The present invention relates generally to a user interface, and, more particularly to displaying user interface text elements adapted for East-Asian languages.
Many East Asian languages can be written horizontally or vertically. For example, the Chinese, Japanese and Korean languages can be oriented in either direction, as they consist mainly of disconnected syllabic units, each occupying a square block of space. Traditionally, these languages are written vertically in columns and ordered from right to left. The stroke order and stroke direction of characters (hanzi in Chinese, kanji in Japanese, hanja in Korean) is also important. It is believed the languages started this way because vertical columns allowed for writing with a brush in the right hand, while continually unrolling a sheet of paper or scroll with the left hand.
In modern times, it has become increasingly common for these languages to be written horizontally, from left to right, with successive rows going from top to bottom, under the influence of European languages, such as English. Nonetheless, modern technology, such as computers and phones, have adapted to East Asian styles, with options to display content vertically. Typically, such adaptation is accomplished by a simple reconfiguring of user content from a horizontal direction to a vertical direction through selection of a menu item in an application.
Computer operating systems, such as Microsoft Windows® and Apple Macintosh®, have a look and feel associated with their user interfaces. Generally, application programmers use a predefined set of routines (called controls or a toolbox) needed to support the graphical user interface characteristics of the computer. However, the look and feel of the user interface has not been adapted for East Asian languages. Thus, while content has been modified by individual applications to be displayed vertically, nothing has been done to adapt the entire user experience to a region or language in which a device is being used. While present solutions are usable and functional, they do not take into consideration the history and aesthetics of the East-Asian languages.
A method and system are disclosed for displaying a user interface text element in an East-Asian mode so that system-based text can be displayed vertically on a user interface.
In one embodiment, a device can dynamically switch between a Latin-based layout (horizontally displayed text elements) and an East-Asian based layout (vertically displayed text elements) based on global device settings, such as a language setting or a locale setting. Such settings can be dynamically modified by the user to change the display modes.
In another embodiment, in the East-Asian based layout, there can be a mixing with some text elements vertically and others displayed horizontally, depending on the characters used.
In yet another embodiment, East-Asian ideogram representations can be displayed instead of numerals for dates.
In still another embodiment, dynamic Tatechuyoko rendering can be used wherein two numerals are displayed as half-width characters in a single character bounding box.
In yet another embodiment, a continuum animation can transition a text element from horizontal text to vertical text so that a user can visualize an association between pages displayed.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The illustrated mobile device 100 can include a controller or processor 110 (e.g., signal processor, microprocessor, ASIC, or other control and processing logic circuitry) for performing such tasks as signal coding, data processing, input/output processing, power control, and/or other functions. An operating system 112 can control the allocation and usage of the components 102 and support for one or more application programs 114. The application programs can include common mobile computing applications (e.g., email applications, calendars, contact managers, web browsers, messaging applications), or any other computing application.
The illustrated mobile device 100 can include memory 120. Memory 120 can include non-removable memory 122 and/or removable memory 124. The non-removable memory 122 can include RAM, ROM, flash memory, a hard disk, or other well-known memory storage technologies. The removable memory 124 can include flash memory or a Subscriber Identity Module (SIM) card, which is well known in GSM communication systems, or other well-known memory storage technologies, such as “smart cards.” The memory 120 can be used for storing data and/or code for running the operating system 112 and the applications 114. Example data can include web pages, text, images, sound files, video data, or other data sets to be sent to and/or received from one or more network servers or other devices via one or more wired or wireless networks. The memory 120 can be used to store a subscriber identifier, such as an International Mobile Subscriber Identity (IMSI), and an equipment identifier, such as an International Mobile Equipment Identifier (IMEI). Such identifiers can be transmitted to a network server to identify users and equipment. The memory 120 can also be used to store locale or language settings 128, which are global device settings available to substantially all application programming interfaces (APIs), such as API 129 on the mobile device. As further described below, the API exposes the locale and/or language settings to the applications 114 so that user interface text elements can be displayed in an Eastern-Asian mode in response to appropriate global device settings.
The mobile device 100 can support one or more input devices 130, such as a touch screen 132, microphone 134, camera 136, physical keyboard 138 and/or trackball 140 and one or more output devices 150, such as a speaker 152 and a display 154. Other possible output devices (not shown) can include piezoelectric or other haptic output devices. Some devices can serve more than one input/output function. For example, touchscreen 132 and display 154 can be combined in a single input/output device.
A wireless modem 160 can be coupled to an antenna (not shown) and can support two-way communications between the processor 110 and external devices, as is well understood in the art. The modem 160 is shown generically and can include a cellular modem for communicating with the mobile communication network 104 and/or other radio-based modems (e.g., Bluetooth or Wi-Fi). The wireless modem 160 is typically configured for communication with one or more cellular networks, such as a GSM network for data and voice communications within a single cellular network, between cellular networks, or between the mobile device and a public switched telephone network (PSTN).
The mobile device can further include at least one input/output port 180, a power supply 182, a satellite navigation system receiver 184, such as a Global Positioning System (GPS) receiver, an accelerometer 186, and/or a physical connector 190, which can be a USB port, IEEE 1394 (FireWire) port, and/or RS-232 port. The illustrated components 102 are not required or all-inclusive, as any components can deleted and other components can be added.
The user interface of
In example environment 900, various types of services (e.g., computing services) are provided by a cloud 910. For example, the cloud 910 can comprise a collection of computing devices 930, 940, 950, which may be located centrally or distributed, that provide cloud-based services to various types of users and devices connected via a network such as the Internet. The implementation environment 900 can be used in different ways to accomplish computing tasks. For example, some tasks (e.g., processing user input and presenting a user interface) can be performed on local computing devices (e.g., connected devices 930-932) while other tasks (e.g., storage of data to be used in subsequent processing) can be performed in the cloud 910.
In example environment 900, the cloud 910 provides services for connected devices 930, 940, 950 with a variety of screen capabilities. Connected device 930 represents a device with a computer screen 935 (e.g., a mid-size screen). For example, connected device 930 could be a personal computer such as desktop computer, laptop, notebook, netbook, or the like. Connected device 940 represents a device with a mobile device screen 945 (e.g., a small size screen). For example, connected device 940 could be a mobile phone, smart phone, personal digital assistant, tablet computer, and the like. Connected device 950 represents a device with a large screen 955. For example, connected device 950 could be a television screen (e.g., a smart television) or another device connected to a television (e.g., a set-top box or gaming console) or the like. One or more of the connected devices 930, 940, 950 can include touch screen capabilities. Touchscreens can accept input in different ways. For example, capacitive touchscreens detect touch input when an object (e.g., a fingertip or stylus) distorts or interrupts an electrical current running across the surface. As another example, touchscreens can use optical sensors to detect touch input when beams from the optical sensors are interrupted. Physical contact with the surface of the screen is not necessary for input to be detected by some touchscreens. Devices without screen capabilities also can be used in example environment 900. For example, the cloud 910 can provide services for one or more computers (e.g., server computers) without displays.
Services can be provided by the cloud 910 through service providers 920, or through other providers of online services (not depicted). For example, cloud services can be customized to the screen size, display capability, and/or touch screen capability of a particular connected device (e.g., connected devices 930, 940, 950).
In example environment 900, the cloud 910 provides the technologies and solutions described herein to the various connected devices 930-932 using, at least in part, the service providers 920. For example, the service providers 920 can provide a centralized solution for various cloud-based services. The service providers 920 can manage service subscriptions for users and/or devices (e.g., for the connected devices 930, 940, 950 and/or their respective users). For example, the global device settings can be set in the cloud, which can extend to all platforms that a user has to change the user interface layout across devices.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods.
Any of the disclosed methods can be implemented as computer-executable instructions stored on one or more computer-readable storage media (e.g., non-transitory computer-readable media, such as one or more optical media discs, volatile memory components (such as DRAM or SRAM), or nonvolatile memory components (such as hard drives)) and executed on a computer (e.g., any commercially available computer, including smart phones or other mobile devices that include computing hardware). Any of the computer-executable instructions for implementing the disclosed techniques as well as any data created and used during implementation of the disclosed embodiments can be stored on one or more computer-readable media (e.g., non-transitory computer-readable media). The computer-executable instructions can be part of, for example, a dedicated software application or a software application that is accessed or downloaded via a web browser or other software application (such as a remote computing application). Such software can be executed, for example, on a single local computer (e.g., any suitable commercially available computer) or in a network environment (e.g., via the Internet, a wide-area network, a local-area network, a client-server network (such as a cloud computing network), or other such network) using one or more network computers.
For clarity, only certain selected aspects of the software-based implementations are described. Other details that are well known in the art are omitted. For example, it should be understood that the disclosed technology is not limited to any specific computer language or program. For instance, the disclosed technology can be implemented by software written in C++, Java, Perl, JavaScript, Adobe Flash, or any other suitable programming language. Likewise, the disclosed technology is not limited to any particular computer or type of hardware. Certain details of suitable computers and hardware are well known and need not be set forth in detail in this disclosure.
Furthermore, any of the software-based embodiments (comprising, for example, computer-executable instructions for causing a computer to perform any of the disclosed methods) can be uploaded, downloaded, or remotely accessed through a suitable communication means. Such suitable communication means include, for example, the Internet, the World Wide Web, an intranet, software applications, cable (including fiber optic cable), magnetic communications, electromagnetic communications (including RF, microwave, and infrared communications), electronic communications, or other such communication means.
The disclosed methods, apparatus, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and subcombinations with one another. The disclosed methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the embodiments herein focus mostly on user interface text elements, the embodiments described can be extended to menu items that are displayed vertically in an East-Asian layout mode. For example, drop-down boxes can be displayed vertically as well as other menu items.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope of these claims.
This application claims the benefit of U.S. Provisional Application No. 61/434,341, filed Jan. 19, 2011, which is incorporated herein in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 61434341 | Jan 2011 | US |