User interface system

Information

  • Patent Grant
  • 9626059
  • Patent Number
    9,626,059
  • Date Filed
    Tuesday, January 26, 2016
    9 years ago
  • Date Issued
    Tuesday, April 18, 2017
    8 years ago
Abstract
The user interface system of the preferred embodiment includes: a layer defining a surface, a substrate supporting the layer and at least partially defining a cavity, a displacement device coupled to the cavity and adapted to expand the cavity thereby deforming a particular region of the surface, a touch sensor coupled to the substrate and adapted to sense a user touch proximate the particular region of the surface, and a display coupled to the substrate and adapted to output images to the user. The user interface system of the preferred embodiments has been specifically designed to be incorporated into an electronic device, such as the display of a mobile phone, but may be incorporated in any suitable device that interfaces with a user in both a visual and tactile manner.
Description
TECHNICAL FIELD

This invention relates generally to touch sensitive displays. More particularly, this invention relates to systems and methods for selectively raising portions of touch sensitive displays.


BACKGROUND

Touch sensitive displays, e.g., touch screens, are very useful in applications where a user can input commands and data directly on a display. Common applications for touch screens include consumer products such as cellular telephones and user interfaces for industrial process control. Depending on their specific applications, these touch sensitive displays are commonly used in devices ranging from small handheld PDAs, to medium sized tablet computers, to large pieces of industrial equipment.


It is often convenient to be able to input and output data to and from the user on the same display. Unlike a dedicated input device such as a keypad with discrete well-defined keys, most touch sensitive displays are generally flat. As a result, touch sensitive screens do not provide any tactile guidance for one or more control “buttons”. Instead, touch sensitive displays rely on visual guidance for user input.


Hence a serious drawback of touch sensitive displays is its inherent difficulty to input data accurately because adjacent buttons are not distinguishable by feel. Wrongly entered key strokes are common and the user is forced to keep his or her eyes on the display. The importance of tactile guidance is readily apparent in the competition between the Apple iPhone and the BlackBerry 8800. With a limited size, the mobile phones prior to this invention could include either a large screen or tactile buttons. With this invention, mobile phones and other suitable electronic devices can include both.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a top view of the user interface system of a preferred embodiment.



FIG. 2 is a cross-sectional view illustrating the operation of a button array in accordance to the preferred embodiments.



FIGS. 3a and 3b are cross-sectional views of the layer, the substrate, the cavity, the touch sensor, and the display of the preferred embodiments, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 4a and 4b are cross-sectional views of the touch sensor located above the substrate, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 5a and 5b are cross-sectional views of the layer and the substrate combined as a singular structure, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 6a and 6b are cross-sectional views of a support member between the layer and the substrate, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIG. 6c is a top view of the support member.



FIG. 6d is a cross-sectional view of an alternative support member that partially defines the cavity.



FIGS. 7a and 7b are cross-sectional views of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device that modifies the existing fluid in the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIG. 8 is a schematic view of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device of a first example that displaces additional fluid into the cavity.



FIG. 9 is a schematic view of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device of a second example that displaces additional fluid into the cavity.



FIGS. 10a and 10b are schematic views of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device of a third example that displaces additional fluid into and out of the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 11, 12, 13, 14, and 15 are top and side views of a button deformation, a slider deformation, a slider ring deformation, a guide deformation, and a pointing stick deformation, respectively.



FIG. 16 is a flow chart of the different operation modes of the preferred embodiments.



FIG. 17 is a schematic of the different input graphics, different cavity settings, and different user touches of the preferred embodiments.



FIGS. 18a and 18b are schematic views of the cavity and the second cavity connected to a single displacement device, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 19a and 19b are schematic views of the cavity and the second cavity connected to a separate displacement devices, with the cavity in a retracted volume setting and an expanded volume setting, respectively.



FIGS. 20a, 20b, and 20c are schematic views of the cavity and the second cavity connected to a linear actuator, with the cavity in the expanded volume setting and the second cavity in the retracted volume setting, the cavity and the second cavity in the retracted volume setting, and the cavity in the retracted volume setting and the second cavity in the expanded volume setting, respectively.



FIG. 21a is a schematic view of a first cavity array arranged in a dial pad and a second cavity array arranged in a QWERTY keyboard on the same device.



FIGS. 21b and 21c are schematic views of the display of a dial pad aligned with the first cavity array and a QWERTY keyboard aligned with the second cavity array, respectively.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


As shown in FIGS. 1 and 2, the user interface system 100 of the preferred embodiment includes: a layer 110 defining a surface 115, a substrate 120 supporting the layer 110 and at least partially defining a cavity 125, a displacement device 130 coupled to the cavity 125 and adapted to expand the cavity 125 thereby deforming a particular region of the surface 115, a touch sensor 140 coupled to the substrate 120 and adapted to sense a user touch proximate the particular region of the surface 115, and a display 150 coupled to the substrate 120 and adapted to output images to the user.


The user interface system 100 of the preferred embodiments has been specifically designed to be incorporated into an electronic device, such as the display of an automotive console, a desktop computer, a laptop computer, a tablet computer, a television, a radio, a desk phone, a mobile phone, a PDA, a personal navigation device, a personal media player, a camera, or a watch. The user interface system may, however, be incorporated in any suitable device that interfaces with a user in both a visual and tactile manner.


1. The Layer and Substrate

As shown in FIG. 2, the layer 110 of the preferred embodiment functions to provide the surface 115 that interfaces with a user in a tactile manner. The surface 115 is preferably continuous, such that when swiping a finger across the surface 115 a user would not feel any interruptions or seams. The surface 115 is also preferably planar. The surface 115 is preferably arranged in a flat plane, but may alternatively be arranged in a curved plane. The layer 110 also functions to deform upon an expansion of the cavity 125, and to preferably “relaxes” or “un-deforms” back to a normal planar state upon retraction of the cavity 125. The layer no is preferably elastic. In one version, the layer 110 is relatively more elastic in specific areas and relatively less elastic in other areas and is deformed in the relatively more elastic areas. In another version, the layer 110 is generally uniformly elastic. In yet another version, the layer no includes or is made of a smart material, such as Nickel Titanium (commonly referred to as “Nitinol”), that has a selective and/or variable elasticity. The layer no is preferably optically transparent, but may alternatively be translucent or opaque. In addition to the transparency, the layer no preferably has the following properties: a high transmission, a low haze, a wide viewing angle, a minimal amount of back reflectance upon the display 150 (if the display 150 is coupled with the user interface), scratch resistant, chemical resistant, stain resistant, and relatively smooth (not tacky) to the touch. The layer 110 is preferably made from a suitable elastic material, including polymers and silicon-based elastomers such as poly-dimethylsiloxane (PDMS) or RTV Silicon (e.g., RTV Silicon 615). The layer 110 may, however, be made of any suitable material that provides the surface 115 and that deforms. In one version, the layer 110 is a single homogeneous layer less than 1 mm thick (preferably 50 to 200 microns). In another version, the layer 110 may be constructed using multiple layers or coatings from the same material or from different suitable materials.


The substrate 120 of the preferred embodiments functions to support the layer 110 and to at least partially define the cavity 125. In one version, as shown in FIGS. 6A and 6B, the layer 110 is directly attached to an attachment face 170 of the substrate 120 using an adhesive, ultra-sonic bonding, oxygen plasma surface treatment, or any other suitable techniques known to one skilled in the art. The substrate 120 and the layer 110, in this version, cooperatively define the cavity 125 (with the substrate 120 defining a “container” and the layer 110 defining a “membrane” over the “container”). In another version, as shown in FIGS. 4a and 4b, the layer 110 is indirectly attached to the substrate 120 with another element, such as the touch sensor 140 and/or the display 150 located between the layer 110 and the substrate 120. The substrate 120 and the intervening element define the cavity 125 in this version. In yet another version, as shown in FIGS. 5a and 5b, the layer 110 and the substrate 120 are formed as a singular structure, which fully defines the cavity 125. In yet one more version, as shown in FIGS. 6A and 6B, the substrate 120 may include a lattice-like support member 160 under the particular region of the surface 115. Also as shown in FIGS. 6A and 6B, the attachment face 170 and the support member are preferably continuous. When the cavity 125 is expanded and the deformation is present in the surface 115, the support member 160 functions to prevent a user from “pressing too far” into the deformation below the plane of the surface 115. When the cavity 125 is not expanded and the deformation is not present in the surface 115, the support member 160 functions to reduce (or potentially eliminate) the user from feeling “divots” in the surface 115 when swiping a finger across the surface 115. As shown in FIG. 6c, the support member 160 preferably includes holes or channels that allow for the expansion of the cavity 125 and the deformation of the surface 115. As shown in FIGS. 6A and 6B, the holes or channels through the support member 160 may be substantially normal to the attachment face 170. The support member 160 is preferably integrally formed with the substrate 120, but may alternatively be formed with the layer 110 or may be separately formed and later attached to the substrate 120. Finally, as shown in FIG. 6d, the support member 160 may alternatively partially define the cavity 125. The substrate 120 is preferably rigid, but may alternatively be flexible in one or more directions. The substrate 120—if located above the display 150—is preferably optically transparent, but may—if located below the display 150 or if bundled without a display 150—be translucent or opaque. The substrate 120 is preferably made from a material including polymers or glass for example, elastomers, silicon-based organic polymers such as poly-dimethylsiloxane (PDMS), thermoset plastics such as polymethyl methacrylate (PMMA), and photocurable solvent resistant elastomers such as perfluropolyethers. The substrate 120 may, however, be made of any suitable material that supports the layer 110 and at least partially defines the cavity 125. In the preferred version, the substrate 120 is a single homogenous layer approximately 1 mm to 0.1 mm thick and can be manufactured using well-known techniques for micro-fluid arrays to create one or more cavities and/or micro channels. In alternative versions, the substrate 120 may be constructed using multiple layers from the same material or from different suitable materials.


As shown in FIGS. 3a and 3b, the cavity 125 of the preferred embodiment functions to hold a fluid and to have at least two volumetric settings: a retracted volume setting (shown in FIG. 3a) and an extended volume setting (shown in FIG. 3b). The fluid is preferably a liquid (such as water, glycerin, or ethylene glycol), but may alternatively be a gas (such as air, nitrogen, or argon) or any other substance (such as a gel or aerogel) that expands the cavity 125 and deforms the surface 115. In the extended volume setting, the cavity 125 extends above the plane of the surface 115, thereby deforming a particular region of the surface 115. As explained above, the cavity 125 is preferably defined by the substrate 120 and the layer 110 (or an intervening element), or by the substrate 120 and layer 110 as a singular structure. In one version, as shown in FIGS. 6a and 6b and as further explained below, the cavity 125 does not have any fluidic connection to any other elements of the user interface system 100. The displacement device 130, in this version, may be located within or adjacent to the cavity 125. In another version, the cavity 125 includes a fluidic connection via a channel to a (remotely located) displacement device 130. In both cases, the cavity 125 can be considered an “enclosed cavity” since the cavity 125 is preferably fluid tight (except for any fluidic connections to the displacement device 130). When used with a mobile phone device, the cavity 125 preferably has a diameter of 2-10 mm. When used with this or other applications, however, the cavity 125 may have any suitable dimension.


2. The Displacement Device

The displacement device 130 of the preferred embodiment functions to modify the volume of the fluid thereby expanding the cavity 125 from the retracted volume setting to the extended volume setting and, ultimately, deforming a particular region of the surface 115. The displacement device 130 preferably modifies the volume of the fluid by (1) modifying the volume of the existing fluid in the cavity 125, or (2) adding and removing fluid to and from the cavity 125. The displacement device 130 may, however, modify the volume of the fluid by any suitable device or method. Modifying the volume of the existing fluid in the cavity 125 most likely has an advantage of lesser complexity, while adding and removing fluid to and from the cavity 125 most likely has an advantage of maintaining the deformation of the surface 115 without the need for additional energy (if valves or other lockable mechanisms are used). When used with a mobile phone device, the displacement device 130 preferably increases the volume of the fluid within the cavity 125 by approximately 0.003-0.1 ml. When used with this or other applications, however, the volume of the fluid may be increased (or possibly decreased) by any suitable amount.


Modifying the existing fluid in the cavity 125 may be accomplished in several ways. In a first example, as shown in FIGS. 7a and 7b, the fluid may be an expandable fluid and the displacement device 130 may include a heating element that heats the expandable fluid, thereby expanding the volume of the existing fluid in the cavity 125 (according to the ideal gas law, PV=nRT). The heating element, which may be located within or adjacent the cavity 125, is preferably a resistive heater (made of a material such as TaN or Nichrome). In a second example, the fluid may include an expandable substance, such as plastic expandable microspheres. In a third example, the fluid may include paraffin. While these are three examples, the displacement device 130 can be any other suitable device or method that ultimately expands the cavity 125 from the retracted volume setting to the extended volume setting by modifying the existing fluid in the cavity 125.


Adding and removing fluid to and from the cavity 125 may also be accomplished in several ways. In a first example, as shown in FIG. 8, the displacement device 130 includes a reservoir 132 to hold additional fluid and a pump 134 to displace fluid from the reservoir 132 to the cavity 125. The reservoir 132 is preferably remote from the cavity 125 (and connected by a channel 138 or other suitable device), but may alternatively be located adjacent the cavity 125 and connected directly to the cavity 125. A portion of the channel 138 is preferably a micro-fluidic channel (having cross-section dimensions in the range of 1 micrometer to 1000 micrometers), but depending on the size and costs constraints of the user interface system 100, the channel 138 may have any suitable dimensions. The pump 134 is preferably a micro-pump pump (such as pump #MDP2205 from ThinXXs Microtechnology AG of Zweibrucken, Germany or pump #mp5 from Bartels Mikrotechnik GmbH of Dortmund, Germany), but may be any suitable device to pump fluid from one location to another. The pump 134 is preferably located at a distance from the cavity 125, and is preferably connected to the cavity 125 by a channel 138. To extend the cavity 125 from a retracted volume setting to the extended volume setting, the pump 134 displaces fluid from a reservoir 132, through the channel 138, and into the cavity 125. To retract the cavity 125 from the extended volume setting to the retracted volume setting, the pump 134 preferably “vents” or pumps in a reverse direction from the cavity 125 to the reservoir 132. In a second example, as shown in FIG. 9, the displacement device 130 includes a reservoir 132 to hold additional fluid, a first pump 134 to displace fluid from the reservoir 132 to the cavity 125, a second pump 136 to displace fluid from the cavity 125 to the reservoir 132, a first valve located between the first pump 134 and the cavity 125, and a second valve located between the cavity 125 and the second pump 136. To extend the cavity 125 from the retracted volume setting to the extended volume setting, the first valve is opened, the second valve is closed, and the first pump 134 displaces fluid from the reservoir 132, through the channel 138, and into the cavity 125. To retract the cavity 125 from the extended position to the retracted position, the first valve is closed, the second valve is opened, and the second pump 136 displaces fluid from the cavity 125, through the channel 138, and into the reservoir 132. In other respects, the second example is similar to the first example above. The user interface system 100 may omit the second pump 136 and simply retract the cavity 125 from the extended volume setting to the retracted volume setting by opening the second valve and allowing the cavity 125 to vent or “drain” into the reservoir 132 (potentially assisted by the elasticity of the layer 110 returning to an un-deformed state). In a third example, as shown in FIGS. 10a and 10b, the displacement device 130 includes an actuator, such as a linear actuator, that displaces fluid into and out of the cavity 125. To extend the cavity 125 from a retracted volume setting to the extended volume setting, as shown in FIG. 10a, the linear actuator displaces fluid through the channel 138 and into the cavity 125. To retract the cavity 125 from the extended volume setting to the retracted volume setting, as shown in FIG. 10b, the linear actuator draws fluid in a reverse direction from the cavity 125 to the reservoir 132. In other respects, the third example is similar to the second example above. While these are three examples, the displacement device 130 can be any other suitable device or method that ultimately expands the cavity 125 from the retracted volume setting to the extended volume setting by adding and removing fluid to and from the cavity 125.


Although the cause of the deformation of a particular region of the surface 115 has been described as a modification of the volume of the fluid in the cavity 125, it is possible to describe the cause of the deformation as an increase in the pressure below the surface 115 relative to the pressure above the surface 115. When used with a mobile phone device, an increase of approximately 0.1-10.0 psi between the pressure below the layer 110 relative to the pressure above the layer 110, is preferably enough to deform a particular region of the surface 115. When used with this or other applications, however, the modification of the pressure may be increased (or possibly decreased) by any suitable amount.


The deformation of the surface 115 functions to provide a tactile feedback that signals the location of the particular region of the surface 115. When used in conjunction with an input graphic on the display 150, the deformation of the surface 115 preferably signals the location of an input on the touch sensor 140. The deformation preferably acts as (1) a button that can be pressed by the user and that signals the location of a single input on the touch sensor 140 under the button, (2) a slider that can be pressed by the user and that signals the location of multiple inputs on the touch sensor 140 under the slider, (3) a guide that signals the location of multiple inputs on the touch sensor 140 adjacent the guide, and (4) a pointing stick that signals the location of multiple inputs on the touch sensor 140 under and adjacent the pointing stick. The deformation may, however, act as any other suitable device or method that signals the location of a particular region of the surface 115. The button, as shown in FIG. 11, preferably has a dome-like shape, but may alternatively have a cylindrical-like shape (with a flat top surface), a pyramid-like shape, a cube-like shape (with a flat top), or any other suitable button shape. The touch sensor 140 preferably recognizes any user touch 145 into the button as a user input. The slider, as shown in FIGS. 12 and 13, preferably has a ridge like shape (shown in FIG. 12), but may alternatively have a ring like shape (shown in FIG. 13), a plus-like shape, or any other suitable slider shape. The touch sensor 140 preferably recognizes user touches 145 at different locations into the slider and distinguishes these user touches as different user inputs. As an example, the slider with the ring like shape may act like the “click wheel” of the Apple iPod (second generation). The guide, as shown in FIG. 14, preferably has a double ridge shape or a double ring shape. Unlike the button and the slider, which are meant to be pressed by the user, the guide is meant to signal the location next to the area meant to be pressed by the user. The touch sensor 140 preferably recognizes user touches 145 at different locations between the two ridges and distinguishes these user touches as different user inputs. In another version, the guide may omit the second ridge. The pointing stick, like the button, preferably has a dome-like shape, as shown in FIG. 15, but may alternatively have a cylindrical-like shape (with a flat top surface), a pyramid-like shape, a cube-like shape (with a flat top), or any other suitable button shape. The pointing stick is meant to signal the location under and adjacent the area meant to be pressed by the user. The touch sensor 140 preferably recognizes user touches 145 at different locations under and around the pointing stick and distinguishes these user touches as different user inputs. As an example, the point stick may act like the pointing stick trademarked by IBM as the TRACKPOINT and by Synaptics as the TOUCHSTYK (which are both informally known as the “nipple”).


3. The Touch Sensor and the Display

The touch sensor 140 of the preferred embodiments functions to sense a user touch proximate the particular region of the surface 115. The touch sensor 140 is preferably located under the substrate 120 (as shown in FIGS. 3a and 3b), but may alternatively be located above the substrate 120 (as shown in FIGS. 4a and 4b). If located above the substrate 120, in addition to sensing a user touch, the touch sensor 140 also functions to deform upon an expansion of the cavity 125 and therefore the touch sensor 140 preferably has elastic properties similar to the layer 110. As a variation of this version, the touch sensor 140 may act as the layer 110 to partially define the cavity 125. The touch sensor 140 preferably senses a user touch in a continuous or multiple step manner. For example, the touch sensor 140 preferably distinguishes a resting user touch (that does not significantly modify the deformation of the surface 115), a gentle user touch (that partially pushes the surface 115 back to the normal, unexpanded plane of the surface 115), and a hard user touch (that completely pushes the surface 115 back to the normal, unexpanded plane of the surface 115). In other words, the touch sensor 140 preferably senses different “heights” of the deformation. The touch sensor 140 may, however, simply sense a user touch in a binary manner (“on” or “off”). In one example, the touch sensor 140 is preferably a conventional capacitance-based touch sensor, such as the touch panel sold by Synaptics under the trademark CLEARPAD, but may be any suitable device that senses a user touch. The capacitance-based touch sensor preferably senses a user touch based on the change in capacitance between two locations within or near the cavity 125. In another example, the touch sensor 140 is a pressure sensor either located in or coupled to the cavity 125. The pressure sensor preferably senses a user touch based on a change in the pressure within the cavity 125 caused by a user touch on the deformation of the surface 115. In yet another example, the touch sensor 140 is integrated with the displacement device 130 to sense either a fluid displacement or a pressure change caused by a user touch on the deformation of the surface 115. While these are three examples, the touch sensor 140 can be any other suitable device or method that senses a user touch proximate the deformation of the surface 115.


The display 150 of the preferred embodiments functions to interface with a user in a visual manner. The display 150 is preferably a conventional liquid crystal display (LCD), but may alternatively any suitable device that displays an output. In one version, as shown in FIGS. 3a and 3b, the display 150 is located under the substrate 120. In another version, the touch sensor 140 and the display 150 may be integrated as a single structure that both senses a user input and displays an output. For example, an LCD with embedded optical sensors both touch screen and scanner functions was announced in a 2007 press release by Sharp Electronics of Japan. This combined touch sensor/display—if flexible—may be located above the substrate 120, and—if not flexible—may be located below the substrate 120. If the display 150 is located below the substrate 120 and the fluid, then the substrate 120 and the fluid are preferably transparent and are preferably chosen to have substantially similar (if not identical) refractive indexes. An example of a substrate 120 and fluid that have substantially similar refractive indexes include: PMMA (which has an index of refraction of 1.489) and the Cargille Laboratories Series A fluids (which cover the range of 1.460-1.640) or a mixture of Diethyl Phthalate and water. When used in mobile phones, “substantially similar” in this context preferably means +/−0.1 relative to each other. When used in this and other applications, “substantially similar” may alternatively mean similar enough to prevent viewing distortions of the display 150. The display 150 preferably outputs several different visual outputs. One of the outputs is preferably an input graphic that is aligned with the particular region of the surface 115 that can be deformed by the cavity 125 in the extended volume setting. Examples of suitable input graphics include individual letters of a QWERTY keyboard, individual numbers in a dial pad, and different locations on a map.


4. The Processor

The user interface system 100 of the preferred embodiment also includes a processor, which is coupled to the displacement device 130 and to the touch sensor 140. As shown in FIG. 16, the processor functions to operate the user interface system 100 in an Extended Cavity Mode and a Retracted Cavity Mode. In the Extended Cavity Mode, if the particular region of the surface 115 is deformed, then a user touch that further significantly deforms the particular region of the surface 115 is preferably recognized as a user input of a first type. A user touch that does not significantly deform the particular region of the surface 115, such as the touch of a user resting their fingers on the deformation, is preferably not recognized as a user input of the first type (and is preferably ignored). In this manner, the deformation of the surface 115 additionally functions to distance the user touch from the touch sensor 140 and to allow the user to rest their fingers on the deformation (the location of an input) without actuating the input. The question of whether a user has significantly or not significantly deformed the particular region of the surface 115 may be set or modified by the manufacturer, by the processor, or by the user. In the Retracted Cavity Mode, if the particular region of the surface 115 is not deformed, then a user touch at the particular region in the surface 115 is preferably not recognized as a user input of the first type, but rather is recognized as a user input of a second type that is distinguishable from a user input of the first type.


The processor may also function to automatically alter the settings of the user interface system 100. In a first example, in extremely low temperatures, it may be impossible for the displacement device 130 to modify the volume of the fluid to expand the cavity 125 and deform the surface 115. The processor may be coupled to a temperature sensor and may disable the displacement device 130 under such conditions. In a second example, in high altitude conditions (or in an airplane with reduced air pressure), it may be impossible for the displacement device 130 to modify the volume of the fluid to retract the cavity 125. The processor may be coupled to a pressure sensor and may either disable the displacement device 130 (or close particular valves), or may simply adjust the volume of the fluid that is modified under such conditions.


As shown in FIG. 17, the processor may also be coupled to the display 150 such that different input graphics may be displayed under the same deformation of the surface 115, and different inputs may be recognized. As an example, when the cavity 125 is in the extended volume setting, the display 150 may include an input graphic of a first type (such as a letter) and the user input on the deformation would be of a first type (such as a letter), and the display 150 may include an input graphic of a second type (such as a number) and the user input on the deformation would be of a second type (such as a number). When the cavity 125 is in the retracted volume setting, the display 150 may further include an input graphic of a third type (such as an “enter” or “accept” input), and the user input on the touch sensor 140 would be of a third type (such as an “enter” or “accept” input).


The processor may also function to alter the output of the display 150 to correct or adjust for any optical distortion caused by the deformation in the surface 115. It is envisioned that, in certain applications, the size of the deformation may cause a “fish eye” effect when viewing the display 150. The processor, preferably through empirical data, may adjust the output to help correct for this distortion.


The processor preferably includes a separate and remote controller for the displacement device 130, a separate and remote controller for the touch sensor 140, and a separate and remote controller for the display 150. The processor may, however, integrally include a controller for one or more of these elements.


5. Second Cavity

As shown in FIGS. 1 and 2, the user interface system 100 of the preferred embodiment also includes a second cavity 225. The additional cavities, except as detailed below, are preferably identical to the cavity 125. In one version, as shown in FIGS. 18a and 18b, the displacement device 130 is connected to both the cavity 125 and the second cavity 225 and is adapted to expand the cavity 125 and the second cavity 225 together, acting together as an array, thereby deforming more than one region of the surface 115 at the same time. In a second version, the user interface system 100 includes a valve located between the displacement device 130 and the cavity 125 and another valve located between the displacement device 130 and the second cavity 225 to selectively control the fluid flow into the cavity 125 and into the second cavity 225, respectively. In a third version, as shown in FIGS. 19a and 19b, the user interface system 100 includes a second displacement device 230 connected to the second cavity 225, which functions to expand the second cavity 225 and thereby deforming a second region of the surface 115. The second displacement device 230 is otherwise similar or identical to the displacement device 130. By separately controlling the displacement device 130 and the second displacement device 230, the cavity 125 and the second cavity 225 may be expanded independently. In a fourth version, as shown in FIGS. 20a, 20b, and 20c, the displacement device 130 is a linear actuator that can either expand the cavity 125 and retract the second cavity 225 (shown in FIG. 20a), retract the cavity 125 and the second cavity 225 (shown in FIG. 20b), or retract the cavity 125 and expand the second cavity 225 (shown in FIG. 20c). This arrangement may be particularly useful in large arrays of cavities, as shown in FIG. 21a, where the cavities aligned with a dial pad can be expanded (as shown in FIG. 21b) or the cavities aligned with a QWERTY keyboard can be expanded (as shown in FIG. 21c).


6. Power Source

The user interface system 100 of the preferred embodiments also includes either a power source or a power harnessing device, which both function to power the displacement device 130 (and possibly other elements of the user interface system, such as the touch sensor 140 and/or the display 150). The power source is preferably a conventional battery, but may be any suitable device or method that provides power to the displacement device 130. The power-harnessing device, which is preferably integrated into the hinge of a flip phone or laptop, functions to harness a portion of the energy involved in the normal use of the electronic device (such as the opening of a flip phone or the screen on a laptop). The power-harnessing device may alternatively be integrated in a separate mechanical input device (such as a button on the side of a mobile phone, or a “self-winding” device found in automatic watches) or any other suitable device or method to harness a portion of the energy involved in the normal use of the electronic device.


7. Alternative Embodiments

The user interface system of an alternative embodiment of the invention omits the display 150. The user interface system of the alternative embodiment is otherwise similar or identical to the user interface system 100 of the preferred embodiment. The user interface system of the alternative embodiment can be incorporated into electronic devices that do not typically include a display, such as peripheral for an electronic device. Suitable peripherals include a mouse, a trackpad, a keyboard, and a remote control. These peripherals are often used only by touch, and not by sight. The user interface system may, however, be incorporated in any suitable device.


As a person skilled in the art of user interfaces will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A user interface comprising: a substrate comprising an attachment face defining a planar attachment surface and a support member continuous with the attachment face, the support member defining a first fluid channel and a second fluid channel laterally adjacent the first fluid channel, the first fluid channel and the second fluid channel configured to communicate fluid through the support member into a cavity;a tactile layer defining a tactile surface, a peripheral region, and a deformable region adjacent the peripheral region, the peripheral region coupled to the attachment face proximal a periphery of the support member, the deformable region aligned with the support member, disconnected from the support member, and cooperating with the support member to define the cavity, a portion of the tactile layer of a thickness greater than a width dimension of the first fluid channel, and the support member configured to support the deformable region against inward deformation past flush with the attachment surface into the first fluid channel and the second fluid channel;a displacement device configured to displace fluid into the cavity via the first fluid channel and the second fluid channel to transition the deformable region from a retracted setting to an expanded setting tactilely distinguishable from the retracted setting at the tactile surface;a sensor coupled to the substrate and configured to detect an input at the tactile surface; anda processor coupled to the sensor and configured to interpret a touch on the tactile surface of the deformable region as: a first input type when the deformable region is in the retracted setting; anda second input type, different from the first input type, when the deformable region is in the expanded setting.
  • 2. The user interface of claim 1, wherein the attachment face and the support member define a continuous curved surface.
  • 3. The user interface of claim 1, wherein the attachment face and the support member are planar.
  • 4. The user interface of claim 1, wherein the deformable and peripheral regions of the tactile layer are adjacent and of substantially similar thicknesses.
  • 5. The user interface of claim 1, wherein the tactile surface of the deformable region is flush with the tactile surface of the peripheral region in the retracted setting.
  • 6. The user interface of claim 5, wherein, in the expanded setting, the tactile surface of the deformable region is elevated above a portion of the tactile surface of the peripheral region.
  • 7. The user interface of claim 6, wherein, in the expanded setting, the tactile surface of the deformable region defines a slider.
  • 8. The user interface of claim 1, wherein, in the retracted setting, the deformable region is in contact with the support member.
  • 9. The user interface of claim 8, wherein, in the expanded setting, the deformable region is lifted off of the support member.
  • 10. The user interface of claim 1, wherein the first fluid channel defines a circular cross-section and passes through the support member, the fluid channel substantially normal to the attachment face.
  • 11. The user interface of claim 1, further comprising a reservoir coupled to the displacement device and configured to contain fluid.
  • 12. The user interface of claim 1, further comprising a valve arranged between the fluid channel and the displacement device.
  • 13. The user interface of claim 1, wherein the sensor is a capacitive touch sensor.
  • 14. The user interface of claim 1, wherein the tactile layer comprises a substantially transparent material, wherein the substrate comprises a substantially transparent material, and further comprising a display coupled to the substrate and configured to visually output an image through the tactile surface.
  • 15. The user interface of claim 14, wherein the display is configured to output the image comprising an image of an input key substantially aligned with the deformable region.
  • 16. The user interface of claim 1, wherein the substrate further defines a fluid conduit fluidly coupled to the first fluid channel and to the second fluid channel, the fluid conduit configured to communicate fluid between the displacement device and the cavity via the first fluid channel and the second fluid channel.
  • 17. The user interface of claim 1, wherein the displacement device is a pump.
  • 18. The user interface of claim 1, wherein the displacement device is further configured to displace fluid away from the deformable region to transition the deformable region from the expanded setting to the retracted setting.
  • 19. The user interface of claim 1, wherein the substrate further comprises a second support member continuous with the attachment face and a third fluid channel configured to communicate fluid through the second support member into a second cavity, wherein the tactile layer defines a second deformable region adjacent and disconnected from the second support member and cooperating with the second support member to define the second cavity, wherein the support member is configured to limit inward deformation of the second deformable region, and wherein the displacement device is further configured to displace fluid through the third fluid channel into the second cavity to transition the second deformable region from a retracted setting to an expanded setting, the expanded setting tactilely distinguishable from the retracted setting at the second deformable region.
  • 20. The user interface of claim 19, wherein the displacement device selectively transitions the deformable region and the second deformable region between the retracted and expanded settings.
  • 21. The user interface of claim 1 incorporated into an electronic device selected from the group consisting of: an automotive console, a desktop computer, a laptop computer, a tablet computer, a television, a radio, a desk phone, a mobile phone, a PDA, a personal navigation device, a personal media player, a camera, and a watch.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior U.S. application Ser. No. 13/414,589, filed on 7 Mar. 2012 and entitled “User Interface System,” which is a continuation of prior U.S. application Ser. No. 12/319,334, filed on 5 Jan. 2009 and entitled “User Interface System,” and is a continuation-in-part of prior U.S. application Ser. No. 11/969,848, filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens,” which are all incorporated in their entirety by this reference.

US Referenced Citations (595)
Number Name Date Kind
2885967 C et al. May 1959 A
3034628 Wadey May 1962 A
3441111 P Apr 1969 A
3453967 L et al. Jul 1969 A
3490733 Jean Jan 1970 A
3659354 Sutherland May 1972 A
3759108 Borom et al. Sep 1973 A
3780236 Gross Dec 1973 A
3818487 Brody et al. Jun 1974 A
4109118 Kley Aug 1978 A
4181476 Malbec Jan 1980 A
4209819 Seignemartin Jun 1980 A
4290343 Gram Sep 1981 A
4307268 Harper Dec 1981 A
4467321 Volnak Aug 1984 A
4477700 Balash et al. Oct 1984 A
4517421 Margolin May 1985 A
4543000 Hasenbalg Sep 1985 A
4584625 Kellogg Apr 1986 A
4700025 Hatayama et al. Oct 1987 A
4743895 Alexander May 1988 A
4772205 Chlumsky et al. Sep 1988 A
4920343 Schwartz Apr 1990 A
4940734 Ley et al. Jul 1990 A
4980646 Zemel Dec 1990 A
5090297 Paynter Feb 1992 A
5194852 More et al. Mar 1993 A
5195659 Eiskant Mar 1993 A
5212473 Louis May 1993 A
5222895 Fricke Jun 1993 A
5286199 Kipke Feb 1994 A
5346476 Elson Sep 1994 A
5369228 Faust Nov 1994 A
5412189 Cragun May 1995 A
5459461 Crowley et al. Oct 1995 A
5470212 Pearce Nov 1995 A
5488204 Mead et al. Jan 1996 A
5496174 Garner Mar 1996 A
5666112 Crowley et al. Sep 1997 A
5717423 Parker Feb 1998 A
5729222 Iggulden et al. Mar 1998 A
5742241 Crowley et al. Apr 1998 A
5754023 Roston et al. May 1998 A
5766013 Vuyk Jun 1998 A
5767839 Rosenberg Jun 1998 A
5835080 Beeteson et al. Nov 1998 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5917906 Thornton Jun 1999 A
5943043 Furuhata et al. Aug 1999 A
5977867 Blouin Nov 1999 A
5982304 Selker et al. Nov 1999 A
6067116 Yamano et al. May 2000 A
6154198 Rosenberg Nov 2000 A
6154201 Levin et al. Nov 2000 A
6160540 Fishkin et al. Dec 2000 A
6169540 Rosenberg et al. Jan 2001 B1
6187398 Eldridge Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6218966 Goodwin et al. Apr 2001 B1
6243074 Fishkin et al. Jun 2001 B1
6243078 Rosenberg Jun 2001 B1
6268857 Fishkin et al. Jul 2001 B1
6271828 Rosenberg et al. Aug 2001 B1
6278441 Gouzman et al. Aug 2001 B1
6300937 Rosenberg Oct 2001 B1
6310614 Maeda et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6337678 Fish Jan 2002 B1
6354839 Schmidt et al. Mar 2002 B1
6356259 Maeda et al. Mar 2002 B1
6359572 Vale Mar 2002 B1
6366272 Rosenberg et al. Apr 2002 B1
6369803 Brisebois et al. Apr 2002 B2
6384743 Vanderheiden May 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6437771 Rosenberg et al. Aug 2002 B1
6462294 Davidson et al. Oct 2002 B2
6469692 Rosenberg Oct 2002 B2
6486872 Rosenberg et al. Nov 2002 B2
6498353 Nagle et al. Dec 2002 B2
6501462 Garner Dec 2002 B1
6509892 Cooper et al. Jan 2003 B1
6529183 MacLean et al. Mar 2003 B1
6573844 Venolia et al. Jun 2003 B1
6636202 Ishmael et al. Oct 2003 B2
6639581 Moore et al. Oct 2003 B1
6655788 Freeman Dec 2003 B1
6657614 Ito et al. Dec 2003 B1
6667738 Murphy Dec 2003 B2
6681031 Cohen et al. Jan 2004 B2
6683627 Ullmann et al. Jan 2004 B1
6686911 Levin et al. Feb 2004 B1
6697086 Rosenberg et al. Feb 2004 B2
6700556 Richley et al. Mar 2004 B2
6703924 Tecu et al. Mar 2004 B2
6743021 Prince et al. Jun 2004 B2
6788295 Inkster Sep 2004 B1
6819316 Schulz et al. Nov 2004 B2
6850222 Rosenberg Feb 2005 B1
6861961 Sandbach et al. Mar 2005 B2
6877986 Fournier et al. Apr 2005 B2
6881063 Yang Apr 2005 B2
6930234 Davis Aug 2005 B2
6937225 Kehlstadt et al. Aug 2005 B1
6975305 Yamashita Dec 2005 B2
6979164 Kramer Dec 2005 B2
6982696 Shahoian Jan 2006 B1
6995745 Boon et al. Feb 2006 B2
7004655 Ferrara Feb 2006 B2
7015894 Morohoshi Mar 2006 B2
7027032 Rosenberg et al. Apr 2006 B2
7056051 Fiffie Jun 2006 B2
7061467 Rosenberg Jun 2006 B2
7064655 Murray et al. Jun 2006 B2
7079111 Ho Jul 2006 B2
7081888 Cok et al. Jul 2006 B2
7096852 Gregorio Aug 2006 B2
7102541 Rosenberg Sep 2006 B2
7104152 Levin et al. Sep 2006 B2
7106305 Rosenberg Sep 2006 B2
7106313 Schena et al. Sep 2006 B2
7109967 Hioki et al. Sep 2006 B2
7112737 Ramstein Sep 2006 B2
7113166 Rosenberg et al. Sep 2006 B1
7116317 Gregorio et al. Oct 2006 B2
7124425 Anderson, Jr. et al. Oct 2006 B1
7129854 Arneson et al. Oct 2006 B2
7131073 Rosenberg et al. Oct 2006 B2
7136045 Rosenberg et al. Nov 2006 B2
7138977 Kinerk et al. Nov 2006 B2
7138985 Nakajima Nov 2006 B2
7143785 Maerkl et al. Dec 2006 B2
7144616 Unger et al. Dec 2006 B1
7148875 Rosenberg et al. Dec 2006 B2
7151432 Tierling Dec 2006 B2
7151527 Culver Dec 2006 B2
7151528 Taylor et al. Dec 2006 B2
7154470 Tierling Dec 2006 B2
7158112 Rosenberg et al. Jan 2007 B2
7159008 Wies et al. Jan 2007 B1
7161276 Face Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7168042 Braun et al. Jan 2007 B2
7176903 Katsuki et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7191191 Peurach et al. Mar 2007 B2
7193607 Moore et al. Mar 2007 B2
7195170 Matsumoto et al. Mar 2007 B2
7196688 Schena Mar 2007 B2
7198137 Olien Apr 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7205981 Cunningham Apr 2007 B2
7208671 Chu Apr 2007 B2
7209028 Boronkay et al. Apr 2007 B2
7209113 Park Apr 2007 B2
7209117 Rosenberg et al. Apr 2007 B2
7209118 Shahoian et al. Apr 2007 B2
7210160 Anderson, Jr. et al. Apr 2007 B2
7215326 Rosenberg May 2007 B2
7216671 Unger et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7233313 Levin et al. Jun 2007 B2
7233315 Gregorio et al. Jun 2007 B2
7233476 Goldenberg et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7245202 Levin Jul 2007 B2
7245292 Custy Jul 2007 B1
7249951 Bevirt et al. Jul 2007 B2
7250128 Unger et al. Jul 2007 B2
7253803 Schena et al. Aug 2007 B2
7253807 Nakajima Aug 2007 B2
7265750 Rosenberg Sep 2007 B2
7280095 Grant Oct 2007 B2
7283120 Grant Oct 2007 B2
7283123 Braun et al. Oct 2007 B2
7283696 Ticknor et al. Oct 2007 B2
7289106 Bailey et al. Oct 2007 B2
7289111 Asbill Oct 2007 B2
7307619 Cunningham et al. Dec 2007 B2
7308831 Cunningham et al. Dec 2007 B2
7319374 Shahoian Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7336266 Hayward et al. Feb 2008 B2
7339572 Schena Mar 2008 B2
7339580 Westerman et al. Mar 2008 B2
7342573 Ryynaenen Mar 2008 B2
7355595 Bathiche et al. Apr 2008 B2
7369115 Cruz-Hernandez et al. May 2008 B2
7382357 Panotopoulos et al. Jun 2008 B2
7390157 Kramer Jun 2008 B2
7391861 Levy Jun 2008 B2
7397466 Bourdelais et al. Jul 2008 B2
7403191 Sinclair Jul 2008 B2
7432910 Shahoian Oct 2008 B2
7432911 Skarine Oct 2008 B2
7432912 Cote et al. Oct 2008 B2
7433719 Dabov Oct 2008 B2
7453442 Poynter Nov 2008 B1
7471280 Prins Dec 2008 B2
7489309 Levin et al. Feb 2009 B2
7511702 Hotelling Mar 2009 B2
7522152 Olien et al. Apr 2009 B2
7545289 Mackey et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7551161 Mann Jun 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7567232 Rosenberg Jul 2009 B2
7567243 Hayward Jul 2009 B2
7589714 Funaki Sep 2009 B2
7592999 Rosenberg et al. Sep 2009 B2
7605800 Rosenberg Oct 2009 B2
7609178 Son et al. Oct 2009 B2
7656393 King et al. Feb 2010 B2
7659885 Kraus et al. Feb 2010 B2
7671837 Forsblad et al. Mar 2010 B2
7679611 Schena Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7688310 Rosenberg Mar 2010 B2
7701438 Chang et al. Apr 2010 B2
7728820 Rosenberg et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7743348 Robbins et al. Jun 2010 B2
7755602 Tremblay et al. Jul 2010 B2
7808488 Martin et al. Oct 2010 B2
7834853 Finney et al. Nov 2010 B2
7843424 Rosenberg et al. Nov 2010 B2
7864164 Cunningham et al. Jan 2011 B2
7869589 Tuovinen Jan 2011 B2
7890257 Fyke et al. Feb 2011 B2
7890863 Grant et al. Feb 2011 B2
7920131 Westerman Apr 2011 B2
7924145 Yuk et al. Apr 2011 B2
7944435 Rosenberg et al. May 2011 B2
7952498 Higa May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7973773 Pryor Jul 2011 B2
7978181 Westerman Jul 2011 B2
7978183 Rosenberg et al. Jul 2011 B2
7978186 Vassallo et al. Jul 2011 B2
7979797 Schena Jul 2011 B2
7982720 Rosenberg et al. Jul 2011 B2
7986303 Braun et al. Jul 2011 B2
7986306 Eich et al. Jul 2011 B2
7989181 Blattner et al. Aug 2011 B2
7999660 Cybart et al. Aug 2011 B2
8002089 Jasso et al. Aug 2011 B2
8004492 Kramer et al. Aug 2011 B2
8013843 Pryor Sep 2011 B2
8020095 Braun et al. Sep 2011 B2
8022933 Hardacker et al. Sep 2011 B2
8031181 Rosenberg et al. Oct 2011 B2
8044826 Yoo Oct 2011 B2
8047849 Ahn et al. Nov 2011 B2
8049734 Rosenberg et al. Nov 2011 B2
8059104 Shahoian et al. Nov 2011 B2
8059105 Rosenberg et al. Nov 2011 B2
8063892 Shahoian et al. Nov 2011 B2
8063893 Rosenberg et al. Nov 2011 B2
8068605 Holmberg Nov 2011 B2
8077154 Emig et al. Dec 2011 B2
8077440 Krabbenborg et al. Dec 2011 B2
8077941 Assmann Dec 2011 B2
8094121 Obermeyer et al. Jan 2012 B2
8094806 Levy Jan 2012 B2
8103472 Braun et al. Jan 2012 B2
8106787 Nurmi Jan 2012 B2
8115745 Gray Feb 2012 B2
8116831 Meitzler et al. Feb 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125347 Fahn Feb 2012 B2
8125461 Weber et al. Feb 2012 B2
8130202 Levine et al. Mar 2012 B2
8144129 Hotelling et al. Mar 2012 B2
8144271 Han Mar 2012 B2
8154512 Olien et al. Apr 2012 B2
8154527 Ciesla Apr 2012 B2
8159461 Martin et al. Apr 2012 B2
8162009 Chaffee Apr 2012 B2
8164573 Dacosta et al. Apr 2012 B2
8166649 Moore May 2012 B2
8169306 Schmidt et al. May 2012 B2
8169402 Shahoian et al. May 2012 B2
8174372 Da Costa May 2012 B2
8174495 Takashima et al. May 2012 B2
8174508 Sinclair et al. May 2012 B2
8174511 Takenaka et al. May 2012 B2
8178808 Strittmatter May 2012 B2
8179375 Ciesla et al. May 2012 B2
8179377 Ciesla May 2012 B2
8188989 Levin et al. May 2012 B2
8195243 Kim et al. Jun 2012 B2
8199107 Xu et al. Jun 2012 B2
8199124 Ciesla et al. Jun 2012 B2
8203094 Mittleman et al. Jun 2012 B2
8203537 Tanabe et al. Jun 2012 B2
8207950 Ciesla et al. Jun 2012 B2
8212772 Shahoian Jul 2012 B2
8217903 Ma et al. Jul 2012 B2
8217904 Kim Jul 2012 B2
8223278 Kim et al. Jul 2012 B2
8224392 Kim et al. Jul 2012 B2
8228305 Pryor Jul 2012 B2
8232976 Yun et al. Jul 2012 B2
8243038 Ciesla et al. Aug 2012 B2
8253052 Chen Aug 2012 B2
8253703 Eldering Aug 2012 B2
8279172 Braun et al. Oct 2012 B2
8279193 Birnbaum et al. Oct 2012 B1
8294557 Saddik et al. Oct 2012 B1
8310458 Faubert et al. Nov 2012 B2
8345013 Heubel et al. Jan 2013 B2
8350820 Deslippe et al. Jan 2013 B2
8362882 Heubel et al. Jan 2013 B2
8363008 Ryu et al. Jan 2013 B2
8367957 Strittmatter Feb 2013 B2
8368641 Tremblay et al. Feb 2013 B2
8378797 Pance et al. Feb 2013 B2
8384680 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8390771 Sakai et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8395591 Kruglick Mar 2013 B2
8400402 Son Mar 2013 B2
8400410 Taylor et al. Mar 2013 B2
8547339 Ciesla Oct 2013 B2
8570295 Ciesla Oct 2013 B2
8587541 Ciesla et al. Nov 2013 B2
8587548 Ciesla et al. Nov 2013 B2
8749489 Ito et al. Jun 2014 B2
8856679 Sirpal et al. Oct 2014 B2
8922503 Ciesla et al. Dec 2014 B2
8922510 Ciesla et al. Dec 2014 B2
8928621 Ciesla et al. Jan 2015 B2
8970403 Ciesla et al. Mar 2015 B2
9035898 Ciesla May 2015 B2
9075429 Karakotsios Jul 2015 B1
9116617 Ciesla et al. Aug 2015 B2
9128525 Yairi et al. Sep 2015 B2
9274612 Ciesla Mar 2016 B2
9274635 Birnbaum Mar 2016 B2
9372539 Ciesla et al. Jun 2016 B2
20010008396 Komata Jul 2001 A1
20010043189 Brisebois et al. Nov 2001 A1
20020063694 Keely et al. May 2002 A1
20020104691 Kent et al. Aug 2002 A1
20020106614 Prince et al. Aug 2002 A1
20020110237 Krishnan Aug 2002 A1
20020125084 Kreuzer et al. Sep 2002 A1
20020149570 Knowles et al. Oct 2002 A1
20020180620 Gettemy et al. Dec 2002 A1
20030087698 Nishiumi et al. May 2003 A1
20030117371 Roberts et al. Jun 2003 A1
20030179190 Franzen Sep 2003 A1
20030206153 Murphy Nov 2003 A1
20030223799 Pihlaja Dec 2003 A1
20030234769 Cross et al. Dec 2003 A1
20040001589 Mueller et al. Jan 2004 A1
20040056876 Nakajima Mar 2004 A1
20040056877 Nakajima Mar 2004 A1
20040106360 Farmer et al. Jun 2004 A1
20040114324 Kusaka et al. Jun 2004 A1
20040164968 Miyamoto Aug 2004 A1
20040178006 Cok Sep 2004 A1
20050007339 Sato Jan 2005 A1
20050007349 Vakil et al. Jan 2005 A1
20050020325 Enger et al. Jan 2005 A1
20050030292 Diederiks Feb 2005 A1
20050057528 Kleen Mar 2005 A1
20050073506 Durso Apr 2005 A1
20050088417 Mulligan Apr 2005 A1
20050110768 Marriott et al. May 2005 A1
20050162408 Martchovsky Jul 2005 A1
20050164148 Sinclair Jul 2005 A1
20050212773 Asbill Sep 2005 A1
20050231489 Ladouceur et al. Oct 2005 A1
20050253816 Himberg et al. Nov 2005 A1
20050270444 Miller et al. Dec 2005 A1
20050285846 Funaki Dec 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060053387 Ording Mar 2006 A1
20060087479 Sakurai et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060098148 Kobayashi et al. May 2006 A1
20060118610 Pihlaja et al. Jun 2006 A1
20060119586 Grant et al. Jun 2006 A1
20060152474 Saito et al. Jul 2006 A1
20060154216 Hafez et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060214923 Chiu et al. Sep 2006 A1
20060238495 Davis Oct 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060238517 King et al. Oct 2006 A1
20060256075 Anastas et al. Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20070013662 Fauth Jan 2007 A1
20070036492 Lee Feb 2007 A1
20070085837 Ricks et al. Apr 2007 A1
20070108032 Matsumoto et al. May 2007 A1
20070122314 Strand et al. May 2007 A1
20070130212 Peurach et al. Jun 2007 A1
20070152982 Kim et al. Jul 2007 A1
20070152983 Mckillop et al. Jul 2007 A1
20070165004 Seelhammer et al. Jul 2007 A1
20070171210 Chaudhri et al. Jul 2007 A1
20070182718 Schoener et al. Aug 2007 A1
20070229233 Dort Oct 2007 A1
20070229464 Hotelling et al. Oct 2007 A1
20070236466 Hotelling Oct 2007 A1
20070236469 Woolley et al. Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070254411 Uhland et al. Nov 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273561 Philipp Nov 2007 A1
20070296702 Strawn et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20080010593 Uusitalo et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080054875 Saito Mar 2008 A1
20080062151 Kent Mar 2008 A1
20080131624 Egami et al. Jun 2008 A1
20080136791 Nissar Jun 2008 A1
20080138774 Ahn et al. Jun 2008 A1
20080143693 Schena Jun 2008 A1
20080150911 Harrison Jun 2008 A1
20080165139 Hotelling et al. Jul 2008 A1
20080174321 Kang et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080202251 Serban et al. Aug 2008 A1
20080238448 Moore et al. Oct 2008 A1
20080248836 Caine Oct 2008 A1
20080249643 Nelson Oct 2008 A1
20080251368 Holmberg et al. Oct 2008 A1
20080252607 De et al. Oct 2008 A1
20080266264 Lipponen et al. Oct 2008 A1
20080286447 Alden et al. Nov 2008 A1
20080291169 Brenner et al. Nov 2008 A1
20080297475 Woolf et al. Dec 2008 A1
20080303796 Fyke Dec 2008 A1
20080312577 Drasler et al. Dec 2008 A1
20080314725 Karhiniemi et al. Dec 2008 A1
20090002140 Higa Jan 2009 A1
20090002205 Klinghult et al. Jan 2009 A1
20090002328 Ullrich et al. Jan 2009 A1
20090002337 Chang Jan 2009 A1
20090009480 Heringslack Jan 2009 A1
20090015547 Franz et al. Jan 2009 A1
20090028824 Chiang et al. Jan 2009 A1
20090033617 Lindberg et al. Feb 2009 A1
20090059495 Matsuoka Mar 2009 A1
20090066672 Tanabe et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090106655 Grant et al. Apr 2009 A1
20090115733 Ma et al. May 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090128376 Caine et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090129021 Dunn May 2009 A1
20090132093 Arneson et al. May 2009 A1
20090135145 Chen et al. May 2009 A1
20090140989 Ahlgren Jun 2009 A1
20090160813 Takashima et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090167567 Halperin et al. Jul 2009 A1
20090167677 Kruse et al. Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090174673 Ciesla Jul 2009 A1
20090174687 Ciesla et al. Jul 2009 A1
20090181724 Pettersson Jul 2009 A1
20090182501 Fyke et al. Jul 2009 A1
20090191402 Beiermann et al. Jul 2009 A1
20090195512 Pettersson Aug 2009 A1
20090207148 Sugimoto et al. Aug 2009 A1
20090215500 You et al. Aug 2009 A1
20090231305 Hotelling et al. Sep 2009 A1
20090243998 Wang Oct 2009 A1
20090250267 Heubel et al. Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090273578 Kanda et al. Nov 2009 A1
20090289922 Henry Nov 2009 A1
20090303022 Griffin et al. Dec 2009 A1
20090309616 Klinghult Dec 2009 A1
20100043189 Fukano Feb 2010 A1
20100045613 Wu et al. Feb 2010 A1
20100073241 Ayala et al. Mar 2010 A1
20100078231 Yeh et al. Apr 2010 A1
20100079404 Degner et al. Apr 2010 A1
20100090814 Cybart et al. Apr 2010 A1
20100097323 Edwards et al. Apr 2010 A1
20100103116 Leung et al. Apr 2010 A1
20100103137 Ciesla et al. Apr 2010 A1
20100109486 Polyakov et al. May 2010 A1
20100121928 Leonard May 2010 A1
20100141608 Huang et al. Jun 2010 A1
20100142516 Lawson et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100171719 Craig et al. Jul 2010 A1
20100171720 Craig et al. Jul 2010 A1
20100171729 Chun Jul 2010 A1
20100177050 Heubel et al. Jul 2010 A1
20100182135 Moosavi Jul 2010 A1
20100182245 Edwards et al. Jul 2010 A1
20100225456 Eldering Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100237043 Garlough Sep 2010 A1
20100238367 Montgomery et al. Sep 2010 A1
20100283731 Grant et al. Nov 2010 A1
20100295820 Kikin-Gil Nov 2010 A1
20100296248 Campbell et al. Nov 2010 A1
20100298032 Lee et al. Nov 2010 A1
20100302199 Taylor et al. Dec 2010 A1
20100321335 Lim et al. Dec 2010 A1
20110001613 Ciesla et al. Jan 2011 A1
20110011650 Klinghult Jan 2011 A1
20110012851 Ciesla et al. Jan 2011 A1
20110018813 Kruglick Jan 2011 A1
20110028305 Lim et al. Feb 2011 A1
20110029862 Scott et al. Feb 2011 A1
20110043457 Oliver et al. Feb 2011 A1
20110060998 Schwartz et al. Mar 2011 A1
20110074691 Causey et al. Mar 2011 A1
20110102462 Birnbaum May 2011 A1
20110120784 Osoinach et al. May 2011 A1
20110148793 Ciesla et al. Jun 2011 A1
20110148807 Fryer Jun 2011 A1
20110157056 Karpfinger Jun 2011 A1
20110157080 Ciesla et al. Jun 2011 A1
20110163978 Park et al. Jul 2011 A1
20110175838 Higa Jul 2011 A1
20110175844 Berggren Jul 2011 A1
20110181530 Park et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110194230 Hart et al. Aug 2011 A1
20110234502 Yun et al. Sep 2011 A1
20110241442 Mittleman et al. Oct 2011 A1
20110242749 Huang et al. Oct 2011 A1
20110248947 Krahenbuhl et al. Oct 2011 A1
20110248987 Mitchell Oct 2011 A1
20110254672 Ciesla et al. Oct 2011 A1
20110254709 Ciesla et al. Oct 2011 A1
20110254789 Ciesla et al. Oct 2011 A1
20110306931 Kamen et al. Dec 2011 A1
20120032886 Ciesla et al. Feb 2012 A1
20120038583 Westhues et al. Feb 2012 A1
20120043191 Kessler et al. Feb 2012 A1
20120044277 Adachi Feb 2012 A1
20120056846 Zaliva Mar 2012 A1
20120062483 Ciesla et al. Mar 2012 A1
20120080302 Kim et al. Apr 2012 A1
20120098789 Ciesla et al. Apr 2012 A1
20120105333 Maschmeyer et al. May 2012 A1
20120120357 Jiroku May 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120162774 Ishida et al. Jun 2012 A1
20120193211 Ciesla et al. Aug 2012 A1
20120200528 Ciesla et al. Aug 2012 A1
20120200529 Ciesla et al. Aug 2012 A1
20120206364 Ciesla et al. Aug 2012 A1
20120218213 Ciesla et al. Aug 2012 A1
20120218214 Ciesla et al. Aug 2012 A1
20120223914 Ciesla et al. Sep 2012 A1
20120235935 Ciesla et al. Sep 2012 A1
20120242607 Ciesla et al. Sep 2012 A1
20120306787 Ciesla et al. Dec 2012 A1
20130019207 Rothkopf et al. Jan 2013 A1
20130127790 Wassvik May 2013 A1
20130141118 Guard Jun 2013 A1
20130215035 Guard Aug 2013 A1
20130241718 Wang et al. Sep 2013 A1
20130275888 Williamson et al. Oct 2013 A1
20140034469 Krumpelman Feb 2014 A1
20140043291 Ciesla et al. Feb 2014 A1
20140132532 Yairi et al. May 2014 A1
20140160044 Yairi et al. Jun 2014 A1
20140160063 Yairi et al. Jun 2014 A1
20140160064 Yairi et al. Jun 2014 A1
20140176489 Park Jun 2014 A1
20150009150 Cho et al. Jan 2015 A1
20150015573 Burtzlaff et al. Jan 2015 A1
20150029658 Yairi et al. Jan 2015 A1
20150064405 Koch et al. Mar 2015 A1
20150070836 Yairi et al. Mar 2015 A1
20150091834 Johnson Apr 2015 A1
20150091870 Ciesla et al. Apr 2015 A1
20150138110 Yairi et al. May 2015 A1
20150145657 Levesque et al. May 2015 A1
20150177839 Ciesla et al. Jun 2015 A1
20150205419 Calub et al. Jul 2015 A1
20150293591 Yairi et al. Oct 2015 A1
20150293633 Ray et al. Oct 2015 A1
Foreign Referenced Citations (52)
Number Date Country
1260525 Jul 2000 CN
1530818 Sep 2004 CN
1882460 Dec 2006 CN
201130336 Oct 2008 CN
2000884 Dec 2008 EP
2348801 Jul 2011 EP
2936476 Oct 2015 EP
190403152 Dec 1904 GB
108771 Aug 1917 GB
1242418 Aug 1971 GB
S63164122 Jul 1988 JP
06125188 Jun 1994 JP
10255106 Sep 1998 JP
H10255106 Sep 1998 JP
2004111829 Apr 2004 JP
2004178117 Jun 2004 JP
2004303268 Oct 2004 JP
2006053914 Jan 2005 JP
2006268068 Oct 2006 JP
2006285785 Oct 2006 JP
200964357 Mar 2009 JP
2009064357 Mar 2009 JP
2010039602 Feb 2010 JP
2010072743 Apr 2010 JP
2011508935 Mar 2011 JP
2014526106 Oct 2014 JP
20000010511 Feb 2000 KR
100677624 Jan 2007 KR
20090023364 Nov 2012 KR
2004028955 Apr 2004 WO
2006082020 Aug 2006 WO
2008037275 Apr 2008 WO
2009002605 Dec 2008 WO
2009044027 Apr 2009 WO
2009067572 May 2009 WO
2009088985 Jul 2009 WO
2010077382 Jul 2010 WO
2010078596 Jul 2010 WO
2010078597 Jul 2010 WO
2011003113 Jan 2011 WO
2011087816 Jul 2011 WO
2011087817 Jul 2011 WO
2011108382 Sep 2011 WO
2011112984 Sep 2011 WO
2011118382 Sep 2011 WO
2011133604 Oct 2011 WO
2011133605 Oct 2011 WO
2012054781 Apr 2012 WO
2013022805 Feb 2013 WO
2013173624 Nov 2013 WO
2014047656 Mar 2014 WO
2014095935 Jun 2014 WO
Non-Patent Literature Citations (5)
Entry
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html.
Essilor. “Ophthalmic Optic Files Materials,” Essilor International, Ser 145 Paris France, Mar. 1997, pp. 1-29, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <http://www.essiloracademy.eu/sites/default/files/9.Materials.pdf>.
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 Pages.
Lind. “Two Decades of Negative Thermal Expansion Research: Where Do We Stand?” Department of Chemistry, the University of Toledo, Materials 2012, 5, 1125-1154; doi:10.3390/ma5061125, Jun. 20, 2012 (Jun. 20, 2012) pp. 1125-1154, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=materials-05-01125.pdf>.
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011.
Related Publications (1)
Number Date Country
20160139712 A1 May 2016 US
Continuations (2)
Number Date Country
Parent 13414589 Mar 2012 US
Child 15006699 US
Parent 12319334 Jan 2009 US
Child 13414589 US
Continuation in Parts (1)
Number Date Country
Parent 11969848 Jan 2008 US
Child 12319334 US