microlenses of the sheeting 10 preferably have image forming refractive elements in order for image formation (described in more detail below) to occur; this is generally provided by forming spherically or aspherically shaped features. Other useful materials that provide a gradient refractive index (GRIN) will not necessarily need a curved surface to refract light. The microlenses may have any symmetry, such as cylindrical or spherical, provided real images are formed by the refraction surfaces. The microlenses themselves can be of discrete form, such as round plano-convex lenslets, round double convex lenslets, Fresnel lenslets, diffractive lenslets, rods, microspheres, beads, or cylindrical lenslets. Materials from which the microlenses can be formed include glass, polymers, minerals, crystals, semiconductors and combinations of these and other materials. Non-discrete microlens elements may also be used. Thus, microlenses formed from a replication or embossing process (where the surface of the sheeting is altered in shape to produce a repetitive profile with imaging characteristics) can also be used.
Microlenses with a uniform refractive index of between 1.4 and 3.0 over the visible and infrared wavelengths are preferred and more preferably, between 1.4 and 2.5, although not required. The refractive power of the microlenses, whether the individual microlenses are discrete or replicated, and regardless of the material from which the microlenses are made, is preferably such that the light incident upon the optical elements will focus on or near the first side 6 of the material layer 14. In certain embodiments, the microlenses preferably form a demagnified real image at the appropriate position on that layer. The construction of the microlens sheeting provides the necessary focusing conditions so that energy incident upon the front surface of the microlens sheeting is approximately focused upon a separate donor layer that is preferably radiation sensitive, which is described in more detail below.
Microlenses with diameters ranging from 15 micrometers to 275 micrometers are preferable, though other sized microlenses may be used. Good composite image resolution can be obtained by using microlenses having diameters in the smaller end of the aforementioned range for composite images that are to appear to be spaced apart from the microlens layer by a relatively short distance, and by using larger microlenses for composite images that are to appear to be spaced apart from the microlens layer by larger distances. Other microlenses, such as plano-convex, spherical or aspherical microlenses having lenslet dimensions comparable to those indicated for the microlenses, can be expected to produce similar optical results. Cylindrical lenses having lenslet dimensions comparable to those indicated for the microlenses can be expected to produce similar optical results, although different or alternative imaging optics train may be required.
As noted above, a layer of material 14 in
As described in more detail in reference to
Suitable radiation sensitive donor material substrates useful for this form of composite images include substrates coated with colorants in a binder, with or without additional radiation sensitive materials. The donor materials could be provided in bulk form or in roll form. As used herein, donor substrate material is “radiation sensitive” if, upon exposure to a given level of radiation, a portion of the donor material exposed transfers or preferentially adheres to a different location. The individual, partially complete images (illustrated in
In one embodiment, the donor substrate includes colorants providing color within the visible spectrum, such as pigments, dyes, inks, or a combination of any or all of these to provide color composite floating images, such as those illustrated in
For all useful radiation sources, the energy from the radiation source 30 is directed toward the microlens sheeting material 10 and controlled to give a highly divergent beam of energy. For energy sources in the ultraviolet, visible, and infrared portions of the electromagnetic spectrum, the light is controlled by appropriate optical elements, known to those skilled in the art. In one embodiment, a requirement of this arrangement of optical elements, commonly referred to as an optical train, is that the optical train direct light toward the sheeting material with appropriate divergence or spread so as to produce a “cone” of radiation irradiating the microlenses at the desired angles, thus irradiating the donor material aligned to said microlenses. The composite images created by this method are preferably obtained by using radiation spreading devices with numerical apertures (defined as the sine of the half angle of the maximum diverging rays) of greater than or equal to 0.3, although smaller numerical aperture illumination may be used. Radiation spreading devices with larger numerical apertures produce composite images having a greater viewing angle, and a greater range of apparent movement of the image. In alternative embodiments, the optical train may additionally contain elements to prevent radiation in an angular portion or portions of the cone of radiation. The resulting composite image(s) are only viewable over angles corresponding to the unblocked angular sections of the modified cone. Multiple composite images may be created at separate angular sections of the modified cone if desired. Using the modified cone and its inverse, one can produce a composite image that changes from one color to another as the sample is tilted. Alternatively, multiple composite images can be produced in the same area causing the individual images to appear and disappear as the sample is tilted.
An exemplary imaging process for an embodiment of this method includes the following steps, as illustrated in
Next, the method includes the step of transferring portions of donor material from the first donor material substrate 40a to the first side 6 of the layer of material 14 of the sheeting 10 to form individual, partially complete images on the first side 6 of material layer 14, as illustrated in
Because each individual microlens 4 occupies a unique position relative to the optical axis, the radiation impinging on each microlens 4 will have a unique angle of incidence relative to the radiation incident on each other microlens. Thus, the light will be transmitted by each microlens 4 to a unique position relative to its specific microlens 4 on the donor substrate 40a close to focal point 34, and produces a unique image pixel of a partially complete image of donor materials 42a on the first side 6 of the layer of material 14 corresponding to each microlens 4. More precisely, a single light pulse produces only a single imaged dot of donor material 42a behind each properly exposed microlens 4, so to provide a partially complete image adjacent each microlens on the first side 6 of the material layer 14 of the sheeting 10. Multiple radiation pulses, or a quickly traversing, continuously illuminating, radiation beam may be used to create the image. For each pulse, the focal point of lens 32 is located at a new position relative to the position of the focal point 34 during the previous pulse relative to the microlensed sheeting. These successive changes in the position of the focal point 32 of the lens 32 relative to the microlenses 4 results in a corresponding change in the angle of incidence upon each microlens 4, and accordingly, in the position of the imaged pixel of the partially complete image of donor material 42a created on the material layer 14 of the sheeting 10 with the donor material 42 by that pulse. As a result, the radiation incident on the donor substrate 40a near focal point 34 causes transfer of a selected pattern of the radiation sensitive donor material 42a. Because the position of each microlens 4 is unique relative to every optical axis, the partially complete image formed by the transferred radiation sensitive donor material 42a for each microlens will be different from the image associated with every other microlens, because each microlens “sees” the incoming radiation from a different position. Thus, a unique image is formed associated with each microlens with the donor material 42a from the donor substrate on the material layer 14.
Another method for forming floating composite images uses a divergence creating target such as a lens array to produce the highly divergent light to image the microlensed material. For example, the lens array could consist of multiple small lenses all with high numerical apertures arranged in a planar geometry. When the array is illuminated by a light source, the array will produce multiple cones of highly divergent light, each individual cone being centered upon its corresponding lens in the array. The physical dimensions of the array are chosen to accommodate the largest lateral size of a composite image. By virtue of the size of the array, the individual cones of energy formed by the lenslets will expose the microlensed material as if an individual lens was positioned sequentially at all points of the array while receiving pulses of light. The selection of which lenses receive the incident light may occur by the use of a reflective mask, diffractive pattern generator, or by individually illuminating specific locations of the target with a low numerical aperture radiation beam. This mask will have transparent areas corresponding to sections of the composite image that are to be exposed and reflective areas where the image should not be exposed. Due to the lateral extent of the lens array, it may not be necessary to use multiple light pulses to trace out the image.
By having the mask fully illuminated by the incident energy, the portions of the mask that allow energy to pass through will form many individual cones of highly divergent light outlining the floating image as if the image was traced out by a single lens. As a result, only a single light pulse is needed to form the entire composite image in the microlens sheeting. Alternatively, in place of a reflective mask, a beam positioning system, such as a galvanometric xy scanner, can be used to locally illuminate the lens array and trace the composite image on the array. Since the energy is spatially localized with this technique, only a few lenslets in the array are illuminated at any given time. Those lenslets that are illuminated will provide the cones of highly diverging light needed to expose the microlensed material to form the composite image in the sheetings.
After imaging, depending upon the desirable viewable size of the composite image, a full or partially complete image will be present on the first side 6 of material layer 14 of the sheeting 10 behind each sufficiently exposed microlens formed from the donor material 42a. The extent to which an image is formed behind each microlens 4 on the material layer 14 depends on the energy incident upon that microlens. Portions of an intended image may be distant enough from a region of microlenses that the radiation incident upon those microlenses has an energy density lower than the level of radiation required to transfer corresponding donor material 42. Moreover, for a spatially extended image, when imaging with a fixed NA lens, not all portions of the sheeting will be exposed to the incident radiation for all parts of the intended image. As a result, portions of the intended image will not result in transferred radiation sensitive material, and only a partial image of the intended image will appear behind those microlenses on the material layer 14.
In
A portion of the section A that is indicated in
The image 46 has two portions, a first portion 64 of black donor material 42a, and a second portion 66 of purple donor material 42b. Each image 46 corresponds generally to an individual microlens. The images 46 in
These composite floating images 60 can also be thought of as the result of the summing together of many images 46, all with different perspectives of a real object. The many unique images are formed through an array of miniature lenses, all of which “see” the object or image from a different vantage point. Behind the individual miniature lenses, a perspective of the image is created by the donor material on the material layer that depends on the shape of the image and the direction from which the imaging energy source was received. In some embodiments of the method, only that portion of the image or object seen by the lens that has sufficient energy to result in the transfer of some of the radiation sensitive donor material will be recorded. Portions of the image or object that correlate to the lens being exposed to a correspondingly greater energy level may generally result in a greater amount of donor material being transferred, i.e. may result in images 46 that have a greater elevation above the first side 6 of the material layer 14 of the sheeting 10.
The “object” to be imaged is formed through the use of an intense light source by either tracing the outline of the “object” or by the use of a mask. For the image thus recorded to have a composite aspect, the light from the object must radiate over a broad range of angles. When the radiation from an object is coming from a single point of the object and is radiating over a broad range of angles, all the radiation rays are carrying information about the object, but only from that single point, though the information is from the perspective of the angle of the radiation ray. Now consider that in order to have relatively complete information about the object, as carried by the radiation rays, light must radiate over a broad range of angles from the collection of points that constitute the object. The range of angles of the radiation rays emanating from an object is controlled by optical elements interposed between the radiation source and the microlens sheeting. These optical elements are chosen to give the optimum range of angles necessary to produce a composite image. The best selection of optical elements results in a cone of radiation whereby the vertex of the cone terminates at the position of the object.
Various geometric optics used to describe the formation of various composite images are disclosed in the U.S. patent application Ser. No. 11/248,950 (Endle et al.), which is hereby incorporated by reference, for example the disclosure related to
Another example of a method for creating composite floating images useful in the user interfaces of the present invention includes an application of radiation to a material layer adjacent microlenses in a sheeting. The composite images are created as a result of a compositional change, a removal or ablation of the material, a phase change, or a polymerization of the coating disposed adjacent to one side of the microlens layer or layers. FIGS. 5 and 7-10 are related to the discussion of this method.
Microlens sheeting in which the composite images formed by this method comprise one or more discrete layers of microlenses with a layer of material (preferably a radiation-sensitive material or coating, as described below) disposed adjacent to one side of the microlens layer or layers. For example,
The microlenses of the sheeting described in reference to
Microlenses of the sheeting described in reference to
Microspheres of the sheeting described in reference to
As noted above, for this particular method of forming composite images, a layer of material is provided adjacent to the microlenses. Individual images formed in the material associated with a plurality of microlenses, when viewed by an observer under reflected or transmitted light, provide a composite image that appears to be suspended, or float, above, in the plane of, and/or below the sheeting. Although other methods may be used, the preferred method for providing such images is to provide a radiation sensitive material as the material layer, and to use radiation to alter that material in a desired manner to provide the image. Thus, although not limited thereby, the remaining discussion of the layer of material adjacent the microlenses will be provided largely in the context of a radiation sensitive material layer.
Radiation sensitive materials useful for this method include coatings and films of metallic, polymeric and semiconducting materials as well as mixtures of these. As used herein, a material is “radiation sensitive” if upon exposure to a given level of visible or other radiation the appearance of the material exposed changes to provide a contrast with material that was not exposed to that radiation. The image created thereby could thus be the result of a compositional change, a removal or ablation of the material, a phase change, or a polymerization of the radiation sensitive coating. Examples of some radiation sensitive metallic film materials include aluminum, silver, copper, gold, titanium, zinc, tin, chromium, vanadium, tantalum, and alloys of these metals. These metals typically provide a contrast due to the difference between the native color of the metal and a modified color of the metal after exposure to the radiation. The image, as noted above, may also be provided by ablation, or by the radiation heating the material until an image is provided by optical modification of the material. U.S. Pat. No. 4,743,526, for example, describes heating a metal alloy to provide a color change.
In addition to metallic alloys, metallic oxides and metallic suboxides can be used as a radiation sensitive medium. Materials in this class include oxide compounds formed from aluminum, iron, copper, tin and chromium. Non-metallic materials such as zinc sulfide, zinc selenide, silicon dioxide, indium tin oxide, zinc oxide, magnesium fluoride and silicon can also provide a color or contrast that is useful.
Multiple layers of thin film materials can also be used to provide unique radiation sensitive materials. These multilayer materials can be configured to provide a contrast change by the appearance or removal of a color or contrast agent. Exemplary constructions include optical stacks or tuned cavities that are designed to be imaged (by a change in color, for example) by specific wavelengths of radiation. One specific example is described in U.S. Pat. No. 3,801,183, which discloses the use of cryolite/zinc sulphide (Na3AlF6/ZnS) as a dielectric mirror. Another example is an optical stack composed of chromium/polymer (such as plasma polymerized butadiene)/silicon dioxide/aluminum where the thickness of the layers are in the ranges of 4 nm for chromium, between 20 nm and 60 nm for the polymer, between 20 nm and 60 nm for the silicon dioxide, and between 80 nm and 100 nm for the aluminum, and where the individual layer thicknesses are selected to provide specific color reflectivity in the visible spectrum. Thin film tuned cavities could be used with any of the single layer thin films previously discussed. For example, a tuned cavity with an approximately 4 nm thick layer of chromium and the silicon dioxide layer of between about 100 nm and 300 nm, with the thickness of the silicon dioxide layer being adjusted to provide an colored imaged in response to specific wavelengths of radiation.
Radiation sensitive materials useful for this method also include thermochromic materials. “Thermochromic” describes a material that changes color when exposed to a change in temperature. Examples of thermochromic materials useful in this method are described in U.S. Pat. No. 4,424,990, and include copper carbonate, copper nitrate with thiourea, and copper carbonate with sulfur containing compounds such as thiols, thioethers, sulfoxides, and sulfones. Examples of other suitable thermochromic compounds are described in U.S. Pat. No. 4,121,011, including hydrated sulfates and nitrides of boron, aluminum, and bismuth, and the oxides and hydrated oxides of boron, iron, and phosphorus.
Naturally, if the material layer is not going to be imaged using a source of radiation, then the material layer can, but is not required to, be radiation sensitive. Radiation sensitive materials are preferred for ease of manufacturing, however, and thus a suitable radiation source is preferably also used.
As noted above, a preferred manner of providing the image patterns on the layer of material adjacent the microlenses is to use a radiation source to image a radiation sensitive material. Any energy source providing radiation of the desired intensity and wavelength can be used with this method. Devices capable of providing radiation having a wavelength of between 200 nm and 11 micrometers are believed to be particularly preferred. Examples of high peak power radiation sources useful for this method include excimer flashlamps, passively Q-switched microchip lasers, and Q-switched Neodymium doped-yttrium aluminum garnet (abbreviated Nd:YAG), Neodymium doped-yttrium lithium fluoride (abbreviated Nd:YLF) and Titanium doped-sapphire (abbreviated Ti:sapphire) lasers. These high peak power sources are most useful with radiation sensitive materials that form images through ablation—the removal of material or in multiphoton absorption processes. Other examples of useful radiation sources include devices that give low peak power such as laser diodes, ion lasers, non Q-switched solid state lasers, metal vapor lasers, gas lasers, arc lamps and high power incandescent light sources. These sources are particularly useful when the radiation sensitive medium is imaged by a non-ablative method.
For all useful radiation sources, the energy from the radiation source is directed toward the microlens sheeting material and controlled to give a highly divergent beam of energy. For energy sources in the ultraviolet, visible, and infrared portions of the electromagnetic spectrum, the light is controlled by appropriate optical elements. In one embodiment, a requirement of this arrangement of optical elements, commonly referred to as an optical train, is that the optical train direct light toward the sheeting material with appropriate divergence or spread so as to irradiate the microlens and thus the material layer at the desired angles. The composite images are preferably obtained by using light spreading devices with numerical apertures (defined as the sine of the half angle of the maximum diverging rays) of greater than or equal to 0.3. Light spreading devices with larger numerical apertures produce composite images having a greater viewing angle, and a greater range of apparent movement of the image.
An examplary imaging process according to this method of creating composite images consists of directing collimated light from a laser through a lens toward the microlens sheeting illustrated in
Because each individual microlens occupies a unique position relative to the optical axis, the light impinging on each microlens will have a unique angle of incidence relative to the light incident on each other microlens. Thus, the light will be transmitted by each microlens to a unique position on the material layer, and produce a unique image. More precisely, a single light pulse produces only a single imaged dot on the material layer, so to provide an image adjacent each microlens, multiple pulses of light are used to create that image out of multiple imaged dots. For each pulse, the optical axis is located at a new position relative to the position of the optical axis during the previous pulse. These successive changes in the position of the optical axis relative to the microlenses results in a corresponding change in the angle of incidence upon each microlens, and accordingly in the position of the imaged dot created in the material layer by that pulse. As a result, the incident light focusing on the backside of the microsphere images a selected pattern in the radiation sensitive layer. Because the position of each microsphere is unique relative to every optical axis, the image formed in the radiation sensitive material for each microsphere will be different from the image associated with every other microsphere.
Another method for forming floating composite images uses a lens array to produce the highly divergent light to image the microlensed material. The lens array consists of multiple small lenses all with high numerical apertures arranged in a planar geometry. When the array is illuminated by a light source, the array will produce multiple cones of highly divergent light, each individual cone being centered upon its corresponding lens in the array. The physical dimensions of the array are chosen to accommodate the largest lateral size of a composite image. By virtue of the size of the array, the individual cones of energy formed by the lenslets will expose the microlensed material as if an individual lens was positioned sequentially at all points of the array while receiving pulses of light. The selection of which lenses receive the incident light occurs by the use of a reflective mask. This mask will have transparent areas corresponding to sections of the composite image that are to be exposed and reflective areas where the image should not be exposed. Due to the lateral extent of the lens array, it is not necessary to use multiple light pulses to trace out the image.
By having the mask fully illuminated by the incident energy, the portions of the mask that allow energy to pass through will form many individual cones of highly divergent light outlining the floating image as if the image was traced out by a single lens. As a result, only a single light pulse is needed to form the entire composite image in the microlens sheeting. Alternatively, in place of a reflective mask, a beam positioning system, such as a galvometric xy scanner, can be used to locally illuminate the lens array and trace the composite image on the array. Since the energy is spatially localized with this technique, only a few lenslets in the array are illuminated at any given time. Those lenslets that are illuminated will provide the cones of highly diverging light needed to expose the microlensed material to form the composite image in the sheetings.
The lens array itself can be fabricated from discrete lenslets or by an etching process to produce a monolithic array of lenses. Materials suitable for the lenses are those that are non-absorbing at the wavelength of the incident energy. The individual lenses in the array preferably have numerical apertures greater than 0.3 and diameters greater than 30 micrometers but less than 10 mm. These arrays may have antireflection coatings to reduce the effects of back reflections that may cause internal damage to the lens material. In addition, single lenses with an effective negative focal length and dimensions equivalent to the lens array may also be used to increase the divergence of the light leaving the array. Shapes of the individual lenslets in a monolithic array are chosen to have a high numerical aperture and provide a large fill factor of approximately greater than 60%.
After imaging, depending upon the size of the extended object, a full or partial image of the object will be present in the radiation sensitive material behind each microsphere. The extent to which the actual object is reproduced as an image behind a microsphere depends on the energy density incident upon the microsphere. Portions of an extended object may be distant enough from a region of microlenses that the energy incident upon those microspheres has an energy density lower than the level of radiation required to modify that material. Moreover, for a spatially extended image, when imaging with a fixed NA lens, not all portions of the sheeting will be exposed to the incident radiation for all parts of the extended object. As a result, those portions of the object will not be modified in the radiation sensitive medium and only a partial image of the object will appear behind the microspheres.
In addition to providing a perspective view of a section of a microlens sheeting depicting sample individual, partially complete images 46 formed by the radiation sensitive donor material method described at the beginning of this section,
These composite images can also be thought of as the result of the summing together of many images, both partial and complete, all with different perspectives of a real object. The many unique images are formed through an array of miniature lenses, all of which “see” the object or image from a different vantage point. Behind the individual miniature lenses, a perspective of the image is created in the material layer that depends on the shape of the image and the direction from which the imaging energy source was received. However, not everything that the lens sees is recorded in the radiation sensitive material. Only that portion of the image or object seen by the lens that has sufficient energy to modify the radiation sensitive material will be recorded.
The “object” to be imaged is formed through the use of an intense light source by either tracing the outline of the “object” or by the use of a mask. For the image thus recorded to have a composite aspect, the light from the object must radiate over a broad range of angles. When the light radiating from an object is coming from a single point of the object and is radiating over a broad range of angles, all the light rays are carrying information about the object, but only from that single point, though the information is from the perspective of the angle of the light ray. Now consider that in order to have relatively complete information about the object, as carried by the light rays, light must radiate over a broad range of angles from the collection of points that constitute the object. The range of angles of the light rays emanating from an object is controlled by optical elements interposed between the object and the microlens material. These optical elements are chosen to give the optimum range of angles necessary to produce a composite image. The best selection of optical elements results in a cone of light whereby the vertex of the cone terminates at the position of the object. Optimum cone angles are greater than about 40 degrees.
The object is demagnified by the miniature lenses and the light from the object is focused onto the energy sensitive coating against the backside of the miniature lens. The actual position of the focused spot or image at the backside of the lens depends upon the direction of the incident light rays originating from the object. Each cone of light emanating from a point on the object illuminates a fraction of the miniature lenses and only those miniature lenses illuminated with sufficient energy will record a permanent image of that point of the object.
Various geometric optics used to describe the formation of various composite images are disclosed in the U.S. Pat. No. 7,068,434 (Florczak et al.), which is hereby incorporated by reference, for example the disclosure related to
Although only two methods of creating floating composite images are described herein, the present invention is not limited thereby. Instead, the present invention includes composite image or other similar images made by other methods known by those skilled in the art.
II. Composite Floating Images in User Interfaces
As mentioned in the beginning of this Description of the Invention, the present invention describes user interfaces including composite floating images. As mentioned previously, when using the term “user interface” herein, including the claims, this means any interface designed to allow a person to receive information from or to interact with. The information could be received visually, but it could also be received through auditory or sensory means. For example, a user interface could include automotive dashboards, aircraft cockpit surfaces, nuclear control rooms, control towers, informational kiosks for advertising, ordering, processing, etc., phones, PDAs, GPS units, screens of computers, voice-activated screens, or any other type of interface where a person is receiving information or interacting with the user interface. User interfaces including composite floating images assist a user in searching the user interface for certain information quicker and potentially processing information with less mistakes, thus improving the viewer's overall performance when interacting with the user interfaces of the present invention. In one embodiment of the present invention, such user interfaces include floating images which may display different types of information having different levels of importance to the user. Such floating images are viewed at different distances floating above or floating below a sheeting in the user interface, the float distance preferentially may depend on the level of importance of the information to which it pertains, as explained below in more detail.
It is not “common knowledge” among human interface designers that depth can be useful for improving viewer performance with human user interfaces. Most human interface designers do not have extensive expertise in human vision, and it is not even common knowledge among vision scientists that stereoscopic depth information can be used to improve viewer performance. For example, it was not until 2003 that Puhakka, Hakkinen, and Laarni in their publication demonstrated that preknowledge of target depth affected visual processing. (See, e.g. Puhakka, M., Hakkinen, J. and Laarni, J. (2003) “Does preknowledge of target depth affect visual processing.” Journal of Vision 3 (9), 559. In fact, according to one publication, it is unknown to those skilled in the art whether or not that depth is a factor that impacts human visual search performance and visual attention. (See, e.g. Wolfe, J. M., & Horowitz, T. S. (2004), “What attributes guide the deployment of visual attention and how do they do it?”, Nature Reviews Neuroscience, 5 (6), 495-501.)
It is believed by the inventors that depth can be used to improve visual attention and search performance in user interfaces, as evidenced by the Examples below, particularly using floating composite images to create the appearance of depth. As a result of the present invention, depth of visual elements in a user interface could be manipulated to help users attend to critical information. For instance, the information appearing to be presented in the foreground as floating images would be preferentially attended to, in comparison to information appearing to be presented in the background. For example, depth of certain displayed information in instrument panels could help drivers of automobiles or pilots of airplanes attend to safety critical information, such as fuel, air speed or altitude. However, depth is often not used in the instrument panels of automobiles or airplane cockpits because space is generally limited for displaying information at various actual depth locations relative to the display. The user interfaces of the present invention include composite floating images which either appear to float above, float below or in the plane of the instrument plane without requiring thick user interfaces, expensive display technology, or invasive tools, such as goggles. In essence, the user interface presents information that appears to be displayed at various depths or heights, while in reality, the user interface includes a sheeting which is generally along one plane, which makes them especially useful where different depth locations are limited.
Regarding specifically user interfaces in automobile instrument panels, research has indicated that lack of attention to relevant driving events is one of the main factors in traffic accidents. (See, e.g., Rumar, K. (1990), “The basic driver: Late detection.” Ergonomics, 33(10-11), 1281-1290.) As such, it has been a major goal of automotive design engineers to reduce the attentional load on drivers. Reducing the attentional load allows drivers to allocate their attention to safety critical tasks of driving. To the extent that the composite floating images are incorporated into user interfaces of the present invention, such as instrument panels of automobiles, such user interfaces may assist in improving driver safety and situational awareness in at least the four following aspects.
First, floating composite images may be used to exploit the depth perception of a user to allow the use of depth as a visual grouping cue in the user interfaces of the present invention. Such grouping helps improve visual search performance and reduces viewer attention load to search within the group and therefore not allocate attention to items outside of the group.
Second, floating composite images may be used to exploit the depth perception of a user to allow the use of presentation of information at various depths to improve visual searches. Creating different planes of depth with floating images can facilitate the ability of drivers to visually scan user interfaces of the present invention, and thus, improve visual search performance, and selectively attend to information presented by such user interfaces. The human visual system is more adept at searching for information within a depth plane than between depth planes. So, once the viewer learns that certain types of visual information are to be found within a specific depth plane of the user interfaces of the present invention, the user will be more efficient at looking for this information in the future.
Third, floating composite images may be used to exploit the depth perception of a user to allow the use of depth to direct visual attention in the user interfaces of the present invention. Depth information can be used to guide visual attention to the most safety critical information in the instrument panel. That is, depth information in the foreground is preferentially attended to relative to depth information in the background, so engineers probably will want to place the safety critical information in the foreground of the user interfaces of the present invention, with less safety critical information presented in other than the foreground and thus improve attention allocation to the safety critical information.
Fourth, as another example, related or similar visual elements may be presented in the form of floating images that are grouped on the same depth planes of the user interfaces of the present invention. When related or similar visual elements are grouped together in the same depth plane, it takes less time and requires less concentration by the person to search out the information in the user interface and to process such information, thus making it is easier for the user to use the interface and to react more quickly to the information, if necessary, particularly when the visual elements are related to the same task or metal operation. For instance, if a first composite image and a second composite image are related to the same or similar task or mental operation, it is preferred that both images appear to float approximately the same distance either above or below the sheeting of the user interface within approximately the same “plane”. By referring to approximately being in the same plane, this is meant to include the situation where even though the first and second composite images are not exactly in the same plane, they are close enough to each other in depth that the human visual system would not be able to process the fact that they are in slightly different planes. It is also preferred that both the first and second composite images are in close proximity to one another. When determining close proximity, various factors should be taken into account, such as the relative size of the user interface and the number and size of the floating images and number of other distractors. In one preferred embodiment, it is preferred that the maximum distance between two floating images that are related to the same or similar task or mental operation be within one-quarter of the length or width of the given user interface. However, some skilled in the art would consider close proximity to be determined by whatever visual elements are closest together, depending on a given interface. Regardless, in at least one embodiment of the present invention, it is preferred that floating images that are related to the same or similar task or mental operations appear to float within the same plane or have a similar float distance from the user interface and are located within close proximity of each other to allow the user to associate them together. For floating images that are presented in different planes, it is preferred that the distance between these different planes is at least 1 mm, but it depends on what conditions exist for the given user interface, such as the distance between the user and the interface and how many distractors exist. In one embodiment, the user interface could include a first composite image which is a three-dimensional image, and a second composite image that is a two-dimensional image. In this embodiment, it is preferred that the perceived height of the second composite image be comparable to the height of the three-dimensional first composite image.
To help illustrate, in one embodiment of the present invention, in an airplane cockpit, indicators of engine speed and electrical output could be displayed in the form of floating images floating below the plane of the airplane instrument panel, and altitude, airspeed, and fuel could be displayed in the form of floating images floating above the plane of the airplane instrument panel. The engine speed and electrical output are not as critical from a safety standpoint, in comparison to the altitude, airspeed, and fuel. Thus, one wants information that has a higher safety critical component to be more easily ascertainable to the user, accomplished by placing said information in the near field of the operator. As a result, the altitude, airspeed and fuel are more easily ascertainable to the user in their relative locations to the plane of the instrument panel. By placing such information in the near field to the operator. The altitude, airspeed and fuel are all safety critical information and thus are related to the same task or mental operation, i.e., flying the plane safety. Therefore, it is preferred that all three floating images appear to be floating the same distance above the airplane instrument panel.
In another embodiment of the present invention, in an automobile, the engine tachometer could be displayed in the form a floating image floating below the plane of the instrument panel, and the speedometer and “check engine” light or other warning lights could be displayed in the form of a floating image floating above the plane of the instrument panel. The speedometer and “check engine” light or other warning lights are more critical information to the driver and thus, in its relative position to the plane of the instrument panel could be more easily ascertainable to the user. In another embodiment, the tachometer or other such information could be displayed during most of the time that the car is running in a floating image below the plane of the instrument panel. When conditions exist such that a warning should be indicated, a warning light in the form of a floating image above the tachometer or other such information in the instrument panel could “pop on” to attract the attention of the driver, when that selected condition occurs.
What the inventors have discovered is that by simply adding information at different visual depths in the form of composite floating images does not automatically improve visual performance. Instead, it is preferred that floating images that relate to the same task or mental operation should appear to float in the same plane, either above or below the sheeting. In contrast, when images that relate to the same task or mental operation appear in different planes, either above or below the plane of the user interface display, it is harder for the user to process the information.
In contrast,
Various modifications and combinations of the embodiments disclosed will be apparent to those skilled in the art, and those modifications are intended to be within the scope of the invention as defined in the appended claims.
Sixteen example sheets (or stimuli) of various combinations of composite floating images at various depths or heights relative to the plane of the sheeting were created. The example sheets were prepared according to the process described in U.S. Pat. No. 6,288,842 (Florczak et al.), which is hereby incorporated by reference. The sheet material used to create the sixteen example sheets was black Scotchlite™ Reflective Graphic film Series 680 (available from 3M Company, St. Paul, Minn.). This film contains a layer of small glass beads, or microlenses, and an opaque layer behind the microlenses. The floating images written to the example sheets were written to appear in one of two planes:—floating 6 mm above the plane of the sheeting and sinking 6 mm below the plane of the sheeting. When the imaged sheetings were illuminated from the back side with a white light source, i.e. from the direction of the opaque layer, the floating images appeared as substantially white images on a black background. To obtain colored stimuli, a colored transparency film was placed between the white light source and the sheeting containing the floating and sinking composite images.
Each stimulus consisted of Xs and Os arranged in 19 columns by 9 rows, as illustrated in
Evaluation of the impact of the invention upon human visual search performance was assessed as follows. Eight persons (Subjects) with normal or corrected to normal vision who did not know the purpose of this experiment, were seated individually in front of a backlight display upon which a stimuli was placed, with each individual positioned such that their head was positioned via a chinrest so that their eyes were positioned precisely 16 inches from and perpendicular to the stimuli on the backlight display. Presentation of the stimuli was self-paced. Subjects were instructed to open their eyes and press a key on a button box to begin each trial. Each Subject was tasked to press a second button on the button box as soon as they found the SBO in the stimuli.
Subjects completed two practice trials prior to the experiment proper. A practice trial consisted of presenting a randomly selected stimuli to each subject once. For one practice trial, the stimuli was selected from the unique target stimulus. For the other practice trial, the stimuli was selected from the non-unique target stimulus. Half of the Subjects completed the unique target stimulus practice trial first and the other half of the Subjects completed the non-unique target stimulus practice trial first. Experiment 1 consisted of 16 trials with each of the 16 stimuli being presented once.
Presentation order for the experimental trials was chosen at random with each subject viewing a different presentation order. The presentation order of the stimuli to Subjects 1-4 was reversed for Subjects 5-8 to reduce the possibility of any order effect.
The mean visual search times for finding the SBO by the Subjects in the non-unique target stimuli and in the unique target stimuli are shown in
The mean visual search time for unique target stimuli (1782 msec) was shorter than the mean visual search time for non-unique target stimuli (4385 msec), p<0.01. [The p-value is a measure of probability that the difference between means in the conditions happened by chance. A result is considered by the scientific community to be trustworthy if there is less than a 5% chance that the result happened by chance (i.e., if the p-value is <0.05).]
Eight example sheets (stimuli) were prepared as in Example 1, except each stimulus consisted of a monotone (white) speedometer-type dial modeled after a typical automobile dashboard element, such as a speedometer, and a white indicator (needle), as shown in
Similar to Example 1, evaluation of the impact of the invention upon human visual search performance was assessed as follows. The same eight persons (Subjects) as in Example 1, with normal or corrected to normal vision who did not know the purpose of this experiment, were seated individually in front of a backlight display upon which a stimuli was placed, with each individual positioned such that their head was positioned via a chinrest, so that their eyes were positioned precisely 16 inches from and perpendicular to the stimuli on the backlight display. Presentation of the stimuli was self-paced. Subjects were instructed to open their eyes and press a key on a button box to begin each trial.
Just prior to the start of each trial, each subject was instructed to report the indicated speed in either kph or mph and was informed as to the location of that scale (e.g., for a mph reporting trial, subjects were told whether the mph scale floated above the kph scale, sank below the kph scale, was on the same plane as the kph scale, or, was mixed between two planes, in which case, the kph scale was also mixed between the planes. The speed indicated on a given trial was chosen at random. Subjects were instructed to open their eyes and press a key on a button box to begin each trial. Each subject was tasked to verbally report the speed indicated in the scale requested as quickly and accurately as possible.
The experiment was separated into three blocks: a single plane stimulus block, a layered planes stimulus block, and a mixed planes stimulus block. The order of presentation of each block was chosen at random. Subjects completed two practice trials prior to each block. The stimuli for the practice trials were chosen at random from the experimental stimuli of that type. Presentation order for the experimental trials was chosen at random with each participant viewing a different presentation order. The presentation order of the stimuli to Subjects 1-4 was reversed for Subjects 5-8 to reduce the possibility of any order effect.
The mean visual search times for reporting the speed indicated in the single plane stimuli, layered planes stimuli, and the mixed planes stimuli are shown in
The mean response time for layered planes stimuli (1486 msec) was shorter than the mean response time for the single plane stimuli (1812 msec) and the mixed planes stimuli had the highest mean response time of (3004 msec); p<0.0001.
Number | Name | Date | Kind |
---|---|---|---|
1905716 | Ives | Apr 1933 | A |
1918705 | Ives | Jul 1933 | A |
2039648 | Ives | May 1936 | A |
2063985 | Coffey | Dec 1936 | A |
2279825 | Kaszab | Apr 1942 | A |
2326634 | Gebhard et al. | Aug 1943 | A |
2500511 | Bonnet | Mar 1950 | A |
2622472 | Bonnet | Dec 1952 | A |
2833176 | Ossoniak | May 1958 | A |
3154872 | Nordgren | Nov 1964 | A |
3161509 | Howe et al. | Dec 1964 | A |
3306974 | Cunnally | Feb 1967 | A |
3357770 | Clay | Dec 1967 | A |
3365350 | Cahn | Jan 1968 | A |
3442569 | Bonnet | May 1969 | A |
3459111 | Cooper, Jr. | Aug 1969 | A |
3503315 | Montebello | Mar 1970 | A |
3584369 | Montebello | Jun 1971 | A |
3607273 | Kinney | Sep 1971 | A |
3613539 | Dudley | Oct 1971 | A |
3671122 | Dudley | Jun 1972 | A |
3676130 | Burckhardt et al. | Jul 1972 | A |
3683773 | Dudley | Aug 1972 | A |
3706486 | de Montebelo | Dec 1972 | A |
3751258 | Howe et al. | Aug 1973 | A |
3801183 | Sevelin et al. | Apr 1974 | A |
4034555 | Rosenthal | Jul 1977 | A |
4082426 | Brown | Apr 1978 | A |
4099838 | Cook et al. | Jul 1978 | A |
4121011 | Glover et al. | Oct 1978 | A |
4200875 | Galanos | Apr 1980 | A |
4315665 | Haines | Feb 1982 | A |
4420527 | Conley | Dec 1983 | A |
4424990 | White et al. | Jan 1984 | A |
4541727 | Rosenthal | Sep 1985 | A |
4541830 | Hotta et al. | Sep 1985 | A |
4552442 | Street | Nov 1985 | A |
4557590 | Winnek | Dec 1985 | A |
4618552 | Tanaka et al. | Oct 1986 | A |
4621898 | Cohen | Nov 1986 | A |
4629667 | Kistner et al. | Dec 1986 | A |
4632895 | Patel et al. | Dec 1986 | A |
4634220 | Hockert et al. | Jan 1987 | A |
4650283 | Orensteen et al. | Mar 1987 | A |
4668063 | Street | May 1987 | A |
4688894 | Hockert | Aug 1987 | A |
4691993 | Porter et al. | Sep 1987 | A |
4700207 | Vanier et al. | Oct 1987 | A |
4708920 | Orensteen et al. | Nov 1987 | A |
4714656 | Bradshaw et al. | Dec 1987 | A |
4732453 | de Montebello et al. | Mar 1988 | A |
4743526 | Ando et al. | May 1988 | A |
4757350 | Street | Jul 1988 | A |
4765656 | Becker et al. | Aug 1988 | A |
4772582 | DeBoer | Sep 1988 | A |
4775219 | Appeldorn et al. | Oct 1988 | A |
4783124 | Baba et al. | Nov 1988 | A |
4799739 | Newswanger | Jan 1989 | A |
4833124 | Lum | May 1989 | A |
4876235 | DeBoer | Oct 1989 | A |
4892336 | Kaule et al. | Jan 1990 | A |
4917292 | Drexler | Apr 1990 | A |
4927238 | Green et al. | May 1990 | A |
4935335 | Fotland | Jun 1990 | A |
5064272 | Bailey et al. | Nov 1991 | A |
5091483 | Mazurek et al. | Feb 1992 | A |
5105206 | Sarraf et al. | Apr 1992 | A |
5169707 | Faykish et al. | Dec 1992 | A |
5183597 | Lu | Feb 1993 | A |
5204160 | Rouser | Apr 1993 | A |
5244288 | Nagaoka et al. | Sep 1993 | A |
5254390 | Lu | Oct 1993 | A |
5264278 | Mazurek et al. | Nov 1993 | A |
5279912 | Telfer et al. | Jan 1994 | A |
5308737 | Bills et al. | May 1994 | A |
5326619 | Dower et al. | Jul 1994 | A |
5330799 | Sandor et al. | Jul 1994 | A |
5359454 | Steenblik et al. | Oct 1994 | A |
5360694 | Thien et al. | Nov 1994 | A |
5364740 | Fohrenkamm et al. | Nov 1994 | A |
5449200 | Andric et al. | Sep 1995 | A |
5449597 | Sawyer | Sep 1995 | A |
5455689 | Taylor et al. | Oct 1995 | A |
5459016 | Debe et al. | Oct 1995 | A |
5491045 | DeBoer et al. | Feb 1996 | A |
5506300 | Ward et al. | Apr 1996 | A |
5514730 | Mazurek et al. | May 1996 | A |
5521035 | Wolk et al. | May 1996 | A |
5554432 | Sandor et al. | Sep 1996 | A |
5589246 | Calhoun et al. | Dec 1996 | A |
5594841 | Schultz | Jan 1997 | A |
5639580 | Morton | Jun 1997 | A |
5642226 | Rosenthal | Jun 1997 | A |
5644431 | Magee | Jul 1997 | A |
5671089 | Allio | Sep 1997 | A |
5680171 | Lo et al. | Oct 1997 | A |
5681676 | Telfer et al. | Oct 1997 | A |
5685939 | Wolk et al. | Nov 1997 | A |
5689372 | Morton | Nov 1997 | A |
5691846 | Benson, Jr. et al. | Nov 1997 | A |
5706133 | Orensteen et al. | Jan 1998 | A |
5712731 | Drinkwater et al. | Jan 1998 | A |
5717844 | Lo et al. | Feb 1998 | A |
5744291 | Ip | Apr 1998 | A |
5757550 | Gulick, Jr. | May 1998 | A |
5828488 | Ouderkirk et al. | Oct 1998 | A |
5843617 | Patel et al. | Dec 1998 | A |
5850278 | Lo et al. | Dec 1998 | A |
5850580 | Taguchi et al. | Dec 1998 | A |
5856061 | Patel et al. | Jan 1999 | A |
5877895 | Shaw et al. | Mar 1999 | A |
5882774 | Jonza et al. | Mar 1999 | A |
5889118 | Delgado et al. | Mar 1999 | A |
5894069 | Wen et al. | Apr 1999 | A |
5896230 | Goggins | Apr 1999 | A |
5935758 | Patel et al. | Aug 1999 | A |
5945249 | Patel et al. | Aug 1999 | A |
5986781 | Long | Nov 1999 | A |
5994026 | DeBoer et al. | Nov 1999 | A |
6028621 | Yakubovich | Feb 2000 | A |
6057067 | Isberg et al. | May 2000 | A |
6084713 | Rosenthal | Jul 2000 | A |
6092465 | Agronin | Jul 2000 | A |
6095566 | Yamamoto et al. | Aug 2000 | A |
6110645 | DeBoer et al. | Aug 2000 | A |
6197474 | Niemeyer et al. | Mar 2001 | B1 |
6212805 | Hill | Apr 2001 | B1 |
6222650 | Long | Apr 2001 | B1 |
6228555 | Hoffend, Jr. et al. | May 2001 | B1 |
6242152 | Staral et al. | Jun 2001 | B1 |
6280891 | Daniel et al. | Aug 2001 | B2 |
6285001 | Fleming et al. | Sep 2001 | B1 |
6286873 | Seder | Sep 2001 | B1 |
6288842 | Florczak et al. | Sep 2001 | B1 |
6291143 | Patel et al. | Sep 2001 | B1 |
6300502 | Kannan et al. | Oct 2001 | B1 |
6351537 | Dovogodko et al. | Feb 2002 | B1 |
6369844 | Neumann et al. | Apr 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6398270 | Fukui et al. | Jun 2002 | B1 |
6468715 | Hoffend, Jr. et al. | Oct 2002 | B2 |
6531230 | Weber et al. | Mar 2003 | B1 |
6552830 | Long | Apr 2003 | B2 |
6602578 | Tompkin et al. | Aug 2003 | B1 |
6729655 | Dorricott et al. | May 2004 | B1 |
6781733 | Hira | Aug 2004 | B1 |
6791723 | Vallmajo et al. | Sep 2004 | B1 |
6919892 | Cheiky et al. | Jul 2005 | B1 |
7054042 | Holmes et al. | May 2006 | B2 |
7068434 | Florczak et al. | Jun 2006 | B2 |
7196822 | Hu | Mar 2007 | B2 |
7246824 | Hudson | Jul 2007 | B2 |
7253958 | Aizenberg et al. | Aug 2007 | B2 |
7255909 | Mann et al. | Aug 2007 | B2 |
7265904 | Schilling et al. | Sep 2007 | B2 |
7333268 | Steenblik et al. | Feb 2008 | B2 |
7336422 | Dunn et al. | Feb 2008 | B2 |
20020126396 | Dolgoff | Sep 2002 | A1 |
20020145807 | Nishikawa | Oct 2002 | A1 |
20030116630 | Carey et al. | Jun 2003 | A1 |
20050057812 | Raber | Mar 2005 | A1 |
20050142468 | Blood et al. | Jun 2005 | A1 |
20050142469 | Blood et al. | Jun 2005 | A1 |
20050161512 | Jones et al. | Jul 2005 | A1 |
20060029753 | Kuo et al. | Feb 2006 | A1 |
20060129489 | Hersch et al. | Jun 2006 | A1 |
20060209412 | Schilling et al. | Sep 2006 | A1 |
20060262411 | Dunn et al. | Nov 2006 | A1 |
20070081254 | Endle et al. | Apr 2007 | A1 |
20070132227 | Dean | Jun 2007 | A1 |
20070196616 | Stalder et al. | Aug 2007 | A1 |
20070284169 | Zabiega | Dec 2007 | A1 |
20080023890 | Sherman et al. | Jan 2008 | A1 |
20080024872 | Dunn et al. | Jan 2008 | A1 |
20080027199 | Mazurek et al. | Jan 2008 | A1 |
20080037131 | Steenblik et al. | Feb 2008 | A1 |
20080118862 | Dunn et al. | May 2008 | A1 |
20080130126 | Brooks et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2326180 | Mar 1999 | CA |
2326180 | Oct 1999 | CA |
2 400 894 | Aug 2001 | CA |
198 04 997 | Feb 1999 | DE |
198 04 997 | Feb 1999 | DE |
0 175 504 | Mar 1986 | EP |
0203752 | May 1986 | EP |
0 314 134 | May 1989 | EP |
0 363 919 | Jan 1990 | EP |
0 583 766 | Feb 1994 | EP |
0 658 443 | Jun 1995 | EP |
0 673 785 | Sep 1995 | EP |
0 688 351 | Aug 1997 | EP |
0 655 347 | Sep 1997 | EP |
0 175 504 | Mar 1998 | EP |
0 615 860 | Aug 1998 | EP |
1 079 274 | Feb 2001 | EP |
1 130 541 | Sep 2001 | EP |
1 308 116 | Feb 1973 | GB |
1 433 025 | Apr 1976 | GB |
2 083 726 | Mar 1982 | GB |
61-261701 | Nov 1986 | JP |
01 065153 | Mar 1989 | JP |
1-181083 | Dec 1989 | JP |
03 068610 | Mar 1991 | JP |
03 0686811 | Mar 1991 | JP |
4309583 | Nov 1992 | JP |
6-308895 | Nov 1994 | JP |
7-140571 | Jun 1995 | JP |
7-281327 | Oct 1995 | JP |
10-186276 | Jul 1998 | JP |
11-500236 | Jan 1999 | JP |
2001116917 | Apr 2001 | JP |
WO 8303019 | Sep 1983 | WO |
WO 9526281 | Oct 1995 | WO |
9624867 | Aug 1996 | WO |
WO 9624867 | Aug 1996 | WO |
WO 9715173 | Apr 1997 | WO |
WO 9746631 | Dec 1997 | WO |
WO 9937949 | Jul 1999 | WO |
9942147 | Aug 1999 | WO |
WO 0163341 | Aug 2001 | WO |
00222376 | Mar 2002 | WO |
WO 0222376 | Mar 2002 | WO |
WO 03005075 | Jan 2003 | WO |
03022598 | Mar 2003 | WO |
WO 03022598 | Mar 2003 | WO |
WO 03061983 | Jul 2003 | WO |
WO 2004111706 | Dec 2004 | WO |
WO 2006125224 | Nov 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080130126 A1 | Jun 2008 | US |