As the computing and communication functions of handheld computing devices become more powerful, the user interface and display elements of such devices have evolved by attempting to adapt user interface regimes developed for personal computers for use with handheld computing devices. However, this attempt to adapt prior user interface regimes has been met with various hurdles.
For instance, the majority of current handheld computing devices make use of a physical keypad for user interface. Many different implementations of physical keypads exist that vary in orientation and relationship to the device screen. However, in every case the physical keypads take up a certain percentage of the physical space of the device and increase the weight of the device. In addition to the disadvantages of size and weight, physical keypads are not configurable in the same manner as a touch screen based user interface. While certain limited forms of physical keypads currently have, on the keys themselves, configurable displays, such as eInk or OLED surfaces, to allow for reconfiguration of the keys, even in these cases, the physical layout of keys is not modifiable. Rather, only the values associated with the physical keys on the keypad may be changed.
Other methods may provide increased user configurability of physical keypads. These methods may include stickers and/or labels that can be added to keys to reference modified functions or plastic overlays on top of the keypad denoting different functional suites. For instance, the ZBoard keyboard, meant for laptop or desktop computer use, incorporates a dual layered physical keyboard which separates the keys and their layout from the connections which send signals to the machine. As such, different physical keyboard inserts for different applications can be inserted into a holder allowing full configurability such that the orientation and layout of the keys in addition to their denotation of function is configurable. This model could be extended to handheld computing devices; however, the rate at which such a modular keypad can change functions is much slower than a touch screen user interface. Furthermore, for each potential functional suite, an additional physical key layout must be carried by the user, greatly increasing the overall physical size and weight of such implementations. One advantage of a physical keypad for handheld computing devices is that the user input space is extended beyond the user display space such that none of the keys themselves, the housing of the keys, a user's fingers, or a pointing device obscure any screen space during user interface activities.
A substantial number of handheld computing devices make use of a small touch screen display to deliver display information to the user and to receive inputs from the user. In this case, while the configurability of the device may be greatly increased and a wide variety of user interface options may be available to the user, this flexibility comes at a price. Namely, such arrangements require shared screen space between the display and the user interface. While this issue is shared with other types of touch screen display/user interface technology, the small form factor of handheld computing devices results in a tension between the displayed graphics and area provided for receiving inputs. For instance, the small display further constrains the display space, which may increase the difficulty of interpreting actions or results while a keypad or other user interface scheme is laid overtop or to the side of the applications in use such that the application is squeezed into an even smaller portion of the display. Thus a single display touch screen solution, which solves the problem of flexibility of the user interface may create an even more substantial set of problems of obfuscation of the display, visual clutter, and an overall conflict of action and attention between the user interface and the display.
Single display touch screen devices thus benefit from user interface flexibility, but are crippled by their limited screen space such that when users are entering information into the device through the display, the ability to interpret information in the display can be severely hampered. This problem is exacerbated in several key situations when complex interaction between display and interface is required, such as when manipulating layers on maps, playing a game, or modifying data received from a scientific application. This conflict between user interface and screen space severely limits the degree to which the touch based user interface may be used in an intuitive manner.
A first aspect includes a method for controlling a handheld computing device including one or more displays. The method includes displaying an application in a first display condition. The first display condition includes an icon in a first state corresponding to the first display condition. The method further includes receiving a gesture input at a gesture sensor. For instance, the gesture sensor may be a touch sensitive device, optical device (e.g., a camera), or other sensor operable to detect user inputs in the form of a gesture. The method also includes modifying the manner in which the application is displayed in response to the receiving step. The modifying step includes changing the application to a second display condition such that the icon is in a second state corresponding to a second display condition.
A second aspect includes a handheld computing device comprising a processor. The device also includes a first display operable to display a first screen. The first display is in operative communication with the processor. The device also includes a second display that is operable to display a second screen. The second display is also in operative communication with the processor. The device also includes at least one gesture sensor operable to receive a gesture input. The processor is operable to execute an application that is displayable on at least one of the first display and the second display in response to the gesture input. The application includes an icon indicative of a display status of the application with respect to the first and second displays.
A number of feature refinements and additional features are applicable to the first and second aspects. These feature refinements and additional features may be used individually or in any combination. As such, each of the following features that will be discussed may be, but are not required to be, used with any other feature or combination of features of any of the aspects presented herein.
In one embodiment, the icon may be changed in proportion to the relative position of the application with respect to the first and second display. The first display condition may include displaying the application in only a first display. In this regard, the modifying may include expanding the application to occupy at least a first and second display. Additionally or alternatively, the first display condition may include displaying the application in at least a first and second display. In this regard, the modifying may include minimizing the application to occupy only one of the first and second displays.
The first and second dimension may define a first aspect ratio, and the third and fourth dimension may define a second aspect ratio. In one embodiment, the first aspect ratio may be different than the second aspect ratio. In this regard, the first dimension and the third dimension may be equal. In one embodiment, the first dimension and the third dimension may be vertical dimensions. In turn, the second dimension may correspond to a width of the application when displayed in the first display, and the fourth dimension may correspond with the width of the application when displayed in the first and the second display.
In another embodiment, the modifying may include animating the change of the application. As such, the animating may include the change of the icon from the first aspect ratio to the second aspect ratio. The icon may be indicative of whether the application is expandable, whether the application is expanded, or whether the application is expanding.
In yet another embodiment, the handheld computing device may be a smart phone. The first display and second display may be positionable with respect to each other between an open and closed position. In this regard, when in the open position, the first display and the second display, may be concurrently visible from the vantage point of a user. In contrast, when in the closed position, only one of the first display and the second display may be visible from the vantage point of a user.
The present disclosure is generally related to gesture inputs for interaction with a computing device. The interface controls are particularly suited for control of devices that have one or more displays capable of displaying graphical user interfaces (GUIs) on a handheld portable device. The following disclosure may, in various embodiments, be applied to other computing devices capable of displaying and responding to a GUI (e.g., laptop computers, tablet computers, desktop computers, touch screen monitors, etc.) and is not intended to be limited to handheld computing devices unless otherwise explicitly specified.
A screen may be associated with an operating system, an application, or the like. In some instances, a screen may include interactive features (e.g., buttons, text fields, toggle fields, etc.) capable of manipulation by way of a user input. The user input may be received by various input devices (e.g., a physical keyboard, a roller ball, directional keys, a touch sensitive device, etc.). In some instances, a screen may simply include graphics and have no ability to receive an input by a user. In other instances, graphics features and input features may both be provided by a screen. As such, the one or more displays of a handheld computing device, the screens displayed on the one or more displays, and various user input devices may comprise a GUI that allows a user to exploit functionality of the handheld computing device.
The handheld computing device 100 may be configurable between a first position and a second position. In the first position, a single display (e.g., the first display 102 or the second display 104) may be visible from the perspective of a user. Both displays 102, 104 may be exposed on an exterior of the handheld device 100 when in the first position, but the displays 102, 104 may be arranged in a non-adjacent manner such that both displays 102, 104 are not concurrently visible from the perspective of a user (e.g., one display may be visible from the front of the device 100 and the other display may be visible from the back of the device 100).
The handheld computing device 100 may also be provided in the second position such that the displays 102, 104 may be concurrently viewable from the perspective of a user (e.g., the displays 102, 104 may be positioned adjacent to one another). The displays 102, 104 may be displayed in the second position such that the displays 102, 104 are arranged end-to-end or side-by-side. Additionally, the displays 102, 104 may be arranged in a portrait orientation or a landscape orientation with respect to a user. As will be discussed further below, a portrait orientation is intended to describe an arrangement of the handheld computing device, wherein the longer dimension of the display of the handheld computing device is vertically oriented (e.g., with respect to gravity or the perspective of a user). A landscape orientation is intended to describe an arrangement wherein the shorter dimension of the display of the handheld computing device is vertically oriented (e.g., with respect to gravity or the perspective of a user). Furthermore, the longer dimension and shorter dimension may refer to each display individually or the combined viewing area of the one or more displays of the device. Thus, when the individual displays are arranged in a portrait orientation, the overall display area may be arranged in a landscape orientation, and vice versa. Additionally, the displays and screens may be in different respective orientations. For instance, when the displays are in a landscape orientation, one or more screens may be rendered in a portrait orientation on the displays or vice versa.
The handheld computing device 100 may be manipulated between the first position (i.e., a single display visible from a user's perspective) and the second position (i.e., at least two displays concurrently visible from the user's perspective) in a variety of manners. For instance, the device 100 may include a slider mechanism such that the first and second displays 102, 104 are disposable adjacent to one another in a parallel fashion in a second position and slideable to the first position where only a single display is viewable and the other display is obscured by the viewable display.
Alternatively, the device 100 may be arranged in a clam shell type arrangement wherein a hinge is provided between the first display 102 and the second display 104 such that the displays 102, 104 are concurrently visible by a user when in the second position (i.e., an open position). The displays 102, 104 may be provided on an interior clam shell portion or an exterior clam shell portion of the device 100. In this regard, both displays 102, 104 may be visible from the front and the back of the device, respectively, when the device is in the first position (i.e., the closed position). When the device 100 is in the open position, the displays 102, 104 may be provided adjacent and parallel to one another. Alternative arrangements of the handheld computing device 100 are contemplated wherein different arrangements and/or relative locations of the displays may be provided when in the first and second position.
In addition, the first display 102 and the second display 104 may be provided as entirely separate devices. In this regard, a user may manipulate the displays 102, 104 such that they may be positioned adjacent to one another (e.g., side-by-side or end-to-end). The displays 102, 104 may be in operative communication when adjacently positioned such that the displays 102, 104 may operate in the manner provided in greater detail below when adjacently positioned (e.g., via physical contacts, wireless communications, etc.). A retention member (not shown) may be provided to retain the separate displays 102, 104 in an adjacent position. For instance, the retention member may include coordinating magnets, mechanical clips or fasteners, elastic members, etc.
While the foregoing has referenced two displays 102 and 104, alternate embodiments of a handheld device may include more than two displays. In this regard, the two or more displays may behave in a manner in accordance with the foregoing wherein only a single display is viewable by a user in a first position and multiple displays (i.e., more than two displays) are viewable in a second position. Additionally, in one embodiment, the two displays 102 and 104 may comprise separate portions of a unitary display. As such, the first display 102 may be a first portion of the unitary display and the second display 104 may be a second portion of the unitary display. For instance, the handheld computing device 100 (e.g., having a first and second display 102 and 104) may be operatively connected to the unitary display (e.g., via a connector or a dock portion of the unitary display) such that the first display 102 and the second display 104 of the handheld computing device 100 are emulated on the unitary display. As such, the unitary display may have first and second portions corresponding to and acting in a similar manner to the first and second display 102 and 104 of the handheld computing device 100 described below.
The handheld computing device 100 may further include one or more input devices that may be used to receive user inputs. These input devices may be operative to receive gesture inputs from a user, and, accordingly, may be referred to generally as gesture sensors. A number of different types of gesture sensors may be provided. Some examples include, but are not limited to traditional input devices (keypads, trackballs, etc.), touch sensitive devices, optical sensors (e.g., a camera or the like), etc. The discussion contained herein may reference the use of touch sensitive devices to receive gesture inputs. However, the use of touch sensitive devices is not intended to limit the means for receiving gesture inputs to touch sensitive devices alone and is provided for illustrative purposes only. Accordingly, any of the foregoing means for receiving a gesture input may be used to produce the functionality disclosed below with regard to gesture inputs received at touch sensitive devices.
In this regard, the handheld computing device 100 may include at least a first touch sensor 106. Furthermore, the handheld computing device may include a second touch sensor 108. The first touch sensor 106 and/or the second touch sensor 108 may be touchpad devices, touch screen devices, or other appropriate touch sensitive devices. Examples include capacitive touch sensitive panels, resistive touch sensitive panels, or devices employing other touch sensitive technologies. The first touch sensor 106 and/or second touch sensor 108 may be used in conjunction with a portion of a user's body (e.g., finger, thumb, hand, etc.), a stylus, or other acceptable touch sensitive interface mechanisms known in the art. Furthermore, the first touch sensor 106 and/or the second touch sensor 108 may be multi-touch devices capable of sensing multiple touches simultaneously.
The first touch sensor 106 may correspond to the first display 102 and the second touch sensor 108 may correspond to the second display 104. In one embodiment of the handheld computing device 100, the first display 102 and the first touch sensor 106 comprise a first touch screen display 110. In this regard, the first touch sensor 106 may be transparent or translucent and positioned with respect to the first display 102 such that a corresponding touch received at the first touch sensor 106 may be correlated to the first display 102 (e.g., to interact with a screen rendered on the first display 102). Similarly, the second display 104 and the second touch sensor 108 may comprise a second touch screen display 112. In this regard, the second touch sensor 108 may be positioned with respect to the second display 104 such that a touch received at the second touch sensor 108 may be correlated to the second display 104 (e.g., to interact with a screen rendered on the second display 104). Alternatively, the first touch sensor 106 and/or the second touch sensor 108 may be provided separately from the displays 102, 104. Furthermore, in an alternate embodiment, only a single gesture sensor may be provided that allows for inputs to control both the first display 102 and the second display 104. The single gesture sensor may also be provided separately or integrally with the displays.
In this regard, the first and second touch sensors 106, 108 may have the substantially same footprint on the handheld computing device 100 as the displays 102, 104. Alternatively, the touch sensors 106, 108 may have a footprint including less of the entirety of the displays 102, 104. Further still, the touch sensors 106, 108 may include a footprint that extends beyond the displays 102, 104 such that at least a portion of the touch sensors 106, 108 are provided in non-overlapping relation with respect to the displays 102, 104. As discussed further below, the touch sensors 106, 108 may alternatively be provided in complete non-overlapping relation such that the footprint of the touch sensors 106, 108 is completely different than the footprint of the displays 102, 104.
With reference to
In any of the arrangements shown in
The handheld computing device 100 may further include a processor 116. The processor 116 may be in operative communication with a data bus 114. The processor 116 may generally be operative to control the functionality of the handheld device 100. For instance, the processor 116 may execute an operating system and be operative to execute applications. The processor 116 may be in communication with one or more additional components 120-134 of the handheld computing device 100 as will be described below. For instance, the processor 116 may be in direct communication with one more of the additional components 120-134 or may communicate with the one or more additional components 120-134 via the data bus 114. Furthermore, while the discussion below may describe the additional components 120-134 being in operative communication with the data bus 114, in other embodiments any of the additional components 120-134 may be in direct operative communication with any of the other additional components 120-134. Furthermore, the processor 116 may be operative to independently control the first display 102 and the second display 104 and may be operative to receive input from the first touch sensor 106 and the second touch sensor 108. The processor 116 may comprise one or more different processors. For example, the processor 116 may comprise one or more application specific integrated circuits (ASICs), one or more field-programmable gate arrays (FPGAs), one or more general purpose processors operative to execute machine readable code, or a combination of the foregoing.
The handheld computing device may include a battery 118 operative to provide power to the various devices and components of the handheld computing device 100. In this regard, the handheld computing device 100 may be portable.
The handheld computing device 100 may further include a memory module 120 in operative communication with the data bus 114. The memory module 120 may be operative to store data (e.g., application data). For instance, the memory 120 may store machine readable code executable by the processor 116 to execute various functionalities of the device 100.
Additionally, a communications module 122 may be in operative communication with one or more components via the data bus 114. The communications module 122 may be operative to communicate over a cellular network, a Wi-Fi connection, a hardwired connection or other appropriate means of wired or wireless communication. The handheld computing device 100 may also include an antenna 126. The antenna 126 may be in operative communication with the communications module 122 to provide wireless capability to the communications module 122. Accordingly, the handheld computing device 100 may have telephony capability (i.e., the handheld computing device 100 may be a smartphone device). An audio module 124 may also be provided in operative communication with the data bus 114.
The audio module 124 may include a microphone and/or speakers. In this regard, the audio module 124 may be able to capture audio or produce sounds. Furthermore, the device 100 may include a camera module 128. The camera module 128 may be in operative communication with other components of the handheld computing device 100 to facilitate the capture and storage of images or video.
Additionally, the handheld computing device 100 may include an I/O module 130. The I/O module 130 may provide input and output features for the handheld computing device 100 such that the handheld computing device 100 may be connected via a connector or other device in order to provide syncing or other communications between the handheld computing device 100 and another device (e.g., a peripheral device, another computing device etc.).
The handheld computing device 100 may further include an accelerometer module 132. The accelerometer module 132 may be able to monitor the orientation of the handheld computing device 100 with respect to gravity. In this regard, the accelerometer module 132 may be operable to determine whether the handheld computing device 100 is substantially in a portrait orientation or landscape orientation. The accelerometer module 132 may further provide other control functionality by monitoring the orientation and/or movement of the handheld computing device 100.
The handheld computing device 100 may also include one or more hardware buttons 134. The hardware buttons 134 may be used to control various features of the handheld computing device 100. The hardware buttons 134 may have fixed functionality or may be contextual such that the specific function of the buttons changes during operation of the handheld computing device 100. Examples of such hardware buttons may include, but are not limited to, a volume control, a home screen button, an end button, a send button, a menu button, etc.
With further reference to
A desktop sequence 136 is displayed in
Additionally,
The device may further be provided in a second (e.g., open) position 174 as shown in
Additionally, when the device is in an open position 174 as shown in
For example, the multi screen application 152 may be maximized from a single screen mode displayed in a single display to two screens displayed in two displays such that a parent screen is displayed in the first display and a node screen (e.g., a child screen) is expanded into the second display. In this regard, each of the screens displayed in the first and second display may be independent screens that comprise part of a hierarchical application sequence (e.g., as shown in
In this regard, an application may have configurable functionality regarding the nature and behavior of the screens of the application. For instance, an application may be configurable to be a single screen application or a multi screen application. Furthermore, a multi screen application may be configurable as to the nature of the expansion of the multi screen application between a single screen mode and a multi screen mode. These configuration values may be default values that may be changed or may be permanent values for various applications. These configuration values may be communicated to the device (e.g., the processor 116) to dictate the behavior of the application when executing on the device.
With reference to
A drag 176 involves a touch (represented by circle 190) with movement 194 in a direction. The drag 176 may involve an initiating touch that remains stationary on the touch sensitive device for a certain amount of time represented by the border 192. In contrast, a flick 178 may involve a touch with a shorter dwell time prior to movement than the drag as indicated by the thinner border 192″ of the flick 178. Thus, again different gestures may be produced by differing dwell times of a touch prior to movement. The flick 178 may also include movement 194. The direction of movement 194 of the drag and flick 178 may be referred to as the direction of the drag or direction of the flick. Thus, a drag to the right may describe a drag 176 with movement 194 to the right.
In an embodiment, a gesture having movement (e.g., a flick or drag gesture as described above) may be limited to movement in a single direction along a first axis. Thus, while movement in a direction different than along the first axis may be disregarded so long as contact with the touch sensitive device is unbroken. In this regard, once a gesture is initiated, movement in a direction not along an axis along which initial movement is registered may be disregarded or only the vector component of movement along the axis may be registered.
While the directional gestures (e.g., the drag 176 and flick 178) shown in
The handheld computing device that is positionable such that a first display 102 and a second display 104 are both visible from the vantage point of the user may allow for expansion of applications to occupy both the first display 102 and the second display 104. This expansion may be by a variety of techniques such as, for example, by way of receipt of a gesture or otherwise. In that applications may include one or more screens or have screens that may be expanded across multiple displays, it may be advantageous to provide an indication to a user as to whether the application screen is expandable, has been expanded, or is in the process of expanding.
To this end, a screen may include an icon which indicates to a user the state of the screen (e.g., be it in an expanded mode, unexpanded mode, or expanding mode). The icon may be morphed along with the expansion of the application screen or application into another display. Such an arrangement is depicted in
The icon 500 may have a number of states that correspond with the condition of the application 156. As such, icon 500 may be in a first state. In turn, icon 500″ may correspond to the icon 500 in a second state (e.g., wherein application 156 is in a second condition). Icon 500′ may represent icon 500 in a state between the first state and second state.
A second display 104 including a desktop screen 138 is also visible to a user. Upon initiation of expansion of the application 156 into the second display 104, shown in
In this regard, the icon 500 may include a first dimension and a second dimension comprising a first aspect ratio. Icon 500″ may have a third dimension and a fourth dimension comprising a second aspect ratio. In various embodiments, the first aspect ratio and second aspect ratio may change or may remain constant upon expansion of the application 156. For example, the first aspect ratio may change as the application 156 expands to occupy both displays until finally the icon 500″ is in a steady state, wherein the icon 500″ defines the second aspect ratio. In this regard, the first dimension and the third dimension of the icon 500 and 500″, respectively, may be the same. That is, icon 500 and 500″ may share a common dimension in a first direction. For instance, at the first dimension and the third dimension may comprise a height dimension. In this regard, the height of icon 500 may not change as it morphs to 500″, however, the width of icon 500 may expand commensurately with the expansion of the application into the second display. In other embodiments, the height of the icons 500, 500′, and 500″ may also change (e.g., to maintain a constant aspect ratio); however, such an instance is not shown.
When modifying the manner in which the application is displayed, the modifying may include a stretching or expanding of the icon 500 into the second display 104 in proportion to the expansion of the application 156. In this regard, the width (e.g., the first or third dimension) may be proportionate to the width of the application 156 as it expands into the second display. That is, the icon 500′ may have a length corresponding to the width of screen 156A and any portion of the width of screen 1568 as it is expanded into the second display 104. As such, once fully expanded, icon 550″ may have a width equal to the width of screens 156A and 1568 combined (e.g., as a continuous icon spanning both screens).
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character. For example, certain embodiments described hereinabove may be combinable with other described embodiments and/or arranged in other ways (e.g., process elements may be performed in other sequences). Accordingly, it should be understood that only the preferred embodiment and variants thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims priority to U.S. Provisional Application Ser. No. 61/389,000, filed Oct. 1, 2010, entitled “DUAL DISPLAY WINDOWING SYSTEM”; Provisional Application Ser. No. 61/389,117, filed Oct. 1, 2010, entitled “MULTI-OPERATING SYSTEM PORTABLE DOCKETING DEVICE”; and Provisional Application Ser. No. 61/389,087, filed Oct. 1, 2010, entitled “TABLET COMPUTING USER INTERFACE”. Each and every part of the foregoing provisional applications is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5396630 | Banda et al. | Mar 1995 | A |
5673403 | Brown et al. | Sep 1997 | A |
5764984 | Loucks | Jun 1998 | A |
5874928 | Kou | Feb 1999 | A |
6108715 | Leach et al. | Aug 2000 | A |
6157959 | Bonham et al. | Dec 2000 | A |
6178503 | Madden et al. | Jan 2001 | B1 |
6182158 | Kougiouris et al. | Jan 2001 | B1 |
6260075 | Cabrero et al. | Jul 2001 | B1 |
6486890 | Harada et al. | Nov 2002 | B1 |
6507336 | Lunsford | Jan 2003 | B1 |
6694368 | An et al. | Feb 2004 | B1 |
6826703 | Kawano et al. | Nov 2004 | B2 |
6927908 | Stark | Aug 2005 | B2 |
6961941 | Nelson et al. | Nov 2005 | B1 |
6970173 | Ciolac | Nov 2005 | B2 |
7069519 | Okude et al. | Jun 2006 | B1 |
7127723 | Endo et al. | Oct 2006 | B2 |
7284203 | Meeks et al. | Oct 2007 | B1 |
7424601 | Xu | Sep 2008 | B2 |
7453465 | Schmieder et al. | Nov 2008 | B2 |
7478341 | Dove | Jan 2009 | B2 |
7489503 | Maatta | Feb 2009 | B2 |
7565535 | Roberts et al. | Jul 2009 | B2 |
7681134 | Grechishkin et al. | Mar 2010 | B1 |
7705799 | Niwa | Apr 2010 | B2 |
7880728 | de los Reyes et al. | Feb 2011 | B2 |
7949633 | Shaver et al. | May 2011 | B1 |
7950008 | Bhide et al. | May 2011 | B2 |
7960945 | Onorato et al. | Jun 2011 | B1 |
8397245 | Filali-Adib et al. | Mar 2013 | B2 |
20020010844 | Noel et al. | Jan 2002 | A1 |
20020015881 | Nakamura et al. | Feb 2002 | A1 |
20020157001 | Huang et al. | Oct 2002 | A1 |
20020158811 | Davis | Oct 2002 | A1 |
20030001848 | Doyle et al. | Jan 2003 | A1 |
20030017417 | Goodin et al. | Jan 2003 | A1 |
20030020954 | Udom et al. | Jan 2003 | A1 |
20030079010 | Osborn | Apr 2003 | A1 |
20030079205 | Miyao et al. | Apr 2003 | A1 |
20030115443 | Cepulis et al. | Jun 2003 | A1 |
20030174172 | Conrad et al. | Sep 2003 | A1 |
20030177285 | Hunt et al. | Sep 2003 | A1 |
20030179541 | Sullivan | Sep 2003 | A1 |
20030226116 | Kuwata et al. | Dec 2003 | A1 |
20040137855 | Wiley et al. | Jul 2004 | A1 |
20040141085 | Nickel et al. | Jul 2004 | A1 |
20040226023 | Tucker | Nov 2004 | A1 |
20050034017 | Airaud et al. | Feb 2005 | A1 |
20050083642 | Senpuku et al. | Apr 2005 | A1 |
20050193267 | Liu et al. | Sep 2005 | A1 |
20050216594 | O'Brien et al. | Sep 2005 | A1 |
20050237587 | Nakamura | Oct 2005 | A1 |
20050246505 | McKenney et al. | Nov 2005 | A1 |
20050248501 | Kim | Nov 2005 | A1 |
20060031572 | Feuerstein et al. | Feb 2006 | A1 |
20060107020 | Stillwell, Jr. et al. | May 2006 | A1 |
20060136828 | Asano | Jun 2006 | A1 |
20060139862 | Wang et al. | Jun 2006 | A1 |
20060183505 | Willrich | Aug 2006 | A1 |
20060187142 | Lesniak | Aug 2006 | A1 |
20060227806 | Tseng | Oct 2006 | A1 |
20070005661 | Yang | Jan 2007 | A1 |
20070014295 | Fernandes et al. | Jan 2007 | A1 |
20070022155 | Owens et al. | Jan 2007 | A1 |
20070033260 | Grouzdev et al. | Feb 2007 | A1 |
20070050751 | Husmann et al. | Mar 2007 | A1 |
20070067769 | Geisinger | Mar 2007 | A1 |
20070111750 | Stohr et al. | May 2007 | A1 |
20070136356 | Smith et al. | Jun 2007 | A1 |
20070182663 | Biech | Aug 2007 | A1 |
20070198760 | Han | Aug 2007 | A1 |
20070271522 | Son et al. | Nov 2007 | A1 |
20070288941 | Dunshea et al. | Dec 2007 | A1 |
20080024388 | Bruce | Jan 2008 | A1 |
20080057910 | Thoresson et al. | Mar 2008 | A1 |
20080062625 | Batio | Mar 2008 | A1 |
20080071595 | Chang et al. | Mar 2008 | A1 |
20080082815 | Kawano et al. | Apr 2008 | A1 |
20080090525 | Joo | Apr 2008 | A1 |
20080119237 | Kim | May 2008 | A1 |
20080119731 | Becerra et al. | May 2008 | A1 |
20080134061 | Banerjee et al. | Jun 2008 | A1 |
20080155103 | Bailey | Jun 2008 | A1 |
20080244599 | Hodson et al. | Oct 2008 | A1 |
20080291283 | Achiwa et al. | Nov 2008 | A1 |
20080299951 | Karkanias et al. | Dec 2008 | A1 |
20090037649 | Xu | Feb 2009 | A1 |
20090055749 | Chatterjee et al. | Feb 2009 | A1 |
20090083829 | Peterson | Mar 2009 | A1 |
20090089569 | Baribault et al. | Apr 2009 | A1 |
20090100429 | Thoelke et al. | Apr 2009 | A1 |
20090109468 | Barclay et al. | Apr 2009 | A1 |
20090119580 | Rohrabaugh et al. | May 2009 | A1 |
20090158299 | Carter | Jun 2009 | A1 |
20090164930 | Chen et al. | Jun 2009 | A1 |
20090176571 | Sternberg | Jul 2009 | A1 |
20090217071 | Huang et al. | Aug 2009 | A1 |
20090219254 | Lai et al. | Sep 2009 | A1 |
20090249247 | Tseng et al. | Oct 2009 | A1 |
20090249331 | Davis et al. | Oct 2009 | A1 |
20090257657 | Temmermans et al. | Oct 2009 | A1 |
20090305743 | Gouesbet et al. | Dec 2009 | A1 |
20090313440 | Kim et al. | Dec 2009 | A1 |
20090327560 | Yalovsky | Dec 2009 | A1 |
20100005396 | Nason et al. | Jan 2010 | A1 |
20100013863 | Harris | Jan 2010 | A1 |
20100046026 | Heo | Feb 2010 | A1 |
20100060549 | Tsern | Mar 2010 | A1 |
20100063994 | Cook et al. | Mar 2010 | A1 |
20100064228 | Tsern | Mar 2010 | A1 |
20100064244 | Kilpatrick et al. | Mar 2010 | A1 |
20100064536 | Caskey et al. | Mar 2010 | A1 |
20100066763 | Macdougall et al. | Mar 2010 | A1 |
20100079355 | Kilpatrick, II et al. | Apr 2010 | A1 |
20100085274 | Kilpatrick et al. | Apr 2010 | A1 |
20100085301 | Cohen et al. | Apr 2010 | A1 |
20100085382 | Lundqvist et al. | Apr 2010 | A1 |
20100097386 | Kim et al. | Apr 2010 | A1 |
20100107163 | Lee | Apr 2010 | A1 |
20100122271 | Labour et al. | May 2010 | A1 |
20100157518 | Ladouceur et al. | Jun 2010 | A1 |
20100177019 | Jeong et al. | Jul 2010 | A1 |
20100177047 | Brenneman et al. | Jul 2010 | A1 |
20100207903 | Kim et al. | Aug 2010 | A1 |
20100211769 | Shankar et al. | Aug 2010 | A1 |
20100246119 | Collopy et al. | Sep 2010 | A1 |
20100250975 | Gill et al. | Sep 2010 | A1 |
20100251233 | Majewski et al. | Sep 2010 | A1 |
20100319008 | Ho | Dec 2010 | A1 |
20100321275 | Hinckley et al. | Dec 2010 | A1 |
20110012858 | Brookes et al. | Jan 2011 | A1 |
20110016299 | Galicia et al. | Jan 2011 | A1 |
20110016301 | Galicia et al. | Jan 2011 | A1 |
20110018901 | Boorman et al. | Jan 2011 | A1 |
20110025625 | Hirako | Feb 2011 | A1 |
20110034214 | Hong et al. | Feb 2011 | A1 |
20110063192 | Miller et al. | Mar 2011 | A1 |
20110093691 | Galicia et al. | Apr 2011 | A1 |
20110093836 | Galicia et al. | Apr 2011 | A1 |
20110102314 | Roux | May 2011 | A1 |
20110113329 | Pusateri | May 2011 | A1 |
20110115737 | Fuyuno et al. | May 2011 | A1 |
20110126216 | Galicia et al. | May 2011 | A1 |
20110167492 | Ghosh et al. | Jul 2011 | A1 |
20110209102 | Hinckley et al. | Aug 2011 | A1 |
20110210922 | Griffin | Sep 2011 | A1 |
20110216064 | Dahl et al. | Sep 2011 | A1 |
20110225538 | Oyagi et al. | Sep 2011 | A1 |
20110239142 | Steeves et al. | Sep 2011 | A1 |
20110246904 | Pinto et al. | Oct 2011 | A1 |
20110260997 | Ozaki | Oct 2011 | A1 |
20110267478 | Jacobs | Nov 2011 | A1 |
20110273464 | Brunner et al. | Nov 2011 | A1 |
20110273475 | Herz et al. | Nov 2011 | A1 |
20110289444 | Winsky | Nov 2011 | A1 |
20110291964 | Chambers et al. | Dec 2011 | A1 |
20120005602 | Anttila et al. | Jan 2012 | A1 |
20120005691 | Wong et al. | Jan 2012 | A1 |
20120026069 | Ohsaki | Feb 2012 | A1 |
20120060089 | Heo et al. | Mar 2012 | A1 |
20120081353 | Yusupov et al. | Apr 2012 | A1 |
20120081354 | Yusupov et al. | Apr 2012 | A1 |
20120081380 | Reeves et al. | Apr 2012 | A1 |
20120081383 | Reeves et al. | Apr 2012 | A1 |
20120081396 | Yusupov et al. | Apr 2012 | A1 |
20120084480 | Reeves et al. | Apr 2012 | A1 |
20120084481 | Reeves et al. | Apr 2012 | A1 |
20120084542 | Reeves et al. | Apr 2012 | A1 |
20120084675 | Sirpal et al. | Apr 2012 | A1 |
20120084697 | Reeves | Apr 2012 | A1 |
20120084791 | Benedek et al. | Apr 2012 | A1 |
20120084792 | Benedek et al. | Apr 2012 | A1 |
20120084793 | Reeves et al. | Apr 2012 | A1 |
20120084798 | Reeves et al. | Apr 2012 | A1 |
20120086716 | Reeves et al. | Apr 2012 | A1 |
20120086717 | Liu | Apr 2012 | A1 |
20120089906 | Reeves et al. | Apr 2012 | A1 |
20120089992 | Reeves et al. | Apr 2012 | A1 |
20120094716 | Reeves | Apr 2012 | A1 |
20120172088 | Kirch et al. | Jul 2012 | A1 |
20120176413 | Kulik et al. | Jul 2012 | A1 |
20120188185 | Cassar | Jul 2012 | A1 |
20120278747 | Abraham et al. | Nov 2012 | A1 |
20120278750 | Abraham et al. | Nov 2012 | A1 |
20130019183 | Reeves et al. | Jan 2013 | A1 |
20130024778 | Reeves et al. | Jan 2013 | A1 |
20130167159 | Ricci et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
7-219903 | Aug 1995 | JP |
08-115144 | May 1996 | JP |
2008-225546 | Sep 2008 | JP |
1020020092969 | Dec 2002 | KR |
100578592 | May 2006 | KR |
1020060081997 | Jul 2006 | KR |
100616157 | Aug 2006 | KR |
100883208 | Feb 2009 | KR |
1020100043434 | Apr 2010 | KR |
WO 2006075859 | Jul 2006 | WO |
WO 2008132924 | Nov 2008 | WO |
WO 2012044510 | Apr 2012 | WO |
WO 2012044518 | Apr 2012 | WO |
WO 2012044645 | Apr 2012 | WO |
WO 2012044738 | Apr 2012 | WO |
WO 2012044872 | Apr 2012 | WO |
Entry |
---|
U.S. Appl. No. 13/187,026, filed Jul. 20, 2011, Chen. |
U.S. Appl. No. 13/399,901, filed Feb. 17, 2012, Reeves et al. |
U.S. Appl. No. 13/484,951, filed May 31, 2012, Sirpal et al. |
U.S. Appl. No. 13/485,734, filed May 31, 2012, Reeves et al. |
U.S. Appl. No. 13/624,565, filed Sep. 21, 2012, Sirpal et al. |
U.S. Appl. No. 13/628,380, filed Sep. 27, 2012, Reeves. |
U.S. Appl. No. 13/628,157, filed Sep. 27, 2012, Kretz. |
U.S. Appl. No. 13/628,170, filed Sep. 27, 2012, Kretz. |
U.S. Appl. No. 13/628,234, filed Sep. 27, 2012, Kretz. |
U.S. Appl. No. 13/629,415, filed Sep. 27, 2012, Reeves. |
U.S. Appl. No. 13/628,949, filed Sep. 27, 2012, Reeves et al. |
Burns, C., “Motorola ATRIX 4G Laptop Dock Review,” at www.androidcommunity.com/motorola-atrix-4g-laptop-dock-review-20110220/, Feb. 20, 2011, 5 pages. |
Catacchio, Chad, “This smartphone has two huge screens . . . that rotate,” The Next Web at www.thenextweb.com/asia/2010/10/07/this-smartphone-has-two-huge-screens-that-rotate/, Jul. 21, 2011, 2 pages. |
Google images, accessed Apr. 18, 2011, 6 pages. |
Google Transliteration IME website, 2010, available at www.google.com/ime/transliteration/help.html#features, 8 pages. |
Harman03, “Kyocera Echo Dual-screen Android Phone,” posted 4 weeks from Apr. 18, 2011, 3 pages. |
InputKing Online Input System, 2011, available at www.inputking.com, 2 pages. |
“Lapdock™ for Motorola ATRIX,” at www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/Mobile..., accessed Apr. 18, 2011, 1 page. |
“Motorola ATRIX 4G Laptop Dock Review,” at www.phonearena.com/reviews/Motorola-ATRIX-4G-Laptop-Dock-Review—id2667, Mar. 2, 2011, 6 pages. |
SAKHR Software—Arabic Optical Character Recognition, Jul. 15, 2011, available at www.sakhr.com/ocr.aspx, 1 page. |
Stein, S., “How does the Motorola Atrix 4G Lapdock compare with a laptop?” Crave—CNET, at www.news.cnet.com/8301-17938—105-20031251-1.html, Feb. 9, 2011, 7 pages. |
Website entitled, “Kyocera Echo,” at www.echobykyocera.com/, 2011, 6 pages. |
Website entitled, “Sony Tablet,” at www.store.sony.com/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=10551&storeId=10151&langId=-1&categoryId=8198552921644795521, 2011, 3 pages. |
Wikipedia, “Balloon help,” Jul. 18, 2011, available at www.en.wikipedia.org/wiki/Balloon—help, 3 pages. |
Wikipedia, “Google Pinyin,” Aug. 27, 2011 available at www.en.wikipedia.org/wiki/Google—Pinyin, 3 pages. |
Wikipedia, “Mouseover,” Sep. 29, 2011, available at www.en.wikipedia.org/wiki/Mouseover, 2 pages. |
Wikipedia, “Predictive text,” Aug. 7, 2011, available at www.en.wikipedia.org/wiki/Predictive—test, 6 pages. |
Wikipedia, “Sogou Pinyin,” Jul. 23, 2011 available at www.en.wikipedia.org/wiki/Sogou—Pinyin, 3 pages. |
Wikipedia, “Status bar,” Sep. 8, 2011, available at www.en.wikipedia.org/wiki/Status—bar, 3 pages. |
Wikipedia, “Tooltip,” Sep. 17, 2011, available at www.en.wikipedia.org/wiki/Tooltip, 2 pages. |
International Search Report for International Patent Application No. PCT/US11/52822, mailed Apr. 27, 2012, 5 pages. |
International Search Report for International Patent Application No. PCT/US11/52598, mailed Mar. 27, 2012, 3 pages. |
International Search Report for International Patent Application No. PCT/US11/53835, mailed Apr. 30, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US11/53835, mailed Apr. 30, 2012, 4 pages. |
International Search Report for International Patent Application No. PCT/US11/54105, mailed Apr. 30, 2012, 3 pages. |
International Search Report for International Patent Application No. PCT/US11/53585, mailed May 4, 2012, 3 pages. |
Official Action for U.S. Appl. No. 13/484,951, mailed Aug. 17, 2012, 13 pages. |
Mikeclay, “Launch Multiple Programs at Once Using Simple Batch File,” Feb. 5, 2009 available at www.web.archive.org/web/20090205134920/http://www.windowsreference.com/windows-2000/launch-multiple-programs-at-once-using-simple-batch-file/, 5 pages. |
Official Action for U.S. Appl. No. 12/948,701, mailed Nov. 16, 2012, 16 pages. |
U.S. Appl. No. 14/068,662, filed Oct. 13, 2013, Benedek. |
“Apple iPod and iPhone dock Connector Pinout,” AllPinouts, Sep. 27, 2010, 3 pages [www.allpinouts.org/index/php/Apple—iPod,—iPad—and—iPhone—dock]. |
“How to Install Ubuntu on Your Nexus One/Android!” NexusOneHacks.net, Jul. 6, 2010, 9 pages [nexusonehacks.net/nexus-one-hacks/how-to-install-ubuntu-on-your-android]. |
Kilpatrick et al., “Securing the X Window System with SELinux,” NAI Labs Report No. 03-006, 2003, 33 pages. |
Stallman “GNU Operating System: Android and Users' Freedom,” Sep. 2, 2013, 4 pages [gnu.org/philosophy/android-and-users-freedom.html]. |
Official Action for U.S. Appl. No. 13/399,929, mailed Dec. 3, 2013 21 pages. |
Official Action for U.S. Appl. No. 13/399,936, mailed Sep. 10, 2013 23 pages. |
Official Action for U.S. Appl. No. 12/905,920, mailed Sep. 30, 2013 20 pages. |
Final Action for U.S. Appl. No. 13/217,099, mailed Oct. 9, 2013 74 pages. |
Official Action for U.S. Appl. No. 13/217,108, mailed Oct. 11, 2013 13 pages. |
Final Action for U.S. Appl. No. 13/251,427, mailed Oct. 21, 2013 17 pages. |
Notice of Allowance for U.S. Appl. No. 13/247,166, mailed Nov. 4, 2013 14 pages. |
Official Action for U.S. Appl. No. 13/217,130, mailed Sep. 16, 2013 12 pages. |
Notice of Allowance for U.S. Appl. No. 13/246,669, mailed Sep. 11, 2013 16 pages. |
Official Action for U.S. Appl. No. 13/246,671, mailed Nov. 20, 2013 50 pages. |
Official Action for U.S. Appl. No. 13/246,675, mailed Sep. 27, 2013 32 pages. |
U.S. Appl. No. 13/843,086, filed Mar. 15, 2013, Reeves et al. |
Dutko, “Domo Arigato Mr Androidato—An Introduction to the New Google Mobile Linux Framework, Android,” Linux Journal, Mar. 2008, vol. 2008, Iss. 167, 9 pages. |
Sud, et al., “Dynamic Migration of Computation Through Virtualization of the Mobile Platform,” Mobile Networks and Applications, 2012, (published online Feb. 22, 2011), vol. 17, Iss. 2, pp. 206-215. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/046800, mailed Feb. 20, 2013, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/046802, mailed Feb. 20, 2013, 9 pages. |
International Search Report for International Patent Application No. PCT/US2011/056149, mailed Apr. 24, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/056149, mailed Apr. 24, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/056149, mailed Apr. 25, 201, 6 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2011/052822, mailed Apr. 11, 2013 7 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2011/052598, mailed Apr. 11, 2013 9 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2011/053835, mailed Apr. 11, 2013 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053130, mailed Apr. 24, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053130, mailed Apr. 24, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053130, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053826, mailed Apr. 27, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053826, mailed Apr. 27, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053826, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/052988, mailed May 3, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/052988, mailed May 3, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/052988, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/054605, mailed Apr. 30, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/054605, mailed Apr. 30, 2012, 5 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/054605, mailed Apr. 11, 2013, 7 pages. |
International Search Report for International Patent Application No. PCT/US2011/053909, mailed Apr. 30, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053909, mailed Apr. 30, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053909, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/054623, mailed Apr. 27, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/054623, mailed Apr. 27, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/054623, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053037, mailed Mar. 20, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053037, mailed Mar. 20, 2012, 6 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053037, mailed Apr. 11, 2013, 8 pages. |
International Search Report for International Patent Application No. PCT/US2011/053923, mailed Apr. 30, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053923, mailed Apr. 30, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053923, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/054017, mailed Apr. 24, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/054017, mailed Apr. 24, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/054017, mailed Apr. 11, 2013, 6 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2011/054105, mailed Apr. 11, 2013 5 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2011/053585, mailed Apr. 11, 2013 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053665, mailed Apr. 30, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053665, mailed Apr. 30, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053665, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053691, mailed May 4, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053691, mailed May 4, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053691, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/054019, mailed Apr. 10, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/054019, mailed Apr. 10, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/054019, mailed Apr. 11, 2013, 6 pages. |
International Search Report for International Patent Application No. PCT/US2011/053127, mailed Apr. 24, 2012, 5 pages. |
Written Opinion for International Patent Application No. PCT/US2011/053127, mailed Apr. 24, 2012, 4 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2011/053127, mailed Apr. 11, 2013, 6 pages. |
Official Action for U.S. Appl. No. 13/247,719, mailed Mar. 29, 2013 16 pages. |
Official Action for U.S. Appl. No. 13/247,719, mailed Aug. 16, 2013 20 pages. |
Official Action for U.S. Appl. No. 13/484,951, mailed Mar. 11, 2013 11 pages. |
Official Action for U.S. Appl. No. 13/484,951, mailed Jul. 25, 2013 12 pages. |
Official Action for U.S. Appl. No. 13/399,901, mailed Aug. 2, 2013 17 pages. |
Official Action for U.S. Appl. No. 12/905,920 mailed Dec. 7, 2012, 13 pages. |
Official Action for U.S. Appl. No. 12/905,920 mailed Mar. 15, 2012, 12 pages. |
Official Action for U.S. Appl. No. 12/905,920 mailed Jul. 3, 2012, 14 pages. |
Official Action for U.S. Appl. No. 12/905,920 mailed Apr. 25, 2013, 16 pages. |
Official Action for U.S. Appl. No. 12/948,701, mailed Jun. 7, 2013 16 pages. |
Official Action for U.S. Appl. No. 13/246,665, mailed Apr. 24, 2013 30 pages. |
Official Action for U.S. Appl. No. 246,665, mailed Aug. 28, 2013 33 pages. |
Official Action for U.S. Appl. No. 13/217,099 mailed Apr. 10, 2013, 53 pages. |
Official Action for U.S. Appl. No. 13/247,885 mailed Mar. 19, 2013, 19 pages. |
Notice of Allowance for U.S. Appl. No. 13/247,885, mailed Aug. 29, 2013 12 pages. |
Official Action for U.S. Appl. No. 13/251,427 mailed Feb. 15, 2013, 18 pages. |
Official Action for U.S. Appl. No. 13/247,166 mailed Mar. 21, 2013, 4 pages Restriction Requirement. |
Official Action for U.S. Appl. No. 13/247,166, mailed Jul. 2, 2013 12 pages. |
Official Action for U.S. Appl. No. 13/217,130 mailed Mar. 15, 2013, 12 pages. |
Official Action for U.S. Appl. No. 13/247,170 mailed Apr. 11, 2013, 36 pages. |
Official Action for U.S. Appl. No. 13/247,170, mailed Aug. 5, 2013 34 pages. |
Official Action for U.S. Appl. No. 13/246,669 mailed Jan. 8, 2013, 14 pages. |
Official Action for U.S. Appl. No. 13/246,699, mailed Jul. 12, 2013 18 pages. |
Official Action for U.S. Appl. No. 13/246,671, mailed Mar. 27, 2013 34 pages. |
Official Action for U.S. Appl. No. 13/246,671, mailed Jul. 15, 2013. |
Official Action for U.S. Appl. No. 13/246,128 mailed May 10, 2013, 40 pages. |
Official Action for U.S. Appl. No. 13/246,128, mailed Aug. 23, 2013 46 pages. |
Official Action for U.S. Appl. No. 13/246,133 mailed Apr. 16, 2013, 25 pages. |
Official Action for U.S. Appl. No. 13/246,133, mailed Aug. 23, 2013 32 pages. |
Official Action for U.S. Appl. No. 13/246,675 mailed May 1, 2013, 27 pages. |
Official Action for U.S. Appl. No. 13/217,121 mailed Mar. 6, 2013, 11 pages. |
Official Action for U.S. Appl. No. 13/217,121, mailed Aug. 1, 2013 11 pages. |
Official Action for Mexican Patent Application No. MX/a/2013/003515, mailed Jun. 12, 2014, 3 pages (includes English summary). |
Notice of Allowance for U.S. Appl. No. 13/484,951, mailed May 12, 2014 7 pages. |
Official Action for U.S. Appl. No. 13/624,565, mailed Jun. 5, 2014 30 pages. |
Official Action for U.S. Appl. No. 13/628,380, mailed Jun. 5, 2014 16 pages. |
Official Action for U.S. Appl. No. 13/399,929, mailed Jun. 18, 2014 35 pages. |
Official Action for U.S. Appl. No. 12/948,701, mailed Jun. 3, 2014 19 pages. |
Official Action for U.S. Appl. No. 13/246,665, mailed Jun. 12, 2014 39 pages. |
Official Action for U.S. Appl. No. 13/217,099, mailed May 29, 2014 73 pages. |
Official Action for U.S. Appl. No. 14/068,662, mailed Jul. 28, 2014 26 pages. |
Official Action for U.S. Appl. No. 13/217,108, mailed Jun. 20, 2014 18 pages. |
Notice of Allowance for U.S. Appl. No. 13/217,108, mailed Jul. 11, 2014 7 pages. |
Official Action for U.S. Appl. No. 13/251,427, mailed May 23, 2014 15 pages. |
Official Action for U.S. Appl. No. 13/250,764, mailed Jul. 1, 2014 26 pages. |
Official Action for U.S. Appl. No. 13/247,170, mailed Jun. 5, 2014 58 pages. |
Official Action for U.S. Appl. No. 13/246,671, mailed Jun. 5, 2014 60 pages. |
Official Action for U.S. Appl. No. 13/246,128, mailed Jun. 13, 2014 50 pages. |
Official Action for U.S. Appl. No. 13/246,133, mailed Jun. 13, 2014 44 pages. |
Notice of Allowance for U.S. Appl. No. 13/246,675, mailed Jul. 29, 2014 9 pages. |
Official Action for U. S. Appl. No. 13/217,121, mailed Jun. 12, 2014 13 pages. |
Number | Date | Country | |
---|---|---|---|
20120081278 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61389000 | Oct 2010 | US | |
61389117 | Oct 2010 | US | |
61389087 | Oct 2010 | US |