This invention relates generally to touch sensitive displays. More particularly, this invention relates to systems and methods for selectively raising portions of touch sensitive displays.
Touch sensitive displays, e.g., touch screens, are very useful in applications where a user can input commands and data directly on a display. Common applications for touch screens include consumer products such as cellular telephones and user interfaces for industrial process control. Depending on their specific applications, these touch sensitive displays are commonly used in devices ranging from small handheld PDAs, to medium sized tablet computers, to large pieces of industrial equipment.
It is often convenient to be able to input and output data to and from the user on the same display. Unlike a dedicated input device such as a keypad with discrete well-defined keys, most touch sensitive displays are generally flat. As a result, touch sensitive screens do not provide any tactile guidance for one or more control “buttons”. Instead, touch sensitive displays rely on visual guidance for user input.
Hence a serious drawback of touch sensitive displays is its inherent difficulty to input data accurately because adjacent buttons are not distinguishable by feel. Wrongly entered key strokes are common and the user is forced to keep his or her eyes on the display. The importance of tactile guidance is readily apparent in the competition between the Apple iPhone and the BlackBerry 8800. With a limited size, the mobile phones prior to this invention could include either a large screen or tactile buttons. With this invention, mobile phones and other suitable electronic devices can include both.
a and 3b are cross-sectional views of the layer, the substrate, the cavity, the touch sensor, and the display of the preferred embodiments, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 4b are cross-sectional views of the touch sensor located above the substrate, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 5b are cross-sectional views of the layer and the substrate combined as a singular structure, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 6b are cross-sectional views of a support member between the layer and the substrate, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
c is a top view of the support member.
d is a cross-sectional view of an alternative support member that partially defines the cavity.
a and 7b are cross-sectional views of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device that modifies the existing fluid in the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 10b are schematic views of the layer, the substrate, the cavity, the touch sensor, the display, and a displacement device of a third example that displaces additional fluid into and out of the cavity, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 18b are schematic views of the cavity and the second cavity connected to a single displacement device, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a and 19b are schematic views of the cavity and the second cavity connected to a separate displacement devices, with the cavity in a retracted volume setting and an expanded volume setting, respectively.
a, 20b, and 20c are schematic views of the cavity and the second cavity connected to a linear actuator, with the cavity in the expanded volume setting and the second cavity in the retracted volume setting, the cavity and the second cavity in the retracted volume setting, and the cavity in the retracted volume setting and the second cavity in the expanded volume setting, respectively.
a is a schematic view of a first cavity array arranged in a dial pad and a second cavity array arranged in a QWERTY keyboard on the same device.
b and 21c are schematic views of the display of a dial pad aligned with the first cavity array and a QWERTY keyboard aligned with the second cavity array, respectively.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
As shown in
The user interface system 100 of the preferred embodiments has been specifically designed to be incorporated into an electronic device, such as the display of an automotive console, a desktop computer, a laptop computer, a tablet computer, a television, a radio, a desk phone, a mobile phone, a PDA, a personal navigation device, a personal media player, a camera, or a watch. The user interface system may, however, be incorporated in any suitable device that interfaces with a user in both a visual and tactile manner.
1. The Layer and Substrate
As shown in
The substrate 120 of the preferred embodiments functions to support the layer 110 and to at least partially define the cavity 125. In one version, as shown in
As shown in
2. The Displacement Device
The displacement device 130 of the preferred embodiment functions to modify the volume of the fluid thereby expanding the cavity 125 from the retracted volume setting to the extended volume setting and, ultimately, deforming a particular region of the surface 115. The displacement device 130 preferably modifies the volume of the fluid by (1) modifying the volume of the existing fluid in the cavity 125, or (2) adding and removing fluid to and from the cavity 125. The displacement device 130 may, however, modify the volume of the fluid by any suitable device or method. Modifying the volume of the existing fluid in the cavity 125 most likely has an advantage of lesser complexity, while adding and removing fluid to and from the cavity 125 most likely has an advantage of maintaining the deformation of the surface 115 without the need for additional energy (if valves or other lockable mechanisms are used). When used with a mobile phone device, the displacement device 130 preferably increases the volume of the fluid within the cavity 125 by approximately 0.003-0.1 ml. When used with this or other applications, however, the volume of the fluid may be increased (or possibly decreased) by any suitable amount.
Modifying the existing fluid in the cavity 125 may be accomplished in several ways. In a first example, as shown in
Adding and removing fluid to and from the cavity 125 may also be accomplished in several ways. In a first example, as shown in
Although the cause of the deformation of a particular region of the surface 115 has been described as a modification of the volume of the fluid in the cavity 125, it is possible to describe the cause of the deformation as an increase in the pressure below the surface 115 relative to the pressure above the surface 115. When used with a mobile phone device, an increase of approximately 0.1-10.0 psi between the pressure below the layer 110 relative to the pressure above the layer 110, is preferably enough to deform a particular region of the surface 115. When used with this or other applications, however, the modification of the pressure may be increased (or possibly decreased) by any suitable amount.
The deformation of the surface 115 functions to provide a tactile feedback that signals the location of the particular region of the surface 115. When used in conjunction with an input graphic on the display 150, the deformation of the surface 115 preferably signals the location of an input on the touch sensor 140. The deformation preferably acts as (1) a button that can be pressed by the user and that signals the location of a single input on the touch sensor 140 under the button, (2) a slider that can be pressed by the user and that signals the location of multiple inputs on the touch sensor 140 under the slider, (3) a guide that signals the location of multiple inputs on the touch sensor 140 adjacent the guide, and (4) a pointing stick that signals the location of multiple inputs on the touch sensor 140 under and adjacent the pointing stick. The deformation may, however, act as any other suitable device or method that signals the location of a particular region of the surface 115. The button, as shown in
3. The Touch Sensor and the Display
The touch sensor 140 of the preferred embodiments functions to sense a user touch proximate the particular region of the surface 115. The touch sensor 140 is preferably located under the substrate 120 (as shown in
The display 150 of the preferred embodiments functions to interface with a user in a visual manner. The display 150 is preferably a conventional liquid crystal display (LCD), but may alternatively any suitable device that displays an output. In one version, as shown in
4. The Processor
The user interface system 100 of the preferred embodiment also includes a processor, which is coupled to the displacement device 130 and to the touch sensor 140. As shown in
The processor may also function to automatically alter the settings of the user interface system 100. In a first example, in extremely low temperatures, it may be impossible for the displacement device 130 to modify the volume of the fluid to expand the cavity 125 and deform the surface 115. The processor may be coupled to a temperature sensor and may disable the displacement device 130 under such conditions. In a second example, in high altitude conditions (or in an airplane with reduced air pressure), it may be impossible for the displacement device 130 to modify the volume of the fluid to retract the cavity 125. The processor may be coupled to a pressure sensor and may either disable the displacement device 130 (or close particular valves), or may simply adjust the volume of the fluid that is modified under such conditions.
As shown in
The processor may also function to alter the output of the display 150 to correct or adjust for any optical distortion caused by the deformation in the surface 115. It is envisioned that, in certain applications, the size of the deformation may cause a “fish eye” effect when viewing the display 150. The processor, preferably through empirical data, may adjust the output to help correct for this distortion.
The processor preferably includes a separate and remote controller for the displacement device 130, a separate and remote controller for the touch sensor 140, and a separate and remote controller for the display 150. The processor may, however, integrally include a controller for one or more of these elements.
5. Second Cavity
As shown in
6. Power Source
The user interface system 100 of the preferred embodiments also includes either a power source or a power harnessing device, which both function to power the displacement device 130 (and possibly other elements of the user interface system, such as the touch sensor 140 and/or the display 150). The power source is preferably a conventional battery, but may be any suitable device or method that provides power to the displacement device 130. The power-harnessing device, which is preferably integrated into the hinge of a flip phone or laptop, functions to harness a portion of the energy involved in the normal use of the electronic device (such as the opening of a flip phone or the screen on a laptop). The power-harnessing device may alternatively be integrated in a separate mechanical input device (such as a button on the side of a mobile phone, or a “self-winding” device found in automatic watches) or any other suitable device or method to harness a portion of the energy involved in the normal use of the electronic device.
7. Alternative Embodiments
The user interface system of an alternative embodiment of the invention omits the display 150. The user interface system of the alternative embodiment is otherwise similar or identical to the user interface system 100 of the preferred embodiment. The user interface system of the alternative embodiment can be incorporated into electronic devices that do not typically include a display, such as peripheral for an electronic device. Suitable peripherals include a mouse, a trackpad, a keyboard, and a remote control. These peripherals are often used only by touch, and not by sight. The user interface system may, however, be incorporated in any suitable device.
As a person skilled in the art of user interfaces will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application is a continuation-in-part of prior application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3034628 | Wadey | May 1962 | A |
3659354 | Sutherland | May 1972 | A |
3818487 | Brody et al. | Jun 1974 | A |
4109118 | Kley | Aug 1978 | A |
4209819 | Seignemartin | Jun 1980 | A |
4307268 | Harper | Dec 1981 | A |
4467321 | Volnak | Aug 1984 | A |
4477700 | Balash et al. | Oct 1984 | A |
4517421 | Margolin | May 1985 | A |
4543000 | Hasenbalg | Sep 1985 | A |
4920343 | Schwartz | Apr 1990 | A |
5194852 | More et al. | Mar 1993 | A |
5195659 | Eiskant | Mar 1993 | A |
5222895 | Fricke | Jun 1993 | A |
5286199 | Kipke | Feb 1994 | A |
5369228 | Faust | Nov 1994 | A |
5412189 | Cragun | May 1995 | A |
5488204 | Mead et al. | Jan 1996 | A |
5496174 | Garner | Mar 1996 | A |
5742241 | Crowley et al. | Apr 1998 | A |
5754023 | Roston et al. | May 1998 | A |
5766013 | Vuyk | Jun 1998 | A |
5835080 | Beeteson et al. | Nov 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5917906 | Thornton | Jun 1999 | A |
5943043 | Furuhata et al. | Aug 1999 | A |
5977867 | Blouin | Nov 1999 | A |
5982304 | Selker et al. | Nov 1999 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6218966 | Goodwin et al. | Apr 2001 | B1 |
6310614 | Maeda et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6337678 | Fish | Jan 2002 | B1 |
6356259 | Maeda et al. | Mar 2002 | B1 |
6384743 | Vanderheiden | May 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6462294 | Davidson et al. | Oct 2002 | B2 |
6498353 | Nagle et al. | Dec 2002 | B2 |
6501462 | Garner | Dec 2002 | B1 |
6636202 | Ishmael et al. | Oct 2003 | B2 |
6655788 | Freeman | Dec 2003 | B1 |
6657614 | Ito et al. | Dec 2003 | B1 |
6667738 | Murphy | Dec 2003 | B2 |
6700556 | Richley et al. | Mar 2004 | B2 |
6703924 | Tecu et al. | Mar 2004 | B2 |
6743021 | Prince et al. | Jun 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6877986 | Fournier et al. | Apr 2005 | B2 |
6881063 | Yang | Apr 2005 | B2 |
6930234 | Davis | Aug 2005 | B2 |
7064655 | Murray et al. | Jun 2006 | B2 |
7081888 | Cok et al. | Jul 2006 | B2 |
7096852 | Gregario | Aug 2006 | B2 |
7102541 | Rosenberg | Sep 2006 | B2 |
7104152 | Levin et al. | Sep 2006 | B2 |
7106305 | Rosenberg | Sep 2006 | B2 |
7106313 | Schena et al. | Sep 2006 | B2 |
7112737 | Ramstein | Sep 2006 | B2 |
7113166 | Rosenberg et al. | Sep 2006 | B1 |
7116317 | Gregorio et al. | Oct 2006 | B2 |
7124425 | Anderson, Jr. et al. | Oct 2006 | B1 |
7131073 | Rosenberg et al. | Oct 2006 | B2 |
7136045 | Rosenberg et al. | Nov 2006 | B2 |
7143785 | Maerkl et al. | Dec 2006 | B2 |
7144616 | Unger et al. | Dec 2006 | B1 |
7148875 | Rosenberg et al. | Dec 2006 | B2 |
7151432 | Tierling | Dec 2006 | B2 |
7151527 | Culver | Dec 2006 | B2 |
7154470 | Tierling | Dec 2006 | B2 |
7158112 | Rosenberg et al. | Jan 2007 | B2 |
7159008 | Wies et al. | Jan 2007 | B1 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7168042 | Braun et al. | Jan 2007 | B2 |
7176903 | Katsuki et al. | Feb 2007 | B2 |
7182691 | Schena | Feb 2007 | B1 |
7191191 | Peurach et al. | Mar 2007 | B2 |
7193607 | Moore et al. | Mar 2007 | B2 |
7196688 | Schena | Mar 2007 | B2 |
7198137 | Olien | Apr 2007 | B2 |
7199790 | Rosenberg et al. | Apr 2007 | B2 |
7202851 | Cunningham et al. | Apr 2007 | B2 |
7205981 | Cunningham | Apr 2007 | B2 |
7208671 | Chu | Apr 2007 | B2 |
7209028 | Boronkay et al. | Apr 2007 | B2 |
7209117 | Rosenberg et al. | Apr 2007 | B2 |
7209118 | Shahoian et al. | Apr 2007 | B2 |
7210160 | Anderson, Jr. et al. | Apr 2007 | B2 |
7215326 | Rosenberg | May 2007 | B2 |
7216671 | Unger et al. | May 2007 | B2 |
7218310 | Tierling et al. | May 2007 | B2 |
7233313 | Levin et al. | Jun 2007 | B2 |
7233315 | Gregorio et al. | Jun 2007 | B2 |
7233476 | Goldenberg et al. | Jun 2007 | B2 |
7236157 | Schena et al. | Jun 2007 | B2 |
7245202 | Levin | Jul 2007 | B2 |
7245292 | Custy | Jul 2007 | B1 |
7249951 | Bevirt et al. | Jul 2007 | B2 |
7250128 | Unger et al. | Jul 2007 | B2 |
7253803 | Schena et al. | Aug 2007 | B2 |
7265750 | Rosenberg | Sep 2007 | B2 |
7280095 | Grant | Oct 2007 | B2 |
7283120 | Grant | Oct 2007 | B2 |
7283123 | Braun et al. | Oct 2007 | B2 |
7289106 | Bailey et al. | Oct 2007 | B2 |
7307619 | Cunningham et al. | Dec 2007 | B2 |
7308831 | Cunningham et al. | Dec 2007 | B2 |
7319374 | Shahoian | Jan 2008 | B2 |
7336260 | Martin et al. | Feb 2008 | B2 |
7336266 | Hayward et al. | Feb 2008 | B2 |
7339572 | Schena | Mar 2008 | B2 |
7342573 | Ryynanen | Mar 2008 | B2 |
7369115 | Cruz-Hernandez et al. | May 2008 | B2 |
7382357 | Panotopoulos et al. | Jun 2008 | B2 |
7397466 | Bourdelais et al. | Jul 2008 | B2 |
7432910 | Shahoian | Oct 2008 | B2 |
7432911 | Skarine | Oct 2008 | B2 |
7432912 | Cote et al. | Oct 2008 | B2 |
7433719 | Dabov | Oct 2008 | B2 |
7471280 | Prins | Dec 2008 | B2 |
7522152 | Olien et al. | Apr 2009 | B2 |
7545289 | Mackey et al. | Jun 2009 | B2 |
7548232 | Shahoian et al. | Jun 2009 | B2 |
7567232 | Rosenberg | Jul 2009 | B2 |
7567243 | Hayward | Jul 2009 | B2 |
7589714 | Funaki | Sep 2009 | B2 |
7659885 | Kraus et al. | Feb 2010 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7989181 | Blattner et al. | Aug 2011 | B2 |
20010043189 | Brisebois et al. | Nov 2001 | A1 |
20020110237 | Krishnan | Aug 2002 | A1 |
20030179190 | Franzen | Sep 2003 | A1 |
20040164968 | Miyamoto | Aug 2004 | A1 |
20050007339 | Sato | Jan 2005 | A1 |
20050007349 | Vakil et al. | Jan 2005 | A1 |
20050020325 | Enger et al. | Jan 2005 | A1 |
20050030292 | Diederiks | Feb 2005 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050162408 | Martchovsky | Jul 2005 | A1 |
20050231489 | Ladouceur et al. | Oct 2005 | A1 |
20050285846 | Funaki | Dec 2005 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060098148 | Kobayashi et al. | May 2006 | A1 |
20060118610 | Pihlaja et al. | Jun 2006 | A1 |
20060119586 | Grant et al. | Jun 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060214923 | Chiu et al. | Sep 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060256075 | Anastas et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20070013662 | Fauth | Jan 2007 | A1 |
20070085837 | Ricks et al. | Apr 2007 | A1 |
20070122314 | Strand et al. | May 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070165004 | Seelhammer et al. | Jul 2007 | A1 |
20070171210 | Chaudhri et al. | Jul 2007 | A1 |
20070182718 | Schoener et al. | Aug 2007 | A1 |
20070236466 | Hotelling | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070254411 | Uhland et al. | Nov 2007 | A1 |
20070257634 | Leschin et al. | Nov 2007 | A1 |
20070273561 | Philipp | Nov 2007 | A1 |
20070296702 | Strawn et al. | Dec 2007 | A1 |
20080010593 | Uusitalo et al. | Jan 2008 | A1 |
20080136791 | Nissar | Jun 2008 | A1 |
20080143693 | Schena | Jun 2008 | A1 |
20080150911 | Harrison | Jun 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080202251 | Serban et al. | Aug 2008 | A1 |
20080238448 | Moore et al. | Oct 2008 | A1 |
20080252607 | De Jong et al. | Oct 2008 | A1 |
20080266264 | Lipponen et al. | Oct 2008 | A1 |
20080286447 | Alden et al. | Nov 2008 | A1 |
20080291169 | Brenner et al. | Nov 2008 | A1 |
20080297475 | Woolf et al. | Dec 2008 | A1 |
20080303796 | Fyke | Dec 2008 | A1 |
20090002140 | Higa | Jan 2009 | A1 |
20090002205 | Klinghult et al. | Jan 2009 | A1 |
20090002328 | Ullrich et al. | Jan 2009 | A1 |
20090009480 | Heringslack | Jan 2009 | A1 |
20090033617 | Lindberg et al. | Feb 2009 | A1 |
20090066672 | Tanabe et al. | Mar 2009 | A1 |
20090085878 | Heubel et al. | Apr 2009 | A1 |
20090106655 | Grant et al. | Apr 2009 | A1 |
20090115733 | Ma et al. | May 2009 | A1 |
20090115734 | Fredriksson et al. | May 2009 | A1 |
20090128503 | Grant et al. | May 2009 | A1 |
20090135145 | Chen et al. | May 2009 | A1 |
20090140989 | Ahlgren | Jun 2009 | A1 |
20090167508 | Fadell et al. | Jul 2009 | A1 |
20090167509 | Fadell et al. | Jul 2009 | A1 |
20090167677 | Kruse et al. | Jul 2009 | A1 |
20090167704 | Terlizzi et al. | Jul 2009 | A1 |
20090174673 | Ciesla et al. | Jul 2009 | A1 |
20090174687 | Ciesla et al. | Jul 2009 | A1 |
20090181724 | Pettersson | Jul 2009 | A1 |
20090182501 | Fyke et al. | Jul 2009 | A1 |
20090195512 | Pettersson | Aug 2009 | A1 |
20100103116 | Leung et al. | Apr 2010 | A1 |
20100103137 | Ciesla et al. | Apr 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2008037275 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090174687 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11969848 | Jan 2008 | US |
Child | 12319334 | US |