1. Field of the Invention
This invention is related to the field of graphical information processing, more particularly, to conversion from one color space to another.
2. Description of the Related Art
Part of the operation of many computer systems, including portable digital devices such as mobile phones, notebook computers and the like is the use of some type of display device, such as a liquid crystal display (LCD), to display images, video information/streams, and data. Accordingly, these systems typically incorporate functionality for generating images and data, including video information, which are subsequently output to the display device. Such devices typically include video graphics circuitry to process images and video information for subsequent display.
In digital imaging, the smallest item of information in an image is called a “picture element”, more generally referred to as a “pixel”. For convenience, pixels are generally arranged in a regular two-dimensional grid. By using this arrangement, many common operations can be implemented by uniformly applying the same operation to each pixel independently. Since each pixel is an elemental part of a digital image, a greater number of pixels can provide a more accurate representation of the digital image. The intensity of each pixel can vary, and in color systems each pixel has typically three or four components such as red, green, blue, and black.
Most images and video information displayed on display devices such as LCD screens are interpreted as a succession of image frames, or frames for short. While generally a frame is one of the many still images that make up a complete moving picture or video stream, a frame can also be interpreted more broadly as simply a still image displayed on a digital (discrete, or progressive scan) display. A frame typically includes a specified number of pixels according to the resolution of the image/video frame. Most graphics systems use frame buffers to store the pixels for image and video frame information. The term “frame buffer” therefore often denotes the actual memory used to hold picture/video frames. The information in a frame buffer typically includes color values for every pixel to be displayed on the screen. Color values are commonly stored in 1-bit monochrome, 4-bit palletized, 8-bit palletized, 16-bit high color and 24-bit true color formats. An additional Alpha channel is oftentimes used to retain information about pixel transparency. The total amount of the memory required for frame buffers to store image/video information depends on the resolution of the output signal, and on the color depth and palette size.
The frame buffers can be situated in memory elements dedicated to store image and video information, or they can be situated in the system memory. Consequently, system memory may be used to store a set of pixel data that defines an image and/or video stream for display on a display device. Typically, applications running in such a system can write the pixel data into the system memory, from where the pixel data may be fetched and processed to generate a set of image/video signals for displaying the image on the display device. Oftentimes, the processing of these pixels includes upscaling the pixels, which is typically performed according to one or more of a number of scaling algorithms. Two standard scaling algorithms are bilinear and bicubic interpolation, which operate by interpolating pixel color values, usually generating an output pixel with a color value based on a value interpolated between four input pixel values. Fetching the frames (pixel information) from system memory may place high demands on the system, as other devices may also be competing for memory access. As consequence, a high bandwidth may be required from memory in order to keep up with the requests for data. In addition, as each system memory access requires a certain amount of processing power, requests for high volume pixel data may eventually result in premature battery depletion in battery-operated devices, such as mobile phones and notebook computers.
Other corresponding issues related to the prior art will become apparent to one skilled in the art after comparing such prior art with the present invention as described herein.
In one set of embodiments, display pipes in a graphics processing/display system may support user interface units that include registers programmable to define active regions of a frame, where pixels within the active regions of the frame are to be displayed and pixels outside of the active regions of the frame are not to be displayed. The interface units may fetch frames from memory by fetching only the pixels within the active regions of the frame as defined by the programmed contents of the registers. The user interface unit may provide the fetched pixels to a blend unit to blend the fetched pixels with pixels from other frames and/or pixels from a video stream to produce output frames for display. The pixels outside the active regions may be treated as having an Alpha value of zero for blending (in other words, having a blending value of zero), resulting in those pixels having no effect on the resulting output frames that are displayed.
In one set embodiments, the user interface unit may fill non-active regions of the frame with pixels identified as being transparent, that is, pixels having an Alpha value of zero, and provide the entire frame to the blend unit including the fetched pixels. In other embodiments, the blend unit may only receive the fetched pixels from the interface unit, and treat areas outside the active region as if they included pixels having an Alpha value of zero. The registers within the interface unit may also be programmed with other information pertaining to the image frames, for example a base address and size of the frame, among others. The user interface unit may also have built in scalers. Scaling, or upscaling may include determining a color for a given output pixel based on a corresponding input pixel quad. More generally, the scalers may be upscalers that use a specified number of context pixels or source pixels to generate each output pixel. In some embodiments the upscaled pixels may be generated based on a bilinear scaling algorithm, and the source pixels may be in the form of a pixel quad, or 2×2 grid of pixels. In the absence of active regions, that is, when an entire frame is to be fetched, all the source pixels used in generating an output pixel are available to the scaler(s).
With active regions, however, pixels outside the active region are not fetched, and the non-fetched pixels may be assumed to have an Alpha value of ‘0’ (as mentioned above). Therefore, pixels at the edge of the active region may have some neighboring pixels outside the active region, and such pixels (considered transparent) may not provide accurate scaling. In one set of embodiments, when active regions are present, the scaler within the interface unit may identify a pixel grid for generating a given output pixel, and may further identify the non-fetched pixels (i.e. the pixels outside the active region) within the pixel grid. The scaler may then determine (desired) color values for the missing pixels based on the available pixels in the pixel grid (i.e. those pixels in the pixel grid that are within the active region), and use the determined color values to perform the scaling. A color determined by the scaler for the same pixel position within the non-active region may be different depending on the relative position of the missing pixel within the pixel grid (e.g. pixel quad) based on which a given pixel is generated. In other words, the same missing pixels may appear in different sets of context pixels (i.e. in different pixel grids), so the same pixel (position) within the non-active region may have different values assigned to it by the scaler depending on which pixel grid the inactive pixel appears in, even though it is the same inactive pixel.
In one set of embodiments, a bilinear upscaler in a user interface may use a 2×2 grid of source pixels to generate each output pixel. When using active regions, some source pixels may be inactive (i.e. not fetched), and the color (e.g. RGB) values for these pixels may be generated based on available active pixels for performing the scaling. That is, the other—available, i.e. active—pixels in the 2×2 grid may be used to generate the color values for the inactive pixels in the 2×2 grid. This may be applied to formats that don't feature pre-multiplied Alpha values. For example, the color values of inactive pre-multiplied source pixels may be specified to be zero (0). In addition, an inactive pixel's Alpha value may be specified to be zero, excluding pre-multiplied source pixels, which may have no Alpha values. In one embodiment, the color value for any given inactive pixel in a 2×2 grid (that is, the color value for any given pixel that is outside the active region and is included in the 2×2 grid) may be determined based on a specified set of rules. If both the vertically and horizontally adjacent pixels to the inactive pixel in the 2×2 grid are active, the inactive pixel's color values may be set to the average color values of the vertically and horizontally adjacent pixels. If only one of the adjacent pixels to the inactive pixel in the 2×2 grid is active, the inactive pixel's color values may be set to adjacent pixel's color values. If neither adjacent pixel to the inactive pixel in the 2×2 grid is active but the diagonal pixel to the inactive pixel is active, the inactive pixel's color values may be set to the diagonal pixel's color value. Finally, if there are no active pixels in the 2×2 grid, the color values of the inactive pixel may simply be set to zero (0).
The following detailed description makes reference to the accompanying drawings, which are now briefly described.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include”, “including”, and “includes” mean including, but not limited to.
Various units, circuits, or other components may be described as “configured to” perform a task or tasks. In such contexts, “configured to” is a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the unit/circuit/component can be configured to perform the task even when the unit/circuit/component is not currently on. In general, the circuitry that forms the structure corresponding to “configured to” may include hardware circuits and/or memory storing program instructions executable to implement the operation. The memory can include volatile memory such as static or dynamic random access memory and/or nonvolatile memory such as optical or magnetic disk storage, flash memory, programmable read-only memories, etc. Similarly, various units/circuits/components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase “configured to.” Reciting a unit/circuit/component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. §112, paragraph six interpretation for that unit/circuit/component.
As used herein, the term “adjacent” is used to denote a pixel's or pixels' relative position with respect to other pixels. A given pixel is said to be adjacent to another pixel if a side and/or a corner of the given pixel touches a side and/or a corner of the other pixel. Thus, for example, when all pixels have the same shape, and all pixels are aligned both horizontally and vertically, a pixel may be adjacent to at most eight other pixels. When all the pixels have the same shape, and are aligned horizontally but not vertically, or they are aligned vertically but not horizontally, a given pixel may be adjacent to at most a number of pixels different from eight (for example, the given pixel may be adjacent to at most 6 pixels), and so on and so forth.
Turning now to
SIU 106 may be an interconnect over which the memory controller 104, peripheral components NIC 110 and VPU 116, processor 114 (through L2 cache 112), L2 cache 112, and CDMA controller 124 may communicate. SIU 106 may implement any type of interconnect (e.g. a bus, a packet interface, point to point links, etc.). SIU 106 may be a hierarchy of interconnects, in some embodiments. CDMA controller 124 may be configured to perform DMA operations between memory 102 and/or various peripheral components 126-132. NIC 110 and VPU 116 may be coupled to SIU 106 directly and may perform their own data transfers to/from memory 102, as needed. NIC 110 and VPU 116 may include their own DMA controllers, for example. In other embodiments, NIC 110 and VPU 116 may also perform transfers through CDMA controller 124. Various embodiments may include any number of peripheral components coupled through the CDMA controller 124 and/or directly to the SIU 106. DCU 118 may include a display control unit (CLDC) 120 and buffers/registers 122. CLDC 120 may provide image/video data to a display, such as a liquid crystal display (LCD), for example. DCU 118 may receive the image/video data from VPU 116, which may obtain image/video frame information from memory 102 as required, to produce the image/video data for display, provided to DCU 118.
Processor 114 (and more particularly, instructions executed by processor 114) may program CDMA controller 124 to perform DMA operations. Various embodiments may program CDMA controller 124 in various ways. For example, DMA descriptors may be written to the memory 102, describing the DMA operations to be performed, and CDMA controller 124 may include registers that are programmable to locate the DMA descriptors in the memory 102. The DMA descriptors may include data indicating the source and target of the DMA operation, where the DMA operation transfers data from the source to the target. The size of the DMA transfer (e.g. number of bytes) may be indicated in the descriptor. Termination handling (e.g. interrupt the processor, write the descriptor to indicate termination, etc.) may be specified in the descriptor. Multiple descriptors may be created for a DMA channel, and the DMA operations described in the descriptors may be performed as specified. Alternatively, the CDMA controller 124 may include registers that are programmable to describe the DMA operations to be performed, and programming the CDMA controller 124 may include writing the registers.
Generally, a DMA operation may be a transfer of data from a source to a target that is performed by hardware separate from a processor that executes instructions. The hardware may be programmed using instructions executed by the processor, but the transfer itself is performed by the hardware independent of instruction execution in the processor. At least one of the source and target may be a memory. The memory may be the system memory (e.g. the memory 102), or may be an internal memory in the integrated circuit 103, in some embodiments. For example, a peripheral component 126-132 may include a memory that may be a source or target. In the illustrated embodiment, peripheral component 132 includes the ROM 142 that may be a source of a DMA operation. Some DMA operations may have memory as a source and a target (e.g. a first memory region in memory 102 may store the data to be transferred and a second memory region may be the target to which the data may be transferred). Such DMA operations may be referred to as “memory-to-memory” DMA operations or copy operations. Other DMA operations may have a peripheral component as a source or target. The peripheral component may be coupled to an external interface on which the DMA data is to be transferred or on which the DMA data is to be received. For example, peripheral components 130 and 132 may be coupled to interfaces onto which DMA data is to be transferred or on which the DMA data is to be received.
CDMA controller 124 may support multiple DMA channels. Each DMA channel may be programmable to perform a DMA via a descriptor, and the DMA operations on the DMA channels may proceed in parallel. Generally, a DMA channel may be a logical transfer path from a source to a target. Each channel may be logically independent of other DMA channels. That is, the transfer of data on one channel may not logically depend on the transfer of data on another channel. If two or more DMA channels are programmed with DMA operations, CDMA controller 124 may be configured to perform the transfers concurrently. For example, CDMA controller 124 may alternate reading portions of the data from the source of each DMA operation and writing the portions to the targets. CDMA controller 124 may transfer a cache block of data at a time, alternating channels between cache blocks, or may transfer other sizes such as a word (e.g. 4 bytes or 8 bytes) at a time and alternate between words. Any mechanism for supporting multiple DMA operations proceeding concurrently may be used.
CDMA controller 124 may include buffers to store data that is being transferred from a source to a destination, although the buffers may only be used for transitory storage. Thus, a DMA operation may include CDMA controller 124 reading data from the source and writing data to the destination. The data may thus flow through the CDMA controller 124 as part of the DMA operation. Particularly, DMA data for a DMA read from memory 124 may flow through memory controller 104, over SIU 106, through CDMA controller 124, to peripheral components 126-132, NIC 110, and VPU 116 (and possibly on the interface to which the peripheral component is coupled, if applicable). Data for a DMA write to memory may flow in the opposite direction. DMA read/write operations to internal memories may flow from peripheral components 126-132, NIC 110, and VPU 116 over SIU 106 as needed, through CDMA controller 124, to the other peripheral components (including NIC 110 and VPU 116) that may be involved in the DMA operation.
In one embodiment, instructions executed by the processor 114 may also communicate with one or more of peripheral components 126-132, NIC 110, VPU 116, and/or the various memories such as memory 102, or ROM 142 using read and/or write operations referred to as programmed input/output (PIO) operations. The PIO operations may have an address that is mapped by integrated circuit 103 to a peripheral component 126-132, NIC 110, or VPU 116 (and more particularly, to a register or other readable/writeable resource, such as ROM 142 or Registers 138 in the component, for example). It should also be noted, that while not explicitly shown in
In one embodiment, PIO operations may use the same interconnect as CDMA controller 124, and may flow through CDMA controller 124, for peripheral components that are coupled to CDMA controller 124. Thus, a PIO operation may be issued by processor 114 onto SIU 106 (through L2 cache 112, in this embodiment), to CDMA controller 124, and to the targeted peripheral component. Alternatively, the peripheral components 126-132 may be coupled to SIU 106 (much like NIC 110 and VPU 116) for PIO communications. PIO operations to peripheral components 126-132 may flow to the components directly from SIU 106 (i.e. not through CDMA controller 124) in one embodiment.
Generally, a peripheral component may comprise any desired circuitry to be included on integrated circuit 103 with the processor. A peripheral component may have a defined functionality and interface by which other components of integrated circuit 103 may communicate with the peripheral component. For example, a peripheral component such as VPU 116 may include video components such as a display pipe, which may include graphics processors, and a peripheral such as DCU 118 may include other video components such as display controller circuitry. NIC 110 may include networking components such as an Ethernet media access controller (MAC) or a wireless fidelity (WiFi) controller. Other peripherals may include audio components such as digital signal processors, mixers, etc., controllers to communicate on various interfaces such as universal serial bus (USB), peripheral component interconnect (PCI) or its variants such as PCI express (PCIe), serial peripheral interface (SPI), flash memory interface, etc.
As mentioned previously, one or more of the peripheral components 126-132, NIC 110 and VPU 116 may include registers (e.g. registers 138-140 as shown, but also registers, not shown, in NIC 110 and/or within VPU 116) that may be addressable via PIO operations. The registers may include configuration registers that configure programmable options of the peripheral components (e.g. programmable options for video and image processing in VPU 116), status registers that may be read to indicate status of the peripheral components, etc. Similarly, peripheral components may include memories such as ROM 142. ROMs may store data used by the peripheral that does not change, code to be executed by an embedded processor within the peripheral component 126-132, etc.
Memory controller 104 may be configured to receive memory requests from system interface unit 106. Memory controller 104 may be configured to access memory to complete the requests (writing received data to the memory for a write request, or providing data from memory 102 in response to a read request) using the interface defined the attached memory 102. Memory controller 104 may be configured to interface with any type of memory 102, such as dynamic random access memory (DRAM), synchronous DRAM (SDRAM), double data rate (DDR, DDR2, DDR3, etc.) SDRAM, Low Power DDR2 (LPDDR2) SDRAM, RAMBUS DRAM (RDRAM), static RAM (SRAM), etc. The memory may be arranged as multiple banks of memory, such as dual inline memory modules (DIMMs), single inline memory modules (SIMMs), etc. In one embodiment, one or more memory chips are attached to the integrated circuit 10 in a package on package (POP) or chip-on-chip (COC) configuration.
It is noted that other embodiments may include other combinations of components, including subsets or supersets of the components shown in
Turning now to
In one set of embodiments, UI 214 and 216 may include one or more registers programmable to define at least one active region per frame stored in buffers 208 and 210. Active regions may represent those regions within an image frame that contain pixels that are to be displayed, while pixels outside of the active region of the frame are not to be displayed. In order to reduce the number of accesses that may be required to fetch pixels from frame buffers 208 and 210, when fetching frames from memory 202 (more specifically from frame buffers 208 and 210), UI 214 and 216 may fetch only those pixels of any given frame that are within the active regions of the frame, as defined by the contents of the registers within UI 214 and 216. The pixels outside the active regions of the frame may be considered to have an Alpha value corresponding to a blend value of zero. In other words, pixels outside the active regions of a frame may automatically be treated as being transparent, or having an opacity of zero, thus having no effect on the resulting display frame. Consequently, the fetched pixels may be blended with pixels from other frames, and/or from processed video frame or frames provided by video pipe 220 to blend unit 218.
Turning now to
Display pipe 300 may be designed to fetch data from memory, process that data, then presents it to an external display controller through an asynchronous FIFO 320. The display controller may control the timing of the display through a Vertical Blanking Interval (VBI) signal that may be activated at the beginning of each vertical blanking interval. This signal may cause display pipe 300 to initialize (Restart) and start (Go) the processing for a frame (more specifically, for the pixels within the frame). Between initializing and starting, configuration parameters unique to that frame may be modified. Any parameters not modified may retain their value from the previous frame. As the pixels are processed and put into output FIFO 320, the display controller may issue signals (referred to as pop signals) to remove the pixels at the display controller's clock frequency (indicated as vclk in
In the embodiment shown in
The overall operation of blend unit 310 will now be described. Blend unit 310 may be situated at the backend of display pipe 300 as shown in
The sources to blend unit 310 (UI 304 and 326, and/or video pipe 328) may provide the pixel data and per-pixel Alpha values (which may be 8-bit and define the transparency for the given pixel) for an entire frame with width, display width, and height, display height, in pixels starting at a specified default pixel location, (e.g. 0,0). Blend unit 310 may functionally operate on a single layer at a time. The lowest level layer may be defined as the background color (BG, provided to blend element 314). Layer 1 may blend with layer 0 (at blend element 316). The next layer, layer 2, may blend with the output from blend element 316 (at blend element 318), and so on until all the layers are blended. For the sake of simplicity, only three blend elements 314-318 are shown, but display pipe 300 may include more or less blend elements depending on the desired number of processed layers. Each layer (starting with layer 1) may specify where its source comes from to ensure that any source may be programmatically selected to be on any layer. As mentioned above, as shown, blend unit 310 has three sources (UI 304 and 322, and video pipe 328) to be selected onto three layers (using blend elements 314-318). A CRC (cyclic redundancy check), or more generally, an error check may also be performed on the output of blend unit 310, or more specifically, on the output to be provided to FIFO 320. Blend unit 310 may also be put into a CRC only mode, in which case only a CRC is performed on the output pixels without the output pixels being provided to FIFO 320, and without sending the output pixels to the display controller.
Each source (UI 304 and 322, and video pipe 328) may provide a per pixel Alpha value. The Alpha values may be used to perform per-pixel blending, may be overridden with a static per-frame Alpha value (e.g. saturated Alpha), or may be combined with a static per-frame Alpha value (e.g. Dissolve Alpha). Any pixel locations outside of a source's valid region may not be used in the blending. The layer underneath it may show through as if that pixel location had an Alpha of zero. An Alpha of zero for a given pixel may indicate that the given pixel is invisible, and will not be displayed.
In one set of embodiments, valid source regions, referred to as active regions may be defined as the area within a frame that contains valid pixel data. Pixel data for an active region may be fetched from memory by UI 304 and 322, and stored within FIFOs 308 and 326, respectively, and subsequently scaled vertically (via VS units 307 and 327, respectively), and horizontally (via HS units 309 and 329, respectively), prior to being provided to blend unit 310. An active region may be specified by starting and ending (X,Y) offsets from an upper left corner (0,0) of the entire frame. The starting offsets may define the upper left corner of the active region, and the ending offsets may define the pixel location after the lower right corner of the active region. Any pixel at a location with coordinates greater than or equal to the starting offset and less than the ending offset may be considered to be in the valid region. Any number of active regions may be specified. For example, in one set of embodiments there may be up to four active regions defined within each frame and may be specified by region enable bits. The starting and ending offsets may be aligned to any pixel location. An entire frame containing the active regions may be sent to blend unit 310. Any pixels in the frame, but not in any active region would not be displayed, and may therefore not participate in the blending operation, as if the pixels outside of the active had an Alpha value of zero. In alternate embodiments, blend unit 310 may be designed to receive pixel data for only the active regions of the frame instead of receiving the entire frame, and automatically treat the areas within the frame for which it did not receive pixels as if it had received pixels having a blending value (Alpha value) of zero.
In one set of embodiments, one active region may be defined within UI 304 (in registers 319a-319n) and/or within UI 322 (in registers 321a-321n), and may be relocated within the display destination frame. Similar to how active regions within a frame may be defined, the frame may be defined by the pixel and addressing formats, but only one active region may be specified. This active region may be relocated within the destination frame by providing an X and Y pixel offset within that frame. The one active region and the destination position may be aligned to any pixel location. It should be noted that other embodiments may equally include a combination of multiple active regions being specified by storing information defining the multiple active regions in registers 319a-319n and in registers 321a-321n, and designating one or more of these active regions as active regions that may be relocated within the destination frame as described above. In some embodiments, UI units 304 and 322 may fetch image frame data in various formats, convert it to a specific color space format in which the blending may take place (e.g. RGBA—10-bit each sample), scale (e.g. up-scale) the frame, and stage the samples before being sent to blend unit 310 to be blended with other user interface planes and video data. For each UI (e.g. 304 and 322), a source frame in memory may be defined as a scale region inside of a source buffer using a base address, stride, and source width, height, and X/Y offset in pixels. To reduce memory bandwidth, a maximum number of active regions (pixel resolution) may be specified within the scale region—e.g. up to 4 active regions. Only the pixels within the active regions may be fetched, as previously indicated. This scale region may be possibly scaled, cropped, and/or extended to create a destination region that may be placed anywhere in the destination frame, specified by the pixel X/Y position.
Turning now to
The principles exemplified above may be further expressed as follows. As shown in
UI upscaling in both horizontal (X) and vertical (Y) directions may be provided for source scale region 401 (shown in
Output Pixel=Value[CurrPixel]*(1−CurrFrac)+Value[CurrPixel+1]*CurrFrac.
If CurrFrac is zero, then the Output Pixel is just the Value[CurrPixel]. The result of the scaling may be rounded and a 10-bit result provided to blend unit 310 (shown in
The DDA indicates the CurrPixel and NextPixel (CurrPixel+1) positions. These pixel positions may be within an active region (e.g. one of active regions 402, 420, 430, and 404 shown in
Various examples of possible pixel positions are shown in
As previously mentioned, the UI scalers may generate the output pixels based on specified pixel grids. In some embodiments, each pixel grid may include four pixels, forming a 2×2 grid, referred to as a pixel quad. Examples of pixel quads are shown in
In one embodiment, the color value for any given inactive pixel in a 2×2 grid may be assigned as follows. If both the vertically and horizontally adjacent pixels to the inactive pixel in the 2×2 grid are active, as exemplified by the 2×2 pixel grid that includes pixels 422, 424, 432 and 434, the inactive pixel's color value may be set to the average color value of the vertically and horizontally adjacent pixels. That is, in the example case, the color value of pixel 432 may be set to the average color value of pixels 422 and 434. If only one of the adjacent pixels in the 2×2 grid is active, as exemplified by the 2×2 pixel grid that includes pixels 422, 426, 428 and 432, the inactive pixel's color value may be set to the adjacent pixel's color value. That is, in the example case, the color value of pixel 428 may be set to the color value of pixel 426, and the color value of pixel 432 may be set to the color value of pixel 422. If neither adjacent pixel in the 2×2 grid is active but the diagonal pixel is active, as exemplified by the 2×2 pixel grid that includes pixels 408b, 444, 446 and 448, the inactive pixel's color values may be set to the diagonal pixel's color value. That is, in the example case, the color value of pixel 446 may be set to the color value of pixel 408b. According to the previous examples, the color value of pixel 444 may also be set to the color value of pixel 408b, and the color value of pixel 448 may also be set to the color value of pixel 408b. Finally, if there are no active pixels in the 2×2 grid, the color value of the inactive pixel may be set to zero (0). Alternate embodiments may use different combinations, while still assigning color values to the inactive pixels based on the color values of the active pixels within the pixel grid, and the scaler may subsequently determine an output pixel value from the pixel grid, in which all pixels now have a proper color value, as previously shown.
In one set of embodiments, the active regions in a frame may represent graphics overlay to appear on top of another image or a video stream. For example, the active regions may represent a static image superimposed atop a video stream. In some embodiments, active regions may more generally represent an overlay window that may be used to superimpose any desired information atop information presented in the background layer underneath. For example, display pipe 212 may include more than one video pipe similar to video pipe 220 (or 328, as shown in
In one set of embodiments, using fetch unit 330, video pipe 328 may fetch video frame data/information from memory through host master interface 302. The video frame data/information may be represented in a given color space, for example YCbCr color space. Video pipe 328 may insert random noise (dither) into the samples (dither unit 332), and scale that data in both vertical and horizontal directions (scalers 336 and 338) after buffering the data (buffers 334). In some embodiments, blend unit 310 may expect video (pixel) data to be represented in a different color space than the original color space (which, as indicated above, may be the YCbCr color space). In other words, blend unit 310 may operate in a second color space, e.g. in the RGB color space. Therefore, the video frame data may be converted from the first color space, in this case the YCbCr color space, to the second color space, in this case the RGB color space, by color space converter unit 340. It should be noted that while color space converter unit 340 is shown situated within video pipe 328, it may be situated anywhere between the output provided by video pipe 328 and the input provided to blend unit 310, as long as the data that is ready to be provided to blend unit 310 has been converted from the first color space to the second color space prior to the data being processed and/or operated upon by blend unit 310.
The converted data (that is, data that is represented in the second color space, in this case in the RGB color space) may then be buffered (FIFO 342), before being provided to blend unit 310 to be blended with other planes represented in the second color space, as previously discussed. During the process of converting data represented in the first color space into data represented in the second color space, there may be some colors represented in the first (i.e. the YCbCr) color space that cannot be represented in the second (i.e. RGB) color space. For example, the conversion may yield an R, G, or B component value of greater than 1 or less than 0. Displaying videos on certain display devices may therefore yield different visual results than desired and/or expected. Therefore, in at least one set of embodiments, blend unit 310 may be designed to perform blending operations using the converted pixel values even when the converted pixel values do not represent valid pixel values in the second color space. For example, if the second color space (or the operating color space of blend unit 310) is the RGB color space, blend unit 310 may allow RGB values as high as +4 and as low as −4. Of course these values may be different, and may also depend on what the original color space is. While these values may not represent valid pixel values in the second (i.e. RGB) color space, they can be converted back to the correct values in the first (i.e. the YCbCr) color space. Accordingly, the color information from the original (YCbCr) color space may be maintained through video pipe 328, and may be displayed properly on all display devices that display the video frames.
Thus, before displaying the blended pixels output by blend element 318, the blended pixels may be converted from the second color space (i.e. RGB in this case) to the original video color space (i.e. the YCbCr color space in this case) through color space conversion unit 341. As was the case with video pipe 328, while color space conversion unit 341 is shown situated within blend unit 310 and between blend element 318 and FIFO 320, in alternate embodiments the color space conversion may be performed on the display controller side, prior to being provided to the display, and various other embodiments are not meant to be limited by the embodiment shown in
In one set of embodiments, a parameter FIFO 352 may be used to store programming information for registers 319a-319n, 321a-321n, 317a-317n, and 323a-323n. Parameter FIFO 352 may be filled with this programming information by control logic 344, which may obtain the programming information from memory through host master interface 302. In some embodiments, parameter FIFO 352 may also be filled with the programming information through an advanced high-performance bus (AHB) via host slave interface 303.
Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
5719594 | Potu | Feb 1998 | A |
5914725 | MacInnis et al. | Jun 1999 | A |
5966116 | Wakeland | Oct 1999 | A |
6108047 | Chen | Aug 2000 | A |
6226017 | Goossen et al. | May 2001 | B1 |
7034791 | Odom | Apr 2006 | B1 |
7489317 | Tuomi et al. | Feb 2009 | B2 |
7489320 | Rai et al. | Feb 2009 | B2 |
7567259 | Winger | Jul 2009 | B2 |
7633555 | Yang et al. | Dec 2009 | B2 |
20030126182 | Wyatt | Jul 2003 | A1 |
20040001071 | Noyle | Jan 2004 | A1 |
20050094899 | Kim et al. | May 2005 | A1 |
20060050089 | Soroushi | Mar 2006 | A1 |
20060282855 | Margulis | Dec 2006 | A1 |
20080001967 | Rengarajan et al. | Jan 2008 | A1 |
20080231755 | Suba | Sep 2008 | A1 |
20090097743 | Quan | Apr 2009 | A1 |
20090123089 | Karlov et al. | May 2009 | A1 |
20090201306 | Dyke | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120127193 A1 | May 2012 | US |