The present invention relates to new intelligent electrical user interface structures that includes capacitive sensor technology. The invention further relates, in one embodiment, to intelligent switches having embedded therein a microchip for use with a variety of electrical devices to add heretofore unknown functionality to existing electrical devices. The invention also relates, according to another embodiment, user interfaces with capacitive sensing technology that differentiates between proximity and physical contact events in order to achieve a higher level of interpretation of the user actions by the switch and specifically to provide information to the user about the product, the state of the product or guidance towards possible (likely) next actions. In another embodiment, the invention relates to low current switches controlled by microchips of the present invention for use in building lighting systems.
In conventional flashlights, manually-operated mechanical switches function to turn the flashlight “on” and “off.” When turned “on,” battery power is applied through the closed switch to a light bulb; the amount of power then consumed depends on how long the switch is closed. In the typical flashlight, the effective life of the battery is only a few hours at most. Should the operator, after using the flashlight to find his/her way in the dark or for any other purpose, then fail to turn it off, the batteries will, in a very short time, become exhausted. Should the flashlight be left in a turned-on and exhausted condition for a prolonged period, the batteries may then leak and exude corrosive electrolyte that is damaging to the contact which engages the battery terminal as well as the casing of the flashlight.
When the flashlight is designed for use by a young child the likelihood is greater that the flashlight will be mishandled, because a young child is prone to be careless and forgets to turn the flashlight “off” after it has served its purpose. Because of this, a flashlight may be left “on” for days, if not weeks, and as a result of internal corrosion may no longer be in working order when the exhausted batteries are replaced.
Flashlights designed for young children are sometimes in a lantern format, with a casing made of strong plastic material that is virtually unbreakable, the light bulb being mounted within a reflector at the front end of the casing and being covered by a lens from which a light beam is projected. A U-shaped handle is attached to the upper end of the casing, with mechanical on-off slide switch being mounted on the handle, so that a child grasping the handle can readily manipulate the slide actuator with his/her thumb.
With a switch of this type on top of a flashlight handle, when the slide actuator is pushed forward by the thumb, the switch “mechanically” closes the circuit and the flashlight is turned “on” and remains “on” until the slide actuator is pulled back to the “off” position and the circuit is opened. It is this type of switch in the hands of a child that is most likely to be inadvertently left “on.”
To avoid this problem, many flashlights include, in addition to a slide switch, a push button switch which keeps the flashlight turned on only when finger pressure is applied to the push button. It is difficult for a young child who wishes, say to illuminate a dark corner in the basement of his home for about 30 seconds, to keep a push button depressed for this period. It is therefore more likely that the child will actuate the slide switch to its permanently-on position, for this requires only a momentary finger motion.
It is known to provide a flashlight with a delayed action switch which automatically turns off after a pre-determined interval. The Mallory U.S. Pat. No. 3,535,282 discloses a flashlight that is automatically turned off by a delayed action mechanical switch assembly that includes a compression spring housed in a bellows having a leaky valve, so that when a switch is turned on manually, this action serves to mechanically compress the bellows which after a pre-determined interval acts to turn off the switch.
A similar delayed action is obtained in a flashlight for children marketed by Playskool Company, this delayed action being realized by a resistance-capacitance timing network which applies a bias to a solid-state transistor switch after 30 seconds or so to cut off the transistor and shut off the flashlight. Also included in the prior art, is a flashlight previously sold by Fisher-Price using an electronic timing circuit to simply turn off the flashlight after about 20 minutes.
It is also known, e.g. as disclosed in U.S. Pat. No. 4,875,147, to provide a mechanical switch assembly for a flashlight which includes a suction cup as a delayed action element whereby the flashlight, when momentarily actuated by an operator, functions to connect a battery power supply to a light bulb, and which maintains this connection for a pre-determined interval determined by the memory characteristics of the suction cup, after which the connection is automatically broken.
U.S. Pat. No. 5,138,538 discloses a flashlight having the usual components of a battery, and on-off mechanical switch, a bulb, and a hand-held housing, to which there is added a timing means and a circuit-breaking means responsive to the timing means for cutting off the flow of current to the bulb, which further has a by-pass means, preferably child-proof, to direct electric current to the light bulb regardless of the state of the timing means. The patent also provides for the operation of the device may be further enhanced by making the by-pass means a mechanical switch connected so as to leave it in series with the mechanical on-off switch. Furthermore, the patent discloses a lock or other “child-proofing” mechanism may be provided to ensure that the by-pass is disabled when the flashlight is switched off.
Most conventional flashlights, like those described above, are actuated by mechanical push or slide button-type switches requiring, of course, mechanical implementation by an operator. Over time, the switch suffers “wear and tear” which impairs operation of the flashlight as a result of, for example, repeated activations by the operator and/or due to the fact that the switch has been left “on” for a prolonged period of time. In addition, such mechanical switches are vulnerable to the effects of corrosion and oxidation and can cause said switches to deteriorate and to become non-functioning. In addition, these prior art devices having these mechanical switches are generally “dumb,” i.e. they do not provide the user with convenient, reliable, and affordable functionalities which today's consumers now demand and expect.
The prior art switches typically provide two basic functions in prior art flashlights. First, the mechanical switches act as actual conductors for completing power circuits and providing current during operation of the devices. Depending upon the type of bulb and wiring employed, the intensity of electrical current which must be conducted by the switch is generally quite high leading to, after prolonged use, failure. Second, these mechanical switches must function as an interface between the device and its operator, i.e. the man-machine-interface (“MMI”) and necessarily requires repeated mechanical activations of the switch which over time mechanically deteriorate.
Also, currently the electrical switches used in buildings/houses for control of lighting systems are of the conventional type of switches which must conduct, i.e. close the circuit, upon command, thus also providing the MMI. These prior art switches suffer from the same disadvantages as the switches described above in relation to portable electronic devices, like flashlights. Moreover, the switches are relatively dumb in most cases and do not provide the user with a variety of functions, e.g. but not limited to timing means to enable a user, for example, a shop owner or home owner to designate a predetermined shut off or turn on point in time.
There is a need for inexpensive, reliable, and simple intelligent electronic devices which provide increased functionality and energy conservation.
According to one embodiment of the present invention, there is provided a microchip controlled switch to manage both the current conducting functions and the MMI functions in an electronic device, such as a flashlight, on a low current basis i.e. without the MMI device having to conduct or switch high current. According to one aspect of the invention, the MMI functions are controlled by very low current signals, using touch pads, or carbon coated membrane type switches. These low current signal switches of the present invention can be smaller, more reliable, less costly, easier to seal and less vulnerable to the effects of corrosion and oxidation. Moreover, since the switch is a solid state component, it is, according to the present invention, possible to control the functions of the device in an intelligent manner by the same microchip which provides the MMI functions. Thus, by practicing the teachings of the present invention, more reliable, intelligent, and efficient electrical devices can be obtained which are cheaper and easier to manufacture than prior art devices.
According to another embodiment of the invention, there is provided a microchip which can be embedded in a battery that will lend intelligence to the battery and thus, the device it is inserted into, so that many functions, including but not limited to, delayed switching, dimming, automatic shut off, and intermittent activation may be inexpensively realized in an existing (non intelligent) product, for example a prior art flashlight.
According to a further embodiment, the invention provides a power saving microchip which, when operatively associated with an electronic device, will adjust the average electric current through a current switch, provide an on and off sequence which, for example, but not limited to, in the case of a flashlight, can be determined by an operator and may represent either a flash code sequence or a simple on/off oscillation, provide an indication of battery strength, and/or provide a gradual oscillating current flow to lengthen the life of the operating switch and the power source.
According to one embodiment of the invention, an intelligent flashlight, having a microchip controlled switch is provided comprising a microchip for controlling the on/off function and at least one other function of the flashlight. According to a further embodiment of the invention, an intelligent flashlight having a microchip controlled switch is provided comprising an input means for sending activating/deactivating signals to the microchip, and a microchip for controlling the on/off function and at least one other function of the flashlight. According to a further embodiment of the invention, there is provided an intelligent flashlight having a microchip controlled switch comprising an input means for selecting one function of the flashlight, a microchip for controlling at least the on/off function and one other function of the flashlight, wherein the microchip control circuit may further comprise a control-reset means, a clock means, a current switch, and/or any one or combination of the same.
According to another embodiment of the invention, there is provided a battery for use with an electrical device comprising a microchip embedded in the battery. According to still a further embodiment of the invention, a battery for use with an electronic device is provided comprising a microchip embedded in the battery wherein said microchip is adapted such that an input means external to the microchip can select the on/off function and at least one other function of the electronic device.
According to one embodiment of the present invention, there is provided an intelligent battery for use with an electronic device, the battery having positive and negative terminal ends and comprising a microchip embedded in the battery, preferably in the positive terminal end, for controlling on/off functions and at least one other function of the electronic device.
According to another embodiment of the invention, there is provided a portable microchip device for use in serial connection with a power source, e.g. an exhaustible power source, and an electronic device powered by said source wherein said electronic device has an input means for activating and deactivating said power source, and said microchip comprising a means for controlling the on/off function and at least one other function of the electronic device upon receipt of a signal from said input means through said power source.
According to a still further embodiment of the invention, there is provided a microchip adapted to control lighting in buildings. According to this embodiment, the normal switch on the wall that currently functions as both a power-switch, i.e. conduction of electricity, and MMI can be eliminated, thus eliminating the normal high voltage and high current dangerous wiring to the switch and from the switch to the load or light. Utilizing the present invention, these switches can be replaced with connecting means suitable for low current DC requirements.
According to another embodiment, the present invention is directed to a battery comprising an energy storage section, a processor, e.g. a microchip and first and second terminal ends. The first terminal end being connected to the energy storage section, the second terminal end being connected to the processor, and the processor being connected to the second terminal end and the energy storage section. The processor controls the connection of the second terminal end to the energy storage section.
According to another embodiment, the present invention provides an electronic apparatus which includes an electrical device, comprising a power supply, an activating/deactivating means, and a processor. The activating/deactivating means is connected to the processor and the processor is connected to the power supply. The processor controls the on/off function of the device and at least one other function of the device in response to signals received from the activation/deactivation means.
The present invention, according to a still further embodiment, provides a flashlight comprising a light source, an energy storage means, a switch means, and a processor means. The switch means being in communication with the processor means and the processor means being in communication with the energy storage means which is ultimately in communication with the light source. The processor controls the activation/deactivation of the light source and, in some embodiments, further functions of the flashlight, in response to signals received from the switch means.
While the present invention is primarily described in this application with respect to either a flashlight or a battery therefore, the embodiments discussed herein should not be considered limitative of the invention, and many other variations of the use of the intelligent devices of the present invention will be obvious to one of ordinary skill in the art.
According to one embodiment or aspect of the present invention, and referring to
Referring to
The microchip 103, and other microchips of the present invention, can have its/their intelligence embedded in combinational or sequential logic, a PLA or ROM type structure feeding into a state machine or a true microcontroller type structure. The memory for the above will normally be non-volatile, but should there be a need for selectable options, EE or flash memory structures may be used.
The structure and operational parameters of such a microchip 103 are explained in greater detail below with respect to
If, for example, an emergency notification function is desired, the flashlight may be designed to alternately flash on and off every second. First, the operator activates input 102 into the appropriate position to indicate such a function is desired. During the “on” segment of the flashing routine, control/reset means 201 commands current switch 202 to close and let current flow through to load 105, thereby causing, in the case of a flashlight, the bulb to illuminate. Simultaneously, control/reset means 201 uses the timing means 203 as a clock for timing. After control/reset means 201 determines one second has elapsed, control/reset means 201 instructs current switch 202 to open and interrupt the current flow through to load 105, and bulb illumination is discontinued. It is important to note that both control/reset means 201 and current switch 202 are still active and fully powered; however, current delivery is now latent with respect to load 105. When another second has elapsed, a command is passed from control/reset means 201 which again allows current to be delivered through current switch 202 to load 105, and in the case of a flashlight, bulb illumination is immediately resumed. The device continues an alternating current delivery routine until either the operator switches the setting of the activating input switch 102 to the “off” position, or until the conditions pre-programmed into the microchip, e.g. into the control/reset means 201, are satisfied and current delivery is permanently discontinued.
Similar operating routines can be employed to generate other conspicuous flashing functions such as the generation of the universal distress signal S.O.S. in Morse code. Again, such a function would require that the microchip, e.g. control/reset means 201, be pre-programmed with the appropriate code for creating such a signal, and to permit current transmission from switch 202 to load 105 in accordance with the code with the assistance of timing means 203. For example, it may be desirable to have an S.O.S. sequence wherein flashes representing each individual letter are separated by time intervals ranging from one-half (½) second to one (1) full second, while the interval between each letter in the code comprises two (2) full seconds. After a certain number of repetitions of the routine, again determined by the operator or as pre-programmed within the microchip, e.g. within the control/reset means 201, the signal is discontinued.
As shown in
Referring now to
A block diagram showing microchip 103 for use, in accordance with one embodiment of the present invention, in association with a carbon coated membrane, a touch pad switch, or a low current type switch 106 is now explained in greater detail in respect to
As shown in
Referring to
When the charging capacitor 205 starts to become depleted, control/reset means 201 will recognize this state and reopen the current switch 203, thus briefly prohibiting the flow of current to load 105, in order to remove the voltage drop from load 105 and allow capacitor 205 to recharge and begin a new cycle. In a flashlight application, the time period wherein current flow from current switch 202 is discontinued can be such that the dead period of the light is not easily or not at all detectable by the human eye. In the case of a high current usage load, such as a flashlight, it means the ratio of the capacitance of the capacitor having to power the microchip and the current consumption of the microchip, must be such that the capacitor can power the microchip for a long time relative to the charging time (202 open). This will enable the flashlight's “off” time to be short and the “on” time to be long, thus not creating a detectable or intrusive switching of the flashlight to the user.
According to another embodiment of the present invention, e.g. in relation to another product of low current consumption, such as a FM radio, the designer may opt for a capacitive (reservoir) device externally to the microchip (see
According to another embodiment of the present invention, an output may be provided to indicate a condition, e.g. a battery is in good or bad condition. It may also be suitable to assist in locating a device, e.g. but not limited to a flashlight, in the dark. This may be a separate output pin or may be, according to another embodiment, shared with the MMI switch input. (See
According to a further specific embodiment of the invention, referring to
With an alternative embodiment of the present invention,
Each of the embodiments explained with respect to
The architecture of the two embodiments of the present invention shown in
According to some embodiments of the present invention, more intelligent devices include many other useful functions pre-programmed within the microchip, e.g. in control/reset means 201 and may, e.g. be assisted by a timing means 203. Referring to
Secondly, referring to
Thirdly, referring to
As can be seen by
The control/reset means included in the inventive microchips of the present invention may and in some instances, depending upon the application, should in addition to the many possible user functions described above, include means for adjusting the average current over a switch and/or a means for providing a gradual “on”/“off” current flow, so that the operator does not appreciably perceive the increase and decrease in light provided by the device. These features allow for an ongoing variable level of lighting as desired by an operator, and may also lengthen the life span of the activation switch, the bulb, and the power source. Moreover, several functions can now be added to an existing device, like a flashlight, through the use of a battery having embedded therein a microchip according to the present invention.
In another embodiment of the invention, the microchip is adapted to control lighting in buildings. The normal switch on the wall that currently functions as both a power-switch and MMI can be replaced by a low current switching device like a membrane switch, touch pad or carbon coated switching device. Since very low currents are required by the MMI switch (device) that replaces the normal wall mounted (NC) switch, it is possible to replace the normal high voltage/current (dangerous) wiring to the switch and from the switch to the lead (light), with connectivity means suitable to the new low current DC requirements. As such, in the case of normal A/C wiring (110V/220V), the dangerous wiring can now be restricted to the roof or ceiling and all switches (MMI's) can inherently be safe. This may make the expensive and regulated safety piping required for the wiring of electricity to wall switches redundant.
In a specific embodiment, the traditional wiring between the light and the wall switch is replaced by flexible current conducting tape that can be taped from the roof and down the wall to the required location. In another embodiment, the connections can be made by current conducting paint or similar substances. In both cases above, it can be painted over with normal paint to conceal it. This makes changing the location of a wall switch or the addition of another switch very easy.
The microchip according to the present invention can be located in the power fitting of the light. The microchip having the low current (MMI) input and a power switch to block or transfer the energy to the load (light, fan, air conditioner). It reacts to the inputs received to activate or disable, or control other functions, of whatever device it is controlling.
The microchip may be adapted to contain the high current/voltage switch or control an external switching device or relay. The microchip may also, as in the other embodiments discussed, have some intelligence to control functions like dimming, delayed shut off, timed activation/deactivation, timed cycles, flashing sequences and gradual on/off switching. The microchip may also be adopted, as in a specific flashlight embodiment discussed, to provide a location/emergency signal for lighting/flashing an LED.
The power input 101 in
In a specific embodiment, Ic pin 1406 can normally be high and a closure of input means 1402, e.g. any of the low current switching devices described above, can be detected as Ic pin 1405 also goes too high. To flash the LED 1404 the microchip will reverse the polarities so that Ic pin 1405 becomes high with regards to Ic pin 1406. During this time, it may not be possible to monitor the closure of the input 1402 switch and the LED 1404 may not shine should the input 1402 be closed. In another embodiment, microchip 1403 is able to detect closure of input 1402 before reversing the voltage polarity as discussed and if it detects closure, it does not proceed with reversing the polarity.
Reference 1407 denotes an MMI wall unit, and reference 1408 denotes a high voltage roof unit.
In
In another embodiment, the microchips 1403 and 1503 are adapted to receive commands not only via the MMI input but also over the load power (electricity) wiring. This would allow a central controller 1506 to send out various commands to various power points, controlled by a microchip according to this invention, by using address information of specific microchips or using global (to all) commands.
Referring again to
Assume for the sake of example that the switch 102 is used to turn the microchip on in the sense that a flashlight is turned on. A switch 110 may then be used at any time to turn the flashlight off, by appropriately controlling operation of the microchip. This is a conventional approach to controlling operation of the microchip. As an alternative the operation of the switch 102 can be sensed by means of a timing device 112. The timing device is started when the switch 102 is closed and after a short time period, say on the order of 5 seconds or less, which is measured by the timing device, the mode or function of the switch 102 changes so that, upon further actuation of the switch 102, the switch duplicates the function of the switch 110 which can therefore be dispensed with. Thus, initially the switch 102 functions as an on-switch while, a short period after its actuation, the switch 102 functions as an off-switch. It follows that with minor modifications to the circuitry of the microchip a single switch can exhibit multi-mode capabilities with the different modes being distinguished from each other or being exhibited on a time basis or, if necessary, on any other basis.
Multimode capabilities can for example be incorporated in a microchip wherein the function of a switch is also linked to time. In this sense the word “function” means the action which ensues or results upon the detection of the closure of the switch. For example a single switch may, from an off state of a flashlight, enable (a) the switching on of the flashlight and (b) the selection of one of a number of various modes like dimming level, flashing rate/sequence etc. when the switch is closed a number of times.
If however a certain time is allowed to pass (say five seconds) without any further closure of the switch taking place (indicating a mode has been selected), the function resulting from the next closure may be changed. Thus instead of selecting another mode, the closure may be interpreted as an “off’ command.
In other words a sequence of switch closures within five seconds of each other will continue to step the microchip through a number of predefined modes. However should at any stage a time of more than five seconds elapse between consecutive presses or closures of the switch then the next switch operation will switch the flashlight off rather than stepping the microchip to another mode.
Clearly these characteristics are not confined to the use of the chip with a flashlight for the chip can be used with other applications to vary the mode of operation thereof in an analogous way. Thus, for the flashlight, the function of the switch will affect the operation of the flashlight in a manner which is dependent on the time period between successive actuations of the switch. More generally, in any electrical device which is controlled by means of the microchip the operation of the device will be regulated by the function which is exhibited by a switch which is in communication with the microchip. The switch function in turn is dependent on the duration of a time period between successive operations of the switch.
Other modes can also be exhibited by a single switch. For example, depending on requirement, a switch can be used for on and off operation, for initiating the transmission of an emergency signal, for initiating the gradual dimming of a flashlight or the like. The scope of the invention is not limited in this regard.
In the preceding description reference has been made to a touch sensor and to a non-latching push button or latching MMI switch. These components and technologies relating thereto may be combined in certain embodiments to achieve specific operational features that may be attractive to the user in that certain comforts or user friendliness may be facilitated.
In certain embodiments the touch sensor interface/switch 106 (see
It is then also feasible to define a user interface that accepts both touch sensor signals as well as electromechanical switch and specifically push button switch signals. The signals may be used to select the same functions or in some embodiments the different MMI technologies may be used to select different functions or operational modes.
In a specific embodiment in accordance with the general concepts of this invention, a module comprises the energy consuming load 105 (for example a bulb, LED or other light generating element), and the microchip 103, which in accordance with principles already described controls the various functions or operational modes at least in response to signals received from the touch sensor and (traditional) switch interfaces as well as a find-in-the-dark (FITD) indication. The FITD indication may be the energy consuming load 105 or another separate element creating a visible, audible or other human detectable signal that would assist a person to locate a product containing the abovementioned elements or the MMI switch in particular, for example in the dark.
An example, that is not to be regarded as limiting the scope of this invention, may be an interior light for passenger convenience of an automobile or other transportation vehicle such as a boat or a plane.
In one embodiment the interior (courtesy) light is interfaced with the user (MMI) via either a touch sensor and/or an electromechanical switch, such as a push-to-make (push button) type switch, hereinafter called a pb switch. The interior light can be placed in various operational modes and functions under control of the microchip 103: for example the arrangement may provide an automatic delayed shut off function; and a FITD indicator function that also gives an indication of inputs which are received via the MMI interface and which enables the selection of an operational mode based on the various activation and/or deactivation (of the MMI switch) time sequences.
In another embodiment of this example the module comprising the light generating element, the microchip 103 and the FITD indicator have at least a pb MMI as well as a touch sensor MMI. The latter may be a capacitive technology based sensor as is known in the art (See for example the disclosures in U.S. Pat. Nos. 5,730,165 and 6,466,036). This touch sensor is capable of giving an indication of, for example, a human hand being in the proximity of the sensor even if no physical contact between the sensor and the hand is made.
As an example of possible operation, the microchip 103 may use the signals received from the touch sensor indicating proximity of part of the body of the user, such as a hand, to activate the FITD indicator in a way that is different from when no proximity detection is occurring. Thus the FITD indicator that is normally off or flashing with a low duty cycle or activated in a low energy mode, may be activated in a constant on mode of a higher energy level. It is also possible in an embodiment to control the energy level, and hence the intensity of light or sound of the FITD indicator in some relationships to the proximity distance, say the closer the hand, the brighter or more intense is the FITD indicator. The FITD indicator may be part of the button to be pressed when activating the pb switch.
This proximity based FITD indication may continue for a period of time and may be discontinued a certain period of time after the proximity signal has disappeared. Of course the operation may be simpler and the proximity signal may be an indication upon which the microchip activates the FITD indicator for a predetermined period, at a predetermined level or only while the user is within a given proximity and the proximity signal is present.
If the user then proceeds and activates the pb MMI switch, the FITD indicator in a preferred embodiment may be deactivated or switched to another level or functional mode under control of the microchip, and the main energy consuming load may be activated by this pb switch activation. The microchip controlling the operational modes may, in a preferred case, be integrated with the microchip interpreting the MMI signals and realizing the touch sensor implementation.
Both the touch sensor and the pb switch signals may be interpreted in terms of time duration of activation and/or deactivation signals and/or sequences of signals.
In simple terms the physical switch (pb) surface that a user must press, may glow (in the dark) when the user brings his/her hand close to the switch. Specific illumination of the pb switch, under these conditions, assists the user in the location of the switch that must be activated in order to start operation. The pb switch in a specific embodiment must still be pressed to activate the light or main energy consuming load.
The FITD indicator may also be active (at a higher level) after an automatic shut-off has occurred or at least for a short period thereafter.
In another embodiment the activation by proximity results in a different operational mode or for a different time duration than activation by the pb switch.
In a specific embodiment the switching circuit including a module which houses or comprises the pb switch, the touch sensor, the microchip, the energy consuming load and a FITD indicator that is active when the load is not activated by the user. All the elements may be in close proximity of each other. In another embodiment the elements are each attached to and/or enclosed in the module which may be of any suitable shape or form which depends, at least, on the specific application.
The energy consuming load may for example, but not limited to, be an electric motor, a light generating element or a heat generating unit. The power source may be mains power or an exhaustible power source such as a battery or a fuel cell.
In a further embodiment, in accordance with a preceding description, the microchip controls an automatic delayed shut-off function resulting in the load being deactivated a predetermined period after it was activated. The microchip also gives a warning of such imminent shut-off a short period prior to the shut-off. This advance auto shut-off warning may be a single indication, a reduction in power and/or a sequence or repetitive sequence of warning indications. In a specific embodiment the microchip accepts a proximity signal as enough or sufficient indication that the user wishes to extend operation. This may be specifically during or after the warning signals have been activated. In simple terms, for example, once the warning has been given that auto-shut-off is imminent, but before auto-shut-down occurs, the user can reset the auto-off timer by the wave of a hand past the sensor and an actuation of the pb switch is then not necessarily required to extend the period of operation. Feedback may be given to the user that the extension of operation has been accepted by varying operation of the load or some other indication. An example may be that during the advance auto-off warning period the power to the load is reduced and upon resetting the timer, the original power level is restored. In a variation of this embodiment the FITD indicator that operates in response to the proximity signal(s) also gives an indication of the power source level. For example an activating/deactivating sequence or varying colors may be used to indicate the power level.
The combined touch sensor and pb switch technology may also be used in a headlamp or flashlight technology. Again proximity may activate the load or FITD indicator. The load may for example be activated at a reduced power level, or any activation may only be for a very short period of time. In some embodiments the proximity or touch sensor may be used for some commands but not for others, for example in a specific embodiment the touch sensor may not activate or deactivate the flashlight but it can cancel an imminent auto-shut-down. The same techniques can be implemented for the interior light (or map light) in a vehicle.
It is also possible that the pb switch can affect or activate functions concerning the general operation of the touch sensor. For example, the touch sensor may be forced to adjust its calibration by activations of the pb switch.
In another embodiment a power source (battery) level indicator may be activated whilst a proximity signal is active. This may enable a person to immediately notice the battery level when a product such as an electric tooth brush, shaver, flashlight or other battery operated product is picked up. Again, this indication may be switched off after a period of time. It is also possible that a low power indication or warning is given only when a proximity detection is made, to specifically stand out, when the proximity sensor is triggered.
In a further embodiment the electronics for the proximity touch sensor and a find-in-the-dark indicator are embedded in the casing of a traditional switch mechanism. This may be for example a switch for the defrosting of a window in a vehicle, a turn signal indicator activation mechanism or a window wiper activation lever. When the proximity of a body part (e.g. finger) or another element is detected, the find-in-the-dark indicator is activated in a mode different from normal. For example, it may be normally off and upon the proximity detection the find-in-the-dark indicator may be activated; or it may normally be on in a low mode and upon the proximity detection, the find-in-the-dark indicator may be activated in a higher power or more prominent mode. The find-in-the-dark indicator may be specifically designed to illuminate the contact area of the switch in the vicinity where the user must physically make contact to activate the switch. In some cases, e.g. a lever used to operate a wiper or turn signal indicator, the illumination may be on a front side of the lever to be visible, whilst the contact from the user may be from the bottom, top, side, back or any other direction. An important aspect is that the location of a specific selection mechanism, which enables a specific function to be activated, is indicated to the user before the mechanism is actuated. Alternatively expressed the specific function to be activated by a specific selection mechanism is indicated to the user before the function is selected. This may help prevent accidental activation of a wiper when a turn signal was desired and vice versa. Of course another indication (e.g. audio) may also be used to alert the user as to what switch is being approached or in proximity of a body part. In each instance a second indicator can be used in place of the FITD, or in addition to the FITD. The second indicator is under the control of the microchip and is used to give the user information about a switch near, or combined with, the proximity detection sensor.
It is also proposed that the proximity switch be used to guide the user towards a button or a sequence of buttons likely to be operated next. For example if a radio is installed with this invention and in an off state, the detection of a user finger in proximity of the radio will illuminate the on switch and possibly no other switch, whereas a proximity detection when already on, will illuminate the off switch or volume control switch but not the on switch. In a sense this invention will intuitively lead the user through the next logical options when the switches are approached.
It is also possible for a function or load be temporally selected, say whilst the proximity detection is made, but to activate the load permanently or for an extended period of time even if the proximity detection is cancelled, the pb switch must be operated.
The aforementioned functions also apply to a mains system with a mains switch fitted with a find-in-the-dark indicator and touch sensor interface or with mains and the system as described previously (
It is also possible for the touch sensor proximity interface plus electronics to control some of the other described functions to be built into a traditional type switch that is for example typically found in a car or in a house. In some embodiments the touch sensor may switch the load on but not off or vice versa.
While the preferred embodiments of the present invention have been described in detail, it will be appreciated by those of ordinary skill in the art that further changes and modifications may be made to the embodiments without departing from the spirit and scope of the present invention as claimed.
This is a Continuation of application Ser. No. 13/195,877 filed Aug. 2, 2011, now U.S. Pat. No. 9,226,376, which is a Continuation of U.S. application Ser. No. 12/849,093, filed Aug. 3, 2010, now U.S. Pat. No. 8,035,623, which is a Continuation of U.S. application Ser. No. 11/785,063, filed Apr. 13, 2007, now U.S. Pat. No. 7,772,781, which is a Continuation of U.S. application Ser. No. 10/961,373, filed Oct. 12, 2004, now U.S. Pat. No. 7,265,494, which is a Continuation-in-Part of U.S. application ser. No. 09/806,860, filed Jul. 2, 2001, now U.S. Pat. No. 6,984,900, which is a U.S. National Stage of International Application No. PCT/ZA99/00107, filed Oct. 8, 1999, which is a Continuation-in-Part of U.S. application Ser. No. 09/169,395, filed Oct. 9, 1998, now U.S. Pat. No. 6,249,089. The contents of all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4039940 | Butler et al. | Aug 1977 | A |
4053789 | Schultz | Oct 1977 | A |
4123631 | Lewis | Oct 1978 | A |
4198539 | Pepper, Jr. | Apr 1980 | A |
4293734 | Pepper, Jr. | Oct 1981 | A |
4371746 | Pepper, Jr. | Feb 1983 | A |
4476463 | Ng et al. | Oct 1984 | A |
4535254 | Khatri | Aug 1985 | A |
4550221 | Mabusth | Oct 1985 | A |
4622437 | Bloom et al. | Nov 1986 | A |
4677308 | Wroblewski | Jun 1987 | A |
4758735 | Ingraham | Jul 1988 | A |
4764708 | Roudeski | Aug 1988 | A |
4766368 | Cox | Aug 1988 | A |
4806709 | Evans | Feb 1989 | A |
4878107 | Hopper | Oct 1989 | A |
4879461 | Philipp | Nov 1989 | A |
5018082 | Obata et al. | May 1991 | A |
5036321 | Leach et al. | Jul 1991 | A |
5045644 | Dunthorn | Sep 1991 | A |
5138538 | Sperling | Aug 1992 | A |
5194819 | Briefer | Mar 1993 | A |
5231381 | Duwaer | Jul 1993 | A |
5305017 | Gerpheide | Apr 1994 | A |
5311175 | Waldman | May 1994 | A |
5327161 | Logan et al. | Jul 1994 | A |
5418433 | Nilssen | May 1995 | A |
5426732 | Boies et al. | Jun 1995 | A |
5477129 | Myslinski | Dec 1995 | A |
5485058 | Watson et al. | Jan 1996 | A |
5495077 | Miller et al. | Feb 1996 | A |
5542591 | Moore et al. | Aug 1996 | A |
5579033 | Rutledge et al. | Nov 1996 | A |
5621283 | Watson et al. | Apr 1997 | A |
5626052 | Lawson | May 1997 | A |
5646535 | Dornier | Jul 1997 | A |
5648642 | Miller et al. | Jul 1997 | A |
5650591 | Matsushita et al. | Jul 1997 | A |
5710728 | Danielson et al. | Jan 1998 | A |
5712795 | Layman et al. | Jan 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5767457 | Gerpheide et al. | Jun 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5894580 | Yoshida | Apr 1999 | A |
5898290 | Beard et al. | Apr 1999 | A |
5898292 | Takemoto et al. | Apr 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
5917165 | Platt et al. | Jun 1999 | A |
5920309 | Bisset et al. | Jul 1999 | A |
5955869 | Rathmann | Sep 1999 | A |
5988902 | Holehan | Nov 1999 | A |
6125286 | Jahagirdar et al. | Sep 2000 | A |
6137427 | Binstead | Oct 2000 | A |
6246862 | Grivas et al. | Jun 2001 | B1 |
6249130 | Greer | Jun 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6304091 | Shahoian et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6377009 | Philipp | Apr 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6466036 | Philipp | Oct 2002 | B1 |
6480052 | Pettersen | Nov 2002 | B1 |
6492979 | Kent et al. | Dec 2002 | B1 |
6498600 | Vance et al. | Dec 2002 | B1 |
6501463 | Dahley et al. | Dec 2002 | B1 |
6535200 | Philipp | Mar 2003 | B2 |
6549193 | Huang et al. | Apr 2003 | B1 |
6583632 | Von Basse et al. | Jun 2003 | B2 |
6583676 | Krah et al. | Jun 2003 | B2 |
6630929 | Adler et al. | Oct 2003 | B1 |
6630941 | Addison | Oct 2003 | B1 |
6680677 | Tiphane | Jan 2004 | B1 |
6731209 | Wadlow et al. | May 2004 | B2 |
6753853 | Dotson | Jun 2004 | B1 |
6762752 | Perski et al. | Jul 2004 | B2 |
6774505 | Wnuk | Aug 2004 | B1 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6833729 | Kim et al. | Dec 2004 | B2 |
6842644 | Anderson et al. | Jan 2005 | B2 |
6879930 | Sinclair et al. | Apr 2005 | B2 |
6888076 | Hetherington | May 2005 | B2 |
6888536 | Westerman et al. | May 2005 | B2 |
6943705 | Bolender et al. | Sep 2005 | B1 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
6977646 | Hauck et al. | Dec 2005 | B1 |
6993607 | Philipp | Jan 2006 | B2 |
7002556 | Tsukada et al. | Feb 2006 | B2 |
7002557 | Iizuka | Feb 2006 | B2 |
7010710 | Piazza | Mar 2006 | B2 |
7015705 | Inaba et al. | Mar 2006 | B2 |
7019672 | Ely | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7034814 | Gong et al. | Apr 2006 | B2 |
7036504 | Wallace et al. | May 2006 | B2 |
7129935 | Mackey | Oct 2006 | B2 |
7148704 | Philipp | Dec 2006 | B2 |
7167093 | Fergusson | Jan 2007 | B2 |
7202859 | Speck et al. | Apr 2007 | B1 |
7240297 | Anderson et al. | Jul 2007 | B1 |
7289102 | Hinckley et al. | Oct 2007 | B2 |
7295190 | Philipp | Nov 2007 | B2 |
7346847 | Etter et al. | Mar 2008 | B2 |
7401296 | Watanabe et al. | Jul 2008 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7705834 | Swedin | Apr 2010 | B2 |
7764274 | Westerman et al. | Jul 2010 | B2 |
7781980 | Bruwer | Aug 2010 | B2 |
7852323 | Parkinson et al. | Dec 2010 | B2 |
RE42199 | Caldwell | Mar 2011 | E |
20010011995 | Hinckley et al. | Aug 2001 | A1 |
20010044318 | Mantyjarvi et al. | Nov 2001 | A1 |
20020030666 | Philipp | Mar 2002 | A1 |
20030011579 | Gong et al. | Jan 2003 | A1 |
20030067447 | Geaghan et al. | Apr 2003 | A1 |
20040104826 | Philipp | Jun 2004 | A1 |
20040118872 | Romanyszyn et al. | Jun 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20050041018 | Philipp | Feb 2005 | A1 |
20050052429 | Philipp | Mar 2005 | A1 |
20050179673 | Philipp | Aug 2005 | A1 |
20050219228 | Alameh et al. | Oct 2005 | A1 |
20050264304 | Nakamura et al. | Dec 2005 | A1 |
20060022955 | Kennedy | Feb 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060244733 | Geaghan | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2042562 | Aug 1989 | CN |
2129500 | Apr 1993 | CN |
0022890 | Apr 2000 | WO |
Entry |
---|
Institution Decision of IPR2015-01175 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01151 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01174 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01150 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01173 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01149 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01172 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01171 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01148 dated Nov. 17, 2005. |
Institution Decision of IPR2015-01147 dated Nov. 17, 2005. |
Petition for IPR2015-01928 dated Sep. 24, 2015. |
Petition for IPR2016-00221 dated Nov. 19, 2015. |
Petition for IPR2016-00158 dated Nov. 10, 2015. |
Institution Decision of IPR2015-01023 dated Sep. 28, 2015. |
Denial of IPR Institution for IPR2015-01024 dated Sep. 23, 2015. |
Denial of IPR Institution for IPR2015-01025 dated Oct. 8, 2015. |
Petition for IPR2015-01603 dated Jul. 23, 2015. |
Petition for IPR2015-01149 dated May 12, 2015. |
Petition for IPR2015-01173 dated May 11, 2015. |
Petition for IPR2015-01150 dated May 12, 2015. |
Petition for IPR2015-01174 dated May 11, 2015. |
Petition for IPR2015-01151 dated May 12, 2015. |
Petition for IPR2015-01175 date May 11, 2015. |
Petition for IPR2015-01024 dated Apr. 10, 2015. |
Petition for IPR2015-01025 dated Apr. 10, 2015. |
Petition for IPR2015-01023 dated Apr. 10, 2015. |
Petition for IPR2015-01616 dated Jul. 23, 2015. |
Petition for IPR2015-01147 dated May 12, 2015. |
Petition for IPR2015-01171 dated May 11, 2015. |
Petition for IPR2015-01148 dated May 12, 2015. |
Petition for IPR2015-01172 dated May 11, 2015. |
Communication dated Feb. 19, 2014, issued by the State Intellecutal Property Office, P.R. China in counterpart Chinese Application No. 201210107961.0. |
Petition for Inter Partes Review in IPR 7,265,494 dated Jul. 23, 2015. |
Petition for Inter Partes Review in IPR 7,498,749 dated Jul. 23, 2015. |
Petition for Inter Partes Review in IPR 8,288,952 dated May 12, 2015. |
Petition for IPR 201 5-01 61 6. |
Petition for IPR 2015-01603. |
Petition for IPR 2015-01175. |
Petition for IPR 2015-01174. |
Petition for IPR 2015-01173. |
Petition for IPR 2015-01172. |
Petition for IPR 2015-01171. |
Petition for IPR 2015-01151. |
Petition for IPR 2015-01150. |
Petition for IPR 2015-01149. |
Petition for IPR 2015-01148. |
Petition for IPR 2015-01147. |
Petition for IPR 2015-01125. |
Petition for IPR 2015-01124. |
Petition for IPR 2015-01123. |
Petition for IPR 2016-00158. |
Final Decision of IPR2015-01175 dated Nov. 16, 2016. |
Final Decision of IPR2015-01151 dated Nov. 16, 2016. |
Final Decision of IPR2015-01174 dated Nov. 16, 2016. |
Final Decision of IPR2015-01150 dated Nov. 16, 2016. |
Final Decision of IPR2015-01173 dated Nov. 16, 2016. |
Final Decision of IPR2015-01149 dated Nov. 16, 2016. |
Final Decision of IPR2015-01172 dated Nov. 16, 2016. |
Final Decision of IPR2015-01171 dated Nov. 16, 2016. |
Final Decision of IPR2015-01148 dated Nov. 16, 2016. |
Final Decision of IPR2015-01147 dated Nov. 16, 2016. |
Final Decision of IPR2015-01603 dated Nov. 29, 2016. |
Final Decision of IPR2015-01928 dated Dec. 28, 2016. |
Final Decision of IPR2015-01616 dated Dec. 28, 2016. |
Number | Date | Country | |
---|---|---|---|
20160070390 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13195877 | Aug 2011 | US |
Child | 14945766 | US | |
Parent | 12849093 | Aug 2010 | US |
Child | 13195877 | US | |
Parent | 11785063 | Apr 2007 | US |
Child | 12849093 | US | |
Parent | 10961373 | Oct 2004 | US |
Child | 11785063 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09806860 | US | |
Child | 10961373 | US | |
Parent | 09169395 | Oct 1998 | US |
Child | 09806860 | US |