The present disclosure generally relates to park-assist and, more specifically, to user interfaces for vehicle remote park-assist.
Many vehicles include motive functions that are at least partially autonomously controlled by the vehicle. For instance, some vehicles include cruise control in which the vehicle controls acceleration and/or deceleration of the vehicle so that a speed of the vehicle is maintained. Further, some vehicles include park-assist features in which the vehicle autonomously controls motive functions of the vehicle to park the vehicle into a parking spot. In some instances, the park-assist features are remote park-assist features that enable a user to initiate the autonomous motive functions remotely via a mobile device.
The appended claims define this application. The present disclosure summarizes aspects of the embodiments and should not be used to limit the claims. Other implementations are contemplated in accordance with the techniques described herein, as will be apparent to one having ordinary skill in the art upon examination of the following drawings and detailed description, and these implementations are intended to be within the scope of this application.
Example embodiments are shown for user interfaces for vehicle remote park-assist. An example disclosed remote park-assist system includes a mobile device. The mobile device includes a touchscreen to present an interface. The interface includes a pushbutton for receiving a continuous stationary input and an input pad for receiving a dynamic input sequence. The example disclosed remote park-assist system also includes a vehicle. The vehicle includes a communication module for wireless communication with the mobile device and an autonomy unit to perform motive functions while the interface simultaneously receives the continuous stationary input and the dynamic input sequence.
An example disclosed remote park-assist system includes a mobile app. The mobile app includes an interface for a touchscreen of a mobile device. The interface includes a pushbutton for receiving a continuous stationary input and an input pad for receiving a dynamic input sequence. The example disclosed remote park-assist system also includes a communication module for communication with the mobile device and an autonomy unit to perform motive functions while the interface simultaneously receives the continuous stationary input and the dynamic input sequence.
An example disclosed method includes receiving, via a touchscreen of a mobile device, a continuous stationary input via a pushbutton of an interface and a dynamic input sequence via an input pad of the interface. The example disclosed method also includes communicating, via the mobile device, an initiation signal while simultaneously receiving the continuous stationary input and the dynamic input sequence and performing, via an autonomy unit of a vehicle, motive functions for remote park-assist while the vehicle receives the initiation signal.
For a better understanding of the invention, reference may be made to embodiments shown in the following drawings. The components in the drawings are not necessarily to scale and related elements may be omitted, or in some instances proportions may have been exaggerated, so as to emphasize and clearly illustrate the novel features described herein. In addition, system components can be variously arranged, as known in the art. Further, in the drawings, like reference numerals designate corresponding parts throughout the several views.
While the invention may be embodied in various forms, there are shown in the drawings, and will hereinafter be described, some exemplary and non-limiting embodiments, with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiments illustrated.
Many vehicles include motive functions that are at least partially autonomously controlled by the vehicle. Some vehicles include cruise control in which the vehicle controls acceleration and/or deceleration of the vehicle so that a speed of the vehicle is maintained. Further, some vehicles include park-assist features in which the vehicle autonomously controls motive functions of the vehicle to park the vehicle into a parking spot. Some park-assist features are remote park-assist features that enable a user to initiate the autonomous motive functions remotely via a mobile device. Further, some remote park-assist systems initiate the autonomous motive functions of the vehicle when an input is provided to the mobile device. In some instances, the mobile device may receive an unintended input (e.g., due to a slip of the finger of a user, an object touching the mobile device while the mobile device is in a bag or pocket, etc.), thereby potentially causing the vehicle to perform undesired autonomous motive functions for the remote park-assist system.
Example methods and apparatus disclosed herein include a mobile app for a remote park-assist system that is configured to ensure that input(s) received to initiate autonomous motive functions of a vehicle is intended by a user. In examples disclosed herein, the mobile app operates on a mobile device of an operator (e.g., a driver) of the vehicle. The mobile device sends an initiation signal to the vehicle upon and/or while receiving multiple predefined inputs from the operator via a touchscreen of the user. An interface of the mobile app is configured to receive the predefined inputs to ensure that the operator intends to initiate the autonomous motive functions of the vehicle. In some examples, the mobile device is configured to send the initiation signal while the interface of the mobile app simultaneously receives a continuous stationary input (e.g., a continuous pressing of a digital pushbutton) and a dynamic input sequence (e.g., a tapping of a digital pushbutton at a predefined frequency, a continuous motion along a track) from the operator. In some examples, the mobile device is configured to send the initiation signal while the interface of the mobile app simultaneously receives a plurality of continuous stationary inputs (e.g., continuous pressing of digital pushbuttons). Further, in some examples, the mobile device is configured to send the initiation signal while the interface of the mobile app receives a continuous stationary input (e.g., a continuous pressing of a digital pushbutton) after a dynamic input sequence (e.g., an uninterrupted motion along a predefined path) is received.
As used herein, “remote parking,” “vehicle remote park-assist,” “remote park-assist,” and “RePA” refer to a system in which a vehicle controls its motive functions, without direct steering or velocity input from an operator (e.g., a driver), to autonomously park within a parking spot while the operator is located outside of the vehicle. For example, an autonomy unit of a remote park-assist system controls the motive functions of the vehicle upon receiving a remote initiation signal from a mobile device (e.g., a smart phone, a key fob, a wearable, a smart watch, a tablet, etc.) of the operator.
Turning to the figures,
As illustrated in
The vehicle 100 also includes a communication module 106 that is configured to include network interface(s) configured for wireless communication with a mobile device 108 (e.g., a smart phone, a wearable, a smart watch, a tablet, etc.) of a user 110 of the vehicle 100 via short-range wireless communication protocol(s). In some examples, the communication module 106 implements the Bluetooth® and/or Bluetooth® Low Energy (BLE) protocols. The Bluetooth® and BLE protocols are set forth in Volume 6 of the Bluetooth® Specification 4.0 (and subsequent revisions) maintained by the Bluetooth® Special Interest Group. Additionally or alternatively, the communication module 106 is configured to wirelessly communicate via Wi-Fi®, Near Field Communication (NFC), ultra-wide band (UWB) communication, ultra-high frequency (UHF) communication, low frequency (LF) communication, and/or any other communication protocol that enables the communication module 106 to communicatively couple to the mobile device 108.
Further, in some examples, the communication module 106 includes network interface(s) for communication with external network(s). The external network(s) may be a public network, such as the Internet; a private network, such as an intranet; or combinations thereof. The communication module 106 may utilize a variety of networking protocols now available or later developed including, but not limited to, TCP/IP-based networking protocols. For example, the communication module 106 includes one or more communication controllers for cellular networks, such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), Code Division Multiple Access (CDMA).
The vehicle 100 of the illustrated example also includes an autonomy unit 112. For example, the autonomy unit 112 is an electronic control unit (e.g., one of a plurality of electronic control units 806 of
In operation, the mobile device 108 presents an interface (e.g., an interface 202 of
While the communication module 106 receives the initiation signal from the mobile device 108, the park-assist controller 114 instructs the autonomy unit 112 to perform the autonomous motive functions for remote park-assist. Further, when the communication module 106 stops receiving the initiation signal from the mobile device 108, the park-assist controller 114 instructs the autonomy unit 112 to stop performing the autonomous motive functions for remote park-assist.
In some examples, the park-assist controller 114 instructs the autonomy unit 112 to perform the autonomous motive functions for remote park-assist in response to (1) the communication module 106 receiving the initiation signal from the mobile device 108 and (2) the park-assist controller 114 determining that the mobile device 108 is within a predetermined distance of the vehicle 100. That is, the autonomy unit 112 is configured to (1) perform remote park-assist when the mobile device 108 is within a tethering range of the vehicle 100 and (2) not perform remote park-assist when the mobile device 108 is beyond the tethering range of the vehicle 100. For instance, some governmental agencies have instituted regulations that require a user (e.g., the user 110) be within a tethering range of a vehicle (e.g., the vehicle 100) while the vehicle autonomously performs remote park-assist motive functions. In some examples, the tethering range is defined to extend to a predetermined distance (e.g., 6 meters) from an exterior surface of the vehicle 100. In the illustrated example, the park-assist controller 114 and/or the communication module 106 is configured to determine a distance between the mobile device 108 and the exterior surface of the vehicle 100 based on a distance characteristic of the initiation signal and/or other wireless communication between the mobile device 108 and the communication module 106 of the vehicle 100. For example, the park-assist controller 114 and/or the communication module 106 determines the distance to the mobile device 108 based upon received signal strength indicators (RSSIs), time-of-flight, angle-of-arrival, and/or other distance characteristics of communication between the mobile device 108 and the communication module 106.
As used herein, a “continuous stationary input” refers to an input that is configured to be received at one location of a touchscreen interface (e.g., a pushbutton location) in an uninterrupted manner over a period of time. In the illustrated example, the interface 202 of the mobile app receives a continuous stationary input when the user 110 continuously presses a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204 of the interface 202. That is, a continuous stationary input includes a continuous pressing of the pushbutton 204 by the user 110. As used herein, a “dynamic input sequence” refers to a predefined non-continuous and/or non-stationary input that is configured to be received by a touchscreen interface over a period of time. In the illustrated example, the interface 202 of the mobile app receives a dynamic input sequence when the user 110 continuously drags his or her finger and/or a stylus in a continuous sliding motion along the input pad 206. That is, a dynamic input sequence includes a continuous back-and-forth sliding motion along the input pad 206.
In operation, the mobile device 108 sends an initiation signal to the communication module 106 of the vehicle 100 while the interface simultaneously receives (1) the continuous stationary input via the pushbutton 204 and (2) the dynamic input sequence via the input pad 206. While the communication module 106 receives the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to perform autonomous driving maneuver(s) for remote park-assist. That is, the autonomy unit 112 autonomously perform motive function(s) of the vehicle 100 for remote park-assist while the interface 202 of the mobile app simultaneously receives the continuous stationary input and the dynamic input sequence.
In some examples, the autonomy unit 112 causes the vehicle 100 to travel at a speed that corresponds with a speed of the dynamic input sequence along the input pad 206. For example, the autonomy unit 112 increases the vehicle speed as the user 110 increases the speed at which the user 110 slides his or her finger and/or a stylus back-and-forth along the input pad 206. Further, the autonomy unit 112 decreases the vehicle speed as the user 110 decreases the speed at which the user 110 slides his or her finger and/or a stylus back-and-forth along the input pad 206.
Further, the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100 when the interface 202 does not receive (1) the continuous stationary input via the pushbutton 204 and/or (2) the dynamic input sequence via the input pad 206. For example, the interface 202 stops receiving the continuous stationary input when the user 110 stops pressing a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204. Further, the interface 202 stops receiving the dynamic input sequence when the user 110 stops dragging his or her finger and/or a stylus back-and-forth along the input pad 206 in a continuous sliding motion. When the communication module 106 does not receive the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to stop performing autonomous driving maneuver(s) for remote park-assist. In turn, the autonomy unit 112 stops the vehicle 100 from moving. That is, the autonomy unit 112 stops performing motive function(s) of the vehicle 100 for remote park-assist when the interface 202 of the mobile app does not receive the continuous stationary input and/or the dynamic input sequence.
In some examples, the mobile app utilizes a timer when determining whether the user 110 has stopped providing the dynamic input sequence to account for indecisiveness of the user 110 and/or unfamiliarity with the remote park-assist system. For instance, some users potentially may have a tendency to pause slightly right before changing directions of the sliding motion along the input pad 206. To prevent such pauses from unintentionally stopping the performance of the autonomous motive function(s), the interface 202 compares a pause in motion to a predetermined period-of-time. If the pause occurs for less than a predetermined period-of-time, the interface 202 does not detect that the dynamic input sequence has stopped. In contrast, if the pause equals or exceeds the predetermined period-of-time, the interface 202 detects that the dynamic input sequence has stopped. In some examples, the predetermined period-of-time varies based on a location of the pause within the input pad 206. For example, in response to detecting any pause of the continuous sliding motion at a center portion of the input pad 206, the interface 202 of the mobile app detects that the dynamic input sequence has stopped. Further, the mobile app incorporates the timer if the pause occurs toward and/or at an end of the input pad 206. That is, the mobile app determines that the interface has stopped receiving the dynamic input sequence in response to detecting a pause in the continuous sliding motion that (1) occurs toward and/or at an end of the input pad 206 and (2) extends beyond a predetermined period-of-time.
In the illustrated example, the interface 302 of the mobile app receives a continuous stationary input when the user 110 continuously presses a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204 of the interface 302. That is, a continuous stationary input includes a continuous pressing of the pushbutton 204 by the user 110. Further, in the illustrated example, the interface 302 of the mobile app receives a dynamic input sequence when the user 110 taps the input pad 206 at a predefined frequency. That is, a dynamic input sequence includes a tapping of the input pad 206 at a predefined frequency.
The interface 302 of the illustrated example also includes a frequency button 304 and a metronome button 306. For example, the frequency button 304 is configured to enable the user 110 to adjust the frequency at which the user 110 is to tap the input pad 206. That is, the user 110 is to press a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the frequency button 304 to adjust the tapping frequency. Further, the metronome button 306 is configured to initiate an audio and/or visual metronome that aligns with the tapping frequency to facilitate the user 110 in tapping the input pad 206 at the tapping frequency.
In operation, the mobile device 108 sends an initiation signal to the communication module 106 of the vehicle 100 while the interface simultaneously receives (1) the continuous stationary input via the pushbutton 204 and (2) the dynamic input sequence via the input pad 206. While the communication module 106 receives the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to perform autonomous driving maneuver(s) for remote park-assist. That is, the autonomy unit 112 autonomously perform motive function(s) of the vehicle 100 for remote park-assist while the interface 302 of the mobile app simultaneously receives the continuous stationary input and the dynamic input sequence.
Further, the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100 when the interface 302 does not receive (1) the continuous stationary input via the pushbutton 204 and/or (2) the dynamic input sequence via the input pad 206. For example, the interface 302 stops receiving the continuous stationary input when the user 110 stops pressing a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204. Further, the interface 302 stops receiving the dynamic input sequence when the user 110 stops tapping the input pad 206 at the predefined frequency. When the communication module 106 does not receive the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to stop performing autonomous driving maneuver(s) for remote park-assist. In turn, the autonomy unit 112 stops the vehicle 100 from moving. That is, the autonomy unit 112 stops performing motive function(s) of the vehicle 100 for remote park-assist when the interface 302 of the mobile app does not receive the continuous stationary input and/or the dynamic input sequence.
In operation, the mobile device 108 sends an initiation signal to the communication module 106 of the vehicle 100 while the interface simultaneously receives the first and second continuous stationary inputs. While the communication module 106 receives the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to perform autonomous driving maneuver(s) for remote park-assist. That is, the autonomy unit 112 autonomously performs motive function(s) of the vehicle 100 for remote park-assist while the interface 402 of the mobile app simultaneously receives the first and second continuous stationary inputs. Further, the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100 when the interface 402 does not receive the first continuous stationary input and/or the second continuous stationary input. For example, the interface 402 stops receiving the first continuous stationary input when the user 110 stops pressing a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204. Further, the interface 402 stops receiving the second continuous stationary input when the user 110 stops pressing a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 404. When the communication module 106 does not receive the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to stop performing autonomous driving maneuver(s) for remote park-assist. In turn, the autonomy unit 112 stops the vehicle 100 from moving. That is, the autonomy unit 112 stops performing motive function(s) of the vehicle 100 for remote park-assist when the interface 402 of the mobile app does not receive the first and/or second continuous stationary input.
In some examples, the mobile app of the mobile device 108 is configured to enable an interface to be user configurable. For example, the interface 402 is user configurable such that the user 110 is able to position the pushbutton 204 and/or the pushbutton 404 at preferred locations on the interface 402. In some examples, the mobile app limits repositioning of pushbutton(s) and/or input pad(s) on an interface. For example, the mobile app prevents the pushbutton 204 and/or the pushbutton 404 from being positioned within a minimum distance of each other and/or an outer edge of the interface 402. Additionally or alternatively, the mobile app of the mobile device 108 is configured to enable the number of pushbutton(s) and/or input pad(s) to be adjusted. For example, the interface 402 may be adjusted by the user 110 to include more pushbuttons (e.g., 3, 4, etc.) that each must be simultaneously pressed to send the initiation signal.
In operation, the user 110 is to press the pushbutton 504, slide his or her finger and/or a stylus along the input pad 206, and hold the pushbutton 204 in a single motion. The mobile device 108 sends an initiation signal to the communication module 106 of the vehicle 100 while user 110 holds the pushbutton 204 after pressing the pushbutton 504 and sliding along the input pad 206. That is, in the illustrated example, the mobile device 108 is configured to send the initiation signal while the interface receives a continuous stationary input (e.g., holding of the pushbutton 204) after receiving a dynamic input sequence (e.g., pressing of the pushbutton 504 and sliding along the input pad 206) in a continuous motion. While the communication module 106 receives the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to perform autonomous driving maneuver(s) for remote park-assist. That is, the autonomy unit 112 autonomously perform motive function(s) of the vehicle 100 for remote park-assist while the interface 502 of the mobile app receives the continuous stationary input after receiving the dynamic input sequence in a continuous motion.
Further, the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100 when the interface 402 does not receive the continuous stationary input and/or the dynamic input sequence in a continuous motion. For example, the interface 402 does not receive the continuous stationary input when the user 110 stops pressing a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204. Further, the interface 402 does not receive the dynamic input sequence if the user 110 does not drag his or her finger and/or a stylus from the pushbutton 504 to the pushbutton 204 along the input pad 206. When the communication module 106 does not receive the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to stop performing autonomous driving maneuver(s) for remote park-assist. In turn, the autonomy unit 112 stops the vehicle 100 from moving. To begin resending the initiation signal, the user 110 is to again press the pushbutton 504, slide along the input pad 206, and hold the pushbutton 204.
In operation, the user 110 is to press the pushbutton 504, slide his or her finger and/or a stylus along the input pad 206, and hold the pushbutton 204 in a single motion. The mobile device 108 sends an initiation signal to the communication module 106 of the vehicle 100 while user 110 holds the pushbutton 204 after pressing the pushbutton 504 and sliding along the input pad 206. That is, in the illustrated example, the mobile device 108 is configured to send the initiation signal while the interface receives a continuous stationary input (e.g., holding of the pushbutton 204) after receiving a dynamic input sequence (e.g., pressing of the pushbutton 504 and sliding along the input pad 206) in a continuous motion. While the communication module 106 receives the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to perform autonomous driving maneuver(s) for remote park-assist.
Further, the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100 when the interface 402 does not receive the continuous stationary input and/or the dynamic input sequence in a continuous motion. When the communication module 106 does not receive the initiation signal, the park-assist controller 114 instructs the autonomy unit 112 to stop performing autonomous driving maneuver(s) for remote park-assist. To begin resending the initiation signal, the user 110 is to again press the pushbutton 504, slide along the input pad 206, and hold the pushbutton 204.
In the illustrated example, the processor 702 (also referred to as a microcontroller unit and a controller) may be any suitable processing device or set of processing devices such as, but not limited to, a microprocessor, a microcontroller-based platform, an integrated circuit, one or more field programmable gate arrays (FPGAs), and/or one or more application-specific integrated circuits (ASICs). The memory 704 may be volatile memory (e.g., RAM including non-volatile RAM, magnetic RAM, ferroelectric RAM, etc.), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, EEPROMs, memristor-based non-volatile solid-state memory, etc.), unalterable memory (e.g., EPROMs), read-only memory, and/or high-capacity storage devices (e.g., hard drives, solid state drives, etc.). In some examples, the memory 704 includes multiple kinds of memory, particularly volatile memory and non-volatile memory.
The memory 704 is computer readable media on which one or more sets of instructions, such as the software for operating the methods of the present disclosure, can be embedded. The instructions may embody one or more of the methods or logic as described herein. For example, the instructions reside completely, or at least partially, within any one or more of the memory 704, the computer readable medium, and/or within the processor 702 during execution of the instructions.
The terms “non-transitory computer-readable medium” and “computer-readable medium” include a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. Further, the terms “non-transitory computer-readable medium” and “computer-readable medium” include any tangible medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a system to perform any one or more of the methods or operations disclosed herein. As used herein, the term “computer readable medium” is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals.
In the illustrated example, an app 708 (also referred to as mobile app) is a computer program and/or software that is configured to operate on the mobile device 108. The app 708 is stored in the memory 704 and configured to be executed by the processor 702. During operation, the app 708 presents an interface (e.g., the interface 202, the interface 302, the interface 402, the interface 502, the interface 602) to and receives input(s) from the user 110 to enable the user 110 to initiate the remote park-assist system of the vehicle 100.
The touchscreen 200 of the illustrated example provides an interface between the user 110 and the mobile device 108 to enable the user 110 to initiate the remote park-assist system of the vehicle 100. For example, the touchscreen 200 presents an interface (e.g., the interface 202, the interface 302, the interface 402, the interface 502, the interface 602) of the app 708 to the user 110 and receives input from the user 110 that corresponds with the interface. Based on input received from the user 110 via the touchscreen 200, the app 708 determines whether to send an initiation signal to the vehicle 100 to initiate performance of remote park-assist.
The touchscreen 200 is a resistive touchscreen, a capacitive touchscreen, and/or any other type of touchscreen that displays output information to and tactilely receives input information from the user 110 of the mobile device 108. Further, in some examples, the mobile device 108 includes other input devices (e.g., buttons, knobs, microphones, etc.) and/or output devices (e.g., speakers, LEDs, etc.) to respectively receive input information from and/or provide output information to the user 110 of the mobile device 108.
The communication module 706 of the mobile device 108 wirelessly communicates with the communication module 106 of the vehicle 100 to enable the app 708 to initiate motive functions of the vehicle 100 for the remote park-assist system. The communication module 706 includes wireless network interfaces to enable communication with other devices and/or external networks. The external network(s) may be a public network, such as the Internet; a private network, such as an intranet; or combinations thereof, and may utilize a variety of networking protocols now available or later developed including, but not limited to, TCP/IP-based networking protocols. The communication module 706 also includes hardware (e.g., processors, memory, storage, antenna, etc.) and software to control the wireless network interfaces. For example, the communication module 706 includes one or more communication controllers for cellular networks, such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), Code Division Multiple Access (CDMA).
In the illustrated example, the communication module 706 includes a wireless personal area network (WPAN) module that is configured to wirelessly communicate with the communication module 106 of the vehicle 100 via short-range wireless communication protocol(s). In some examples, the communication module 706 implements the Bluetooth® and/or Bluetooth® Low Energy (BLE) protocols. The Bluetooth® and BLE protocols are set forth in Volume 6 of the Bluetooth® Specification 4.0 (and subsequent revisions) maintained by the Bluetooth® Special Interest Group. Additionally or alternatively, the communication module 106 is configured to wirelessly communicate via Wi-Fi®, Near Field Communication (NFC), UWB (Ultra-Wide Band), and/or any other short-range and/or local wireless communication protocol (e.g., IEEE 802.11 a/b/g/n/ac) that enables the communication module 706 to communicatively couple to the communication module 106 of the vehicle 100.
The on-board computing platform 802 includes a processor 810 (also referred to as a microcontroller unit and a controller) and memory 812. In the illustrated example, the processor 810 of the on-board computing platform 802 is structured to include the park-assist controller 114. In other examples, the park-assist controller 114 is incorporated into another ECU with its own processor and memory. The processor 810 may be any suitable processing device or set of processing devices such as, but not limited to, a microprocessor, a microcontroller-based platform, an integrated circuit, one or more field programmable gate arrays (FPGAs), and/or one or more application-specific integrated circuits (ASICs). The memory 812 may be volatile memory (e.g., RAM including non-volatile RAM, magnetic RAM, ferroelectric RAM, etc.), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, EEPROMs, memristor-based non-volatile solid-state memory, etc.), unalterable memory (e.g., EPROMs), read-only memory, and/or high-capacity storage devices (e.g., hard drives, solid state drives, etc.). In some examples, the memory 812 includes multiple kinds of memory, particularly volatile memory and non-volatile memory.
The memory 812 is computer readable media on which one or more sets of instructions, such as the software for operating the methods of the present disclosure, can be embedded. The instructions may embody one or more of the methods or logic as described herein. For example, the instructions reside completely, or at least partially, within any one or more of the memory 812, the computer readable medium, and/or within the processor 810 during execution of the instructions.
The sensors 804 are arranged in and/or around the vehicle 100 to monitor properties of the vehicle 100 and/or an environment in which the vehicle 100 is located. One or more of the sensors 804 may be mounted to measure properties around an exterior of the vehicle 100. Additionally or alternatively, one or more of the sensors 804 may be mounted inside a cabin of the vehicle 100 or in a body of the vehicle 100 (e.g., an engine compartment, wheel wells, etc.) to measure properties in an interior of the vehicle 100. For example, the sensors 804 include accelerometers, odometers, tachometers, pitch and yaw sensors, wheel speed sensors, microphones, tire pressure sensors, biometric sensors and/or sensors of any other suitable type. In the illustrated example, the sensors 804 include the proximity sensors 102 configured to detect the presence, proximity, and/or location of nearby object(s).
The ECUs 806 monitor and control the subsystems of the vehicle 100. For example, the ECUs 806 are discrete sets of electronics that include their own circuit(s) (e.g., integrated circuits, microprocessors, memory, storage, etc.) and firmware, sensors, actuators, and/or mounting hardware. The ECUs 806 communicate and exchange information via a vehicle data bus (e.g., the vehicle data bus 808). Additionally, the ECUs 806 may communicate properties (e.g., status of the ECUs 806, sensor readings, control state, error and diagnostic codes, etc.) to and/or receive requests from each other. For example, the vehicle 100 may have dozens of the ECUs 806 that are positioned in various locations around the vehicle 100 and are communicatively coupled by the vehicle data bus 808. In the illustrated example, the ECUs 806 include the autonomy unit 112 that is configured to perform autonomous motive functions for remote park-assist.
The vehicle data bus 808 communicatively couples the cameras 104, the communication module 106, the on-board computing platform 802, the sensors 804, and the ECUs 806. In some examples, the vehicle data bus 808 includes one or more data buses. The vehicle data bus 808 may be implemented in accordance with a controller area network (CAN) bus protocol as defined by International Standards Organization (ISO) 11898-1, a Media Oriented Systems Transport (MOST) bus protocol, a CAN flexible data (CAN-FD) bus protocol (ISO 11898-7) and/a K-line bus protocol (ISO 9141 and ISO 14230-1), and/or an Ethernet™ bus protocol IEEE 802.3 (2002 onwards), etc.
Initially, at block 902, the processor 702 of the mobile device 108 determines whether the app 708 for remote park-assist is activated. In response to the processor 702 determining that the app 708 is not active, the method 900 remains at block 902. Otherwise, in response to the processor 702 determining that the app 708 is active, the method 900 proceeds to block 904.
At block 904, the app 708 determines whether an interface of the app 708 (e.g., the interface 202, the interface 302, the interface 402, the interface 502, the interface 602) is receiving a predefined continuous stationary input via the touchscreen 200 of the mobile device 108. For example, the app 708 determines whether a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with the pushbutton 204 of the interface is currently being pressed. In response to the app 708 determining that the interface is not receiving the predefined continuous stationary input, the method 900 proceeds to block 906 at which the communication module 706 of the mobile device 108 does not send an initiation signal to the communication module 106 of the vehicle 100. Otherwise, in response to the app 708 determining that the interface is receiving the predefined continuous stationary input, the method 900 proceeds to block 908.
At block 908, the app 708 determines whether an interface of the app 708 is receiving a predefined dynamic input sequence. For example, the app 708 determines whether a portion (e.g., one or more pixels) of the touchscreen 200 that aligns with an input pad (e.g., the input pad 206) of the interface is detecting the dynamic input sequence (e.g., a tapping of and/or a continuous motion along the input pad 206). In response to the app 708 determining that the interface is not receiving the predefined dynamic input sequence, the method 900 proceeds to block 906 at which the communication module 706 of the mobile device 108 does not send the initiation signal to the vehicle 100. Otherwise, in response to the app 708 determining that the interface is receiving the predefined dynamic input sequence, the method 900 proceeds to block 910 at which the communication module 706 of the mobile device 108 sends the initiation signal to the communication module 106 of the vehicle 100.
In other examples, the app 708 determines whether the communication module 706 of the mobile device 108 is to send the initiation signal based on other predefined inputs. In some such examples, the mobile device 108 sends the initiation signal to the vehicle 100 in response to the app 708 determining that two or more predefined stationary inputs (e.g., simultaneous pressing of the pushbutton 204 and the pushbutton 404) are being received via the touchscreen 200. In other such instances, the mobile device 108 sends the initiation signal to the vehicle 100 in response to the app 708 determining, via the interface 202, that a stationary input (e.g., pressing of the pushbutton 204) is being received after a corresponding dynamic input sequence (e.g., a continuous motion along the input pad 206) has been received.
At block 912, the park-assist controller 114 determines whether the communication module 106 is receiving the initiation signal from the mobile device 108 for the remote park-assist system of the vehicle 100. In response to the park-assist controller 114 determining that the communication module 106 is currently receiving the initiation signal, the method 900 proceeds to block 914 at which the autonomy unit 112 performs autonomous driving maneuver(s) for remote park-assist. Otherwise, in response to the park-assist controller 114 determining that the communication module 106 is not currently receiving the initiation signal, the method 900 proceeds to block 916 at which the autonomy unit 112 stops the motive function(s) of the vehicle 100.
An example disclosed remote park-assist system includes a mobile device. The mobile device includes a touchscreen to present an interface. The interface includes a pushbutton to receive a continuous stationary input and an input pad to receive a dynamic input sequence. The example disclosed remote park-assist system also includes a vehicle. The vehicle includes a communication module for wireless communication with the mobile device and an autonomy unit to perform motive functions while the interface simultaneously receives the continuous stationary input and the dynamic input sequence.
In some examples, the autonomy unit is to stop performing the motive functions when the interface does not receive at least one of the continuous stationary input and the dynamic input sequence.
In some examples, the input pad includes a second pushbutton and the dynamic input sequence includes a tapping of the second pushbutton at a predefined frequency. In some examples, the input pad includes a track and the dynamic input sequence includes a continuous motion along the track.
In some examples, the mobile device is to send an initiation signal to the communication module of the vehicle while the interface simultaneously receives the continuous stationary input and the dynamic input sequence. In some such examples, the vehicle includes a controller that is to instruct the autonomy unit to perform the motive functions in response to the communication module receiving the initiation signal.
An example disclosed remote park-assist system includes a mobile app. The mobile app includes an interface for a touchscreen of a mobile device. The interface includes a pushbutton to receive a continuous stationary input and an input pad to receive a dynamic input sequence. The example disclosed remote park-assist system also includes a communication module for communication with the mobile device and an autonomy unit to perform motive functions while the interface simultaneously receives the continuous stationary input and the dynamic input sequence.
In some examples, the autonomy unit is to stop performing the motive functions when the interface does not receive at least one of the continuous stationary input and the dynamic input sequence.
In some examples, the vehicle includes range-detection sensors and the autonomy unit determines the motive functions for remote park-assist based on data collected by the range-detection sensors.
In some examples, the continuous stationary input includes a continuous pressing of the pushbutton.
In some examples, the input pad includes a second pushbutton and the dynamic input sequence includes a tapping of the second pushbutton at a predefined frequency. In some such examples, the interface further includes a metronome button to initiate a metronome for facilitating a user in tapping the second pushbutton at the predefined frequency. In some such examples, the interface further includes a frequency button that enables a user to adjust the predefined frequency.
In some examples, the input pad includes a track and the dynamic input sequence includes a continuous motion along the track. In some such examples, the mobile app determines that the interface has stopped receiving the dynamic input sequence in response to detecting a pause in the continuous motion at a center portion of the track. In some such examples, the mobile app determines that the interface has stopped receiving the dynamic input sequence in response to detecting a pause in the continuous motion that occurs at an end portion of the track and exceeds a predefined period of time.
In some examples, the vehicle includes a controller that instructs the autonomy unit to perform the motive functions as the communication module receives an initiation signal from the mobile device. In some such examples, the controller is to instruct the autonomy unit to perform the motive functions in response to the communication module receiving the initiation signal and the controller determining the mobile device is within a predetermined distance of the vehicle. Further, in some such examples, the controller is to determine a distance between the mobile device and the vehicle based on a distance characteristic of the initiation signal.
An example disclosed method includes receiving, via a touchscreen of a mobile device, a continuous stationary input via a pushbutton of an interface and a dynamic input sequence via an input pad of the interface. The example disclosed method also includes communicating, via the mobile device, an initiation signal while simultaneously receiving the continuous stationary input and the dynamic input sequence and performing, via an autonomy unit of a vehicle, motive functions for remote park-assist while the vehicle receives the initiation signal.
In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects. Further, the conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives. In other words, the conjunction “or” should be understood to include “and/or”. The terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively. Additionally, as used herein, the terms “module” and “unit” refer to hardware with circuitry to provide communication, control and/or monitoring capabilities. A “module” and a “unit” may also include firmware that executes on the circuitry.
The above-described embodiments, and particularly any “preferred” embodiments, are possible examples of implementations and merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) without substantially departing from the spirit and principles of the techniques described herein. All modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5959724 | Izumi | Sep 1999 | A |
6275754 | Shimizu | Aug 2001 | B1 |
6356828 | Shimizu | Mar 2002 | B1 |
6452617 | Bates | Sep 2002 | B1 |
6476730 | Kakinami | Nov 2002 | B2 |
6477260 | Shimomura | Nov 2002 | B1 |
6657555 | Shimizu | Dec 2003 | B2 |
6683539 | Trajkovic | Jan 2004 | B2 |
6724322 | Tang | Apr 2004 | B2 |
6744364 | Wathen | Jun 2004 | B2 |
6768420 | McCarthy | Jul 2004 | B2 |
6801855 | Walters | Oct 2004 | B1 |
6850844 | Walters | Jan 2005 | B1 |
6850148 | Masudaya | Feb 2005 | B2 |
6927685 | Wathen | Aug 2005 | B2 |
6997048 | Komatsu | Feb 2006 | B2 |
7042332 | Takamura | May 2006 | B2 |
7123167 | Staniszewski | Oct 2006 | B2 |
7307655 | Okamoto | Dec 2007 | B1 |
7663508 | Teshima | Feb 2010 | B2 |
7737866 | Wu | Jun 2010 | B2 |
7813844 | Gensler | Oct 2010 | B2 |
7825828 | Watanabe | Nov 2010 | B2 |
7834778 | Browne | Nov 2010 | B2 |
7847709 | McCall | Dec 2010 | B2 |
7850078 | Christenson | Dec 2010 | B2 |
7924483 | Smith | Apr 2011 | B2 |
8035503 | Partin | Oct 2011 | B2 |
8054169 | Bettecken | Nov 2011 | B2 |
8098146 | Petrucelli | Jan 2012 | B2 |
8126450 | Howarter | Feb 2012 | B2 |
8164628 | Stein | Apr 2012 | B2 |
8180524 | Eguchi | May 2012 | B2 |
8180547 | Prasad | May 2012 | B2 |
8224313 | Howarter | Jul 2012 | B2 |
8229645 | Lee | Jul 2012 | B2 |
8242884 | Holcomb | Aug 2012 | B2 |
8335598 | Dickerhoof | Dec 2012 | B2 |
8401235 | Lee | Mar 2013 | B2 |
8493236 | Boehme | Jul 2013 | B2 |
8538408 | Howarter | Sep 2013 | B2 |
8542130 | Lavoie | Sep 2013 | B2 |
8552856 | McRae | Oct 2013 | B2 |
8587681 | Guidash | Nov 2013 | B2 |
8594616 | Gusikhin | Nov 2013 | B2 |
8599043 | Kadowaki | Dec 2013 | B2 |
8618945 | Furuta | Dec 2013 | B2 |
8645015 | Oetiker | Feb 2014 | B2 |
8655551 | Danz | Feb 2014 | B2 |
8692773 | You | Apr 2014 | B2 |
8706350 | Talty | Apr 2014 | B2 |
8725315 | Talty | May 2014 | B2 |
8742947 | Nakazono | Jun 2014 | B2 |
8744684 | Hong | Jun 2014 | B2 |
8780257 | Gidon | Jul 2014 | B2 |
8787868 | Leblanc | Jul 2014 | B2 |
8825262 | Lee | Sep 2014 | B2 |
8933778 | Birkel | Jan 2015 | B2 |
8957786 | Stempnik | Feb 2015 | B2 |
8994548 | Gaboury | Mar 2015 | B2 |
8995914 | Nishidai | Mar 2015 | B2 |
9008860 | Waldock | Apr 2015 | B2 |
9014920 | Torres | Apr 2015 | B1 |
9078200 | Wuergler | Jul 2015 | B2 |
9086879 | Gautama | Jul 2015 | B2 |
9141503 | Chen | Sep 2015 | B1 |
9147065 | Lauer | Sep 2015 | B2 |
9154920 | O'Brien | Oct 2015 | B2 |
9168955 | Noh | Oct 2015 | B2 |
9193387 | Auer | Nov 2015 | B2 |
9225531 | Hachey | Dec 2015 | B2 |
9230439 | Boulay | Jan 2016 | B2 |
9233710 | Lavoie | Jan 2016 | B2 |
9273966 | Bartels | Mar 2016 | B2 |
9275208 | Protopapas | Mar 2016 | B2 |
9283960 | Lavoie | Mar 2016 | B1 |
9286803 | Tippelhofer | Mar 2016 | B2 |
9302675 | Schilling | Apr 2016 | B2 |
9318022 | Barth | Apr 2016 | B2 |
9379567 | Kracker | Jun 2016 | B2 |
9381859 | Nagata | Jul 2016 | B2 |
9429657 | Sidhu | Aug 2016 | B2 |
9429947 | Wengreen | Aug 2016 | B1 |
9454251 | Guihot | Sep 2016 | B1 |
9469247 | Juneja | Oct 2016 | B2 |
9493187 | Pilutti | Nov 2016 | B2 |
9506774 | Shutko | Nov 2016 | B2 |
9511799 | Lavoie | Dec 2016 | B2 |
9522675 | You | Dec 2016 | B1 |
9529519 | Blumenberg | Dec 2016 | B2 |
9557741 | Elie | Jan 2017 | B1 |
9563990 | Khan | Feb 2017 | B2 |
9595145 | Avery | Mar 2017 | B2 |
9598051 | Okada | Mar 2017 | B2 |
9606241 | Varoglu | Mar 2017 | B2 |
9616923 | Lavoie | Apr 2017 | B2 |
9637117 | Gusikhin | May 2017 | B1 |
9651655 | Feldman | May 2017 | B2 |
9656690 | Shen | May 2017 | B2 |
9666040 | Flaherty | May 2017 | B2 |
9688306 | McClain | Jun 2017 | B2 |
9701280 | Schussmann | Jul 2017 | B2 |
9712977 | Tu | Jul 2017 | B2 |
9715816 | Adler | Jul 2017 | B1 |
9725069 | Krishnan | Aug 2017 | B2 |
9731714 | Kiriya | Aug 2017 | B2 |
9731764 | Baek | Aug 2017 | B2 |
9754173 | Kim | Sep 2017 | B2 |
9809218 | Elie | Nov 2017 | B2 |
9811085 | Hayes | Nov 2017 | B1 |
9842444 | Van Wiemeersch | Dec 2017 | B2 |
9845070 | Petel | Dec 2017 | B2 |
9846431 | Petel | Dec 2017 | B2 |
9914333 | Shank | Mar 2018 | B2 |
9921743 | Bryant | Mar 2018 | B2 |
9946255 | Matters | Apr 2018 | B2 |
9959763 | Miller | May 2018 | B2 |
9971130 | Lin | May 2018 | B1 |
9975504 | Dalke | May 2018 | B2 |
10019001 | Dang Van Nhan | Jul 2018 | B2 |
10032276 | Liu | Jul 2018 | B1 |
10040482 | Jung | Aug 2018 | B1 |
10043076 | Zhang | Aug 2018 | B1 |
10131347 | Kim | Nov 2018 | B2 |
10192113 | Liu | Jan 2019 | B1 |
10246055 | Farges | Apr 2019 | B2 |
10268341 | Kocienda | Apr 2019 | B2 |
20030060972 | Kakinami | Mar 2003 | A1 |
20030098792 | Edwards | May 2003 | A1 |
20030133027 | Itoh | Jul 2003 | A1 |
20050030156 | Alfonso | Feb 2005 | A1 |
20050068450 | Steinberg | Mar 2005 | A1 |
20050099275 | Kamdar | May 2005 | A1 |
20060010961 | Gibson | Jan 2006 | A1 |
20060227010 | Berstis | Oct 2006 | A1 |
20060235590 | Bolourchi | Oct 2006 | A1 |
20070230944 | Georgiev | Oct 2007 | A1 |
20080027591 | Lenser | Jan 2008 | A1 |
20080154464 | Sasajima | Jun 2008 | A1 |
20080154613 | Haulick | Jun 2008 | A1 |
20080238643 | Malen | Oct 2008 | A1 |
20080306683 | Ando | Dec 2008 | A1 |
20090096753 | Lim | Apr 2009 | A1 |
20090098907 | Huntzicker | Apr 2009 | A1 |
20090115639 | Proefke | May 2009 | A1 |
20090125181 | Luke | May 2009 | A1 |
20090125311 | Haulick | May 2009 | A1 |
20090128315 | Griesser | May 2009 | A1 |
20090146813 | Nuno | Jun 2009 | A1 |
20090174574 | Endo | Jul 2009 | A1 |
20090241031 | Gamaley | Sep 2009 | A1 |
20090289813 | Kwiecinski | Nov 2009 | A1 |
20090309970 | Ishii | Dec 2009 | A1 |
20090313095 | Hurpin | Dec 2009 | A1 |
20100025942 | Mangaroo | Feb 2010 | A1 |
20100061564 | Clemow | Mar 2010 | A1 |
20100114471 | Sugiyama | May 2010 | A1 |
20100114488 | Khamharn | May 2010 | A1 |
20100136944 | Taylor | Jun 2010 | A1 |
20100152972 | Attard | Jun 2010 | A1 |
20100156672 | Yoo | Jun 2010 | A1 |
20100245277 | Nakao | Sep 2010 | A1 |
20100259420 | Von Rehyer | Oct 2010 | A1 |
20110071725 | Kleve | Mar 2011 | A1 |
20110082613 | Oetiker | Apr 2011 | A1 |
20110190972 | Timmons | Aug 2011 | A1 |
20110205088 | Baker | Aug 2011 | A1 |
20110253463 | Smith | Oct 2011 | A1 |
20110309922 | Ghabra | Dec 2011 | A1 |
20120007741 | Laffey | Jan 2012 | A1 |
20120072067 | Jecker | Mar 2012 | A1 |
20120083960 | Zhu | Apr 2012 | A1 |
20120173080 | Cluff | Jul 2012 | A1 |
20120176332 | Fujibayashi | Jul 2012 | A1 |
20120271500 | Tsimhoni | Oct 2012 | A1 |
20120303258 | Pampus | Nov 2012 | A1 |
20120323643 | Volz | Dec 2012 | A1 |
20120323700 | Aleksandrovich | Dec 2012 | A1 |
20130021171 | Hsu | Jan 2013 | A1 |
20130024202 | Harris | Jan 2013 | A1 |
20130043989 | Niemz | Feb 2013 | A1 |
20130073119 | Huger | Mar 2013 | A1 |
20130109342 | Welch | May 2013 | A1 |
20130110342 | Wuttke | May 2013 | A1 |
20130113936 | Cohen | May 2013 | A1 |
20130124061 | Khanafer | May 2013 | A1 |
20130145441 | Mujumdar | Jun 2013 | A1 |
20130211623 | Thompson | Aug 2013 | A1 |
20130231824 | Wilson | Sep 2013 | A1 |
20130289825 | Noh | Oct 2013 | A1 |
20130314502 | Urbach | Nov 2013 | A1 |
20130317944 | Huang | Nov 2013 | A1 |
20140052323 | Reichel | Feb 2014 | A1 |
20140095994 | Kim | Apr 2014 | A1 |
20140096051 | Boblett | Apr 2014 | A1 |
20140121930 | Allexi | May 2014 | A1 |
20140147032 | Yous | May 2014 | A1 |
20140156107 | Karasawa | Jun 2014 | A1 |
20140188339 | Moon | Jul 2014 | A1 |
20140222252 | Matters | Aug 2014 | A1 |
20140240502 | Strauss | Aug 2014 | A1 |
20140282931 | Protopapas | Sep 2014 | A1 |
20140297120 | Cotgrove | Oct 2014 | A1 |
20140300504 | Shaffer | Oct 2014 | A1 |
20140303839 | Filev | Oct 2014 | A1 |
20140320318 | Victor | Oct 2014 | A1 |
20140327736 | DeJohn | Nov 2014 | A1 |
20140350804 | Park | Nov 2014 | A1 |
20140350855 | Vishnuvajhala | Nov 2014 | A1 |
20140365108 | You | Dec 2014 | A1 |
20140365126 | Vulcano | Dec 2014 | A1 |
20150022468 | Cha | Jan 2015 | A1 |
20150039173 | Beaurepaire | Feb 2015 | A1 |
20150039224 | Tuukkanen | Feb 2015 | A1 |
20150048927 | Simmons | Feb 2015 | A1 |
20150066545 | Kotecha | Mar 2015 | A1 |
20150077522 | Suzuki | Mar 2015 | A1 |
20150088360 | Bonnet | Mar 2015 | A1 |
20150091741 | Stefik | Apr 2015 | A1 |
20150109116 | Grimm | Apr 2015 | A1 |
20150116079 | Mishra | Apr 2015 | A1 |
20150123818 | Sellschopp | May 2015 | A1 |
20150127208 | Jecker | May 2015 | A1 |
20150149265 | Huntzicker | May 2015 | A1 |
20150151789 | Lee | Jun 2015 | A1 |
20150153178 | Koo | Jun 2015 | A1 |
20150161890 | Huntzicker | Jun 2015 | A1 |
20150163649 | Chen | Jun 2015 | A1 |
20150197278 | Boos | Jul 2015 | A1 |
20150203111 | Bonnet | Jul 2015 | A1 |
20150203156 | Hafner | Jul 2015 | A1 |
20150210317 | Hafner | Jul 2015 | A1 |
20150217693 | Pliefke | Aug 2015 | A1 |
20150219464 | Beaurepaire | Aug 2015 | A1 |
20150220791 | Wu | Aug 2015 | A1 |
20150226146 | Elwart | Aug 2015 | A1 |
20150274016 | Kinoshita | Oct 2015 | A1 |
20150286340 | Send | Oct 2015 | A1 |
20150329081 | Morita | Nov 2015 | A1 |
20150329110 | Stefan | Nov 2015 | A1 |
20150344028 | Gieseke | Dec 2015 | A1 |
20150346727 | Ramanujam | Dec 2015 | A1 |
20150360720 | Li | Dec 2015 | A1 |
20150365401 | Brown | Dec 2015 | A1 |
20150371541 | Korman | Dec 2015 | A1 |
20150375741 | Kiriya | Dec 2015 | A1 |
20150375742 | Gebert | Dec 2015 | A1 |
20160012653 | Soroka | Jan 2016 | A1 |
20160012726 | Wang | Jan 2016 | A1 |
20160018821 | Akita | Jan 2016 | A1 |
20160055749 | Nicoll | Feb 2016 | A1 |
20160153778 | Singh | Feb 2016 | A1 |
20160062354 | Li | Mar 2016 | A1 |
20160068158 | Elwart | Mar 2016 | A1 |
20160068187 | Hata | Mar 2016 | A1 |
20160075369 | Lavoie | Mar 2016 | A1 |
20160090055 | Breed | Mar 2016 | A1 |
20160107689 | Lee | Apr 2016 | A1 |
20160112846 | Siswick | Apr 2016 | A1 |
20160114726 | Nagata | Apr 2016 | A1 |
20160117926 | Akavaram | Apr 2016 | A1 |
20160127664 | Bruder | May 2016 | A1 |
20160139244 | Holtman | May 2016 | A1 |
20160144857 | Ohshima | May 2016 | A1 |
20160152263 | Singh | Jun 2016 | A1 |
20160170494 | Bonnet | Jun 2016 | A1 |
20160185389 | Ishijima | Jun 2016 | A1 |
20160189435 | Beaurepaire | Jun 2016 | A1 |
20160207528 | Stefan | Jul 2016 | A1 |
20160224025 | Petel | Aug 2016 | A1 |
20160229452 | Lavoie | Aug 2016 | A1 |
20160236680 | Lavoie | Aug 2016 | A1 |
20160249294 | Lee | Aug 2016 | A1 |
20160257304 | Lavoie | Sep 2016 | A1 |
20160272244 | Imai | Sep 2016 | A1 |
20160282442 | O'Mahony | Sep 2016 | A1 |
20160284217 | Lee | Sep 2016 | A1 |
20160288657 | Tokura | Oct 2016 | A1 |
20160300417 | Hatton | Oct 2016 | A1 |
20160304087 | Noh | Oct 2016 | A1 |
20160304088 | Barth | Oct 2016 | A1 |
20160349362 | Rohr | Oct 2016 | A1 |
20160321445 | Turgeman | Nov 2016 | A1 |
20160321926 | Mayer | Nov 2016 | A1 |
20160334797 | Ross | Nov 2016 | A1 |
20160347280 | Daman | Dec 2016 | A1 |
20160355125 | Herbert | Dec 2016 | A1 |
20160357354 | Chen | Dec 2016 | A1 |
20160358474 | Uppal | Dec 2016 | A1 |
20160368489 | Aich | Dec 2016 | A1 |
20160371607 | Rosen | Dec 2016 | A1 |
20160371691 | Kang | Dec 2016 | A1 |
20170001650 | Park | Jan 2017 | A1 |
20170008563 | Popken | Jan 2017 | A1 |
20170026198 | Ochiai | Jan 2017 | A1 |
20170028985 | Kiyokawa | Feb 2017 | A1 |
20170030722 | Kojo | Feb 2017 | A1 |
20170032593 | Patel | Feb 2017 | A1 |
20170072947 | Lavoie | Mar 2017 | A1 |
20170073004 | Shepard | Mar 2017 | A1 |
20170076603 | Bostick | Mar 2017 | A1 |
20170097504 | Takamatsu | Apr 2017 | A1 |
20170116790 | Kusens | Apr 2017 | A1 |
20170123423 | Sako | May 2017 | A1 |
20170129537 | Kim | May 2017 | A1 |
20170129538 | Stefan | May 2017 | A1 |
20170132482 | Kim | May 2017 | A1 |
20170144654 | Sham | May 2017 | A1 |
20170144656 | Kim | May 2017 | A1 |
20170147995 | Kalimi | May 2017 | A1 |
20170168479 | Dang | Jun 2017 | A1 |
20170192428 | Vogt | Jul 2017 | A1 |
20170200369 | Miller | Jul 2017 | A1 |
20170203763 | Yamada | Jul 2017 | A1 |
20170208438 | Dickow | Jul 2017 | A1 |
20170297385 | Kim | Oct 2017 | A1 |
20170297620 | Lavoie | Oct 2017 | A1 |
20170301241 | Urhahne | Oct 2017 | A1 |
20170308075 | Whitaker | Oct 2017 | A1 |
20170336788 | Iagnemma | Nov 2017 | A1 |
20170357317 | Chaudhri | Dec 2017 | A1 |
20170371514 | Cullin | Dec 2017 | A1 |
20180015878 | McNew | Jan 2018 | A1 |
20180024559 | Seo | Jan 2018 | A1 |
20180029591 | Lavoie | Feb 2018 | A1 |
20180029641 | Solar | Feb 2018 | A1 |
20180039264 | Messner | Feb 2018 | A1 |
20180043884 | Johnson | Feb 2018 | A1 |
20180043905 | Kim | Feb 2018 | A1 |
20180056939 | van Roermund | Mar 2018 | A1 |
20180056989 | Donald | Mar 2018 | A1 |
20180082588 | Hoffman, Jr. | Mar 2018 | A1 |
20180088330 | Giannuzzi | Mar 2018 | A1 |
20180093663 | Kim | Apr 2018 | A1 |
20180105165 | Alarcon | Apr 2018 | A1 |
20180105167 | Kim | Apr 2018 | A1 |
20180121008 | Teoh | May 2018 | A1 |
20180148094 | Mukaiyama | May 2018 | A1 |
20180174460 | Jung | Jun 2018 | A1 |
20180189971 | Hildreth | Jul 2018 | A1 |
20180194344 | Wang | Jul 2018 | A1 |
20180196963 | Bandiwdekar | Jul 2018 | A1 |
20180224863 | Fu | Aug 2018 | A1 |
20180236957 | Min | Aug 2018 | A1 |
20180284802 | Tsai | Oct 2018 | A1 |
20180286072 | Tsai | Oct 2018 | A1 |
20180339654 | Kim | Nov 2018 | A1 |
20180345851 | Lavoie | Dec 2018 | A1 |
20180364731 | Liu | Dec 2018 | A1 |
20190005445 | Bahrainwala | Jan 2019 | A1 |
20190042003 | Parazynski | Feb 2019 | A1 |
20190066503 | Li | Feb 2019 | A1 |
20190103027 | Wheeler | Apr 2019 | A1 |
20190137990 | Golgiri | May 2019 | A1 |
Number | Date | Country |
---|---|---|
101929921 | Dec 2010 | CN |
103818204 | May 2014 | CN |
104183153 | Dec 2014 | CN |
104485013 | Apr 2015 | CN |
104691544 | Jun 2015 | CN |
103049159 | Jul 2015 | CN |
105513412 | Apr 2016 | CN |
105588563 | May 2016 | CN |
105599703 | May 2016 | CN |
105774691 | Jul 2016 | CN |
106027749 | Oct 2016 | CN |
205719000 | Nov 2016 | CN |
106598630 | Apr 2017 | CN |
106782572 | May 2017 | CN |
106945662 | Jul 2017 | CN |
104290751 | Jan 2018 | CN |
3844340 | Jul 1990 | DE |
19817142 | Oct 1999 | DE |
19821163 | Nov 1999 | DE |
102005006966 | Sep 2005 | DE |
102006058213 | Jul 2008 | DE |
102009024083 | Jul 2010 | DE |
102016224529 | Mar 2011 | DE |
102016226008 | Mar 2011 | DE |
102010034129 | Nov 2012 | DE |
102012008858 | Nov 2012 | DE |
102009060169 | Jun 2013 | DE |
102011080148 | Jul 2013 | DE |
102012200725 | Sep 2013 | DE |
102013004214 | Sep 2013 | DE |
102009051055 | Oct 2013 | DE |
102011122421 | Jun 2014 | DE |
102013016342 | Jan 2015 | DE |
102013019904 | Feb 2015 | DE |
102012215218 | Apr 2015 | DE |
102012222972 | May 2015 | DE |
102013019771 | Dec 2015 | DE |
102013213064 | Feb 2016 | DE |
102014007915 | Feb 2016 | DE |
102014011802 | Feb 2016 | DE |
102014009077 | Apr 2016 | DE |
102014226458 | Jun 2016 | DE |
102014011864 | Dec 2016 | DE |
102014015655 | May 2017 | DE |
102014111570 | Jun 2017 | DE |
102016214433 | Jun 2017 | DE |
102015209976 | Jul 2017 | DE |
102015221224 | Dec 2017 | DE |
102016211021 | Dec 2017 | DE |
102016011916 | Feb 2018 | DE |
102016125282 | Jun 2018 | DE |
2653367 | Jun 2000 | EP |
2768718 | Jun 2011 | EP |
2289768 | Oct 2013 | EP |
2620351 | Dec 2015 | EP |
2295281 | Mar 2016 | EP |
2135788 | Jun 2016 | EP |
3021798 | Dec 2012 | FR |
2534471 | Oct 2000 | GB |
2344481 | Dec 2012 | GB |
2497836 | Sep 2014 | GB |
2481324 | Mar 2015 | GB |
2517835 | May 2016 | GB |
2491720 | Jul 2016 | GB |
5586450 | May 2004 | JP |
5918683 | Oct 2004 | JP |
2004333464 | Nov 2004 | JP |
2000293797 | Jul 2005 | JP |
2004142543 | Apr 2009 | JP |
2016119032 | Apr 2009 | JP |
2018052188 | Jan 2010 | JP |
2004287884 | Jul 2014 | JP |
2005193742 | Jul 2014 | JP |
2014141216 | Aug 2014 | JP |
2009090850 | Jun 2016 | JP |
2014134082 | Jul 2016 | JP |
2014125196 | Apr 2018 | JP |
20130106005 | Jun 2006 | KR |
20160039460 | May 2008 | KR |
20160051993 | Jan 2010 | KR |
101641267 | Sep 2013 | KR |
20090040024 | Apr 2016 | KR |
20100006714 | May 2016 | KR |
WO 2017112444 | Dec 2010 | WO |
WO 2017118510 | Jun 2011 | WO |
WO 2006064544 | Nov 2011 | WO |
WO 2017125514 | Jan 2013 | WO |
WO 2008055567 | Apr 2013 | WO |
WO 2010006981 | Aug 2013 | WO |
WO 2011141096 | Jul 2014 | WO |
WO 2013056959 | May 2015 | WO |
WO 2013123813 | Dec 2015 | WO |
WO 2014103492 | Mar 2016 | WO |
WO 2015068032 | Aug 2016 | WO |
WO 2015193058 | Sep 2016 | WO |
WO 2016046269 | Apr 2017 | WO |
WO 2016128200 | May 2017 | WO |
WO 2016134822 | Jun 2017 | WO |
WO 2017062448 | Jun 2017 | WO |
WO 2017073159 | Jun 2017 | WO |
WO 2017096307 | Jun 2017 | WO |
WO 2017096728 | Jul 2017 | WO |
WO 2017097942 | Jul 2017 | WO |
Entry |
---|
US 9,772,406 B2, 09/2017, Liu (withdrawn) |
Machine translation for JP2014141216, “parking support device and parking support method”, Kasai Hajime, Aug. 7, 2014. |
Machine translation for JP2004333464, “simplified method and system for car navigation”, Chin Kunie, Nov. 25, 2004. |
Alberto Broggi and Elena Cardarelli, Vehicle Detection for Autonomous Parking Using a Soft-Cascade ADA Boost Classifier, Jun. 8, 2014. |
Al-Sherbaz, Ali et al., Hybridisation of GNSS with other wireless/sensors technologies on board smartphones to offer seamless outdoors-indoors positioning for LBS applications, Apr. 2016, 3 pages. |
Automatically Into the Parking Space—https://www.mercedes-benz.com/en/mercedes-benz/next/automation/automatically-into-the-parking-space/; Oct. 27, 2014. |
Bill Howard, Bosch's View of the Future Car: Truly Keyless Entry, Haptic Feedback, Smart Parking, Cybersecurity, Jan. 9, 2017, 8 Pages. |
ChargeItSpot Locations, Find a Phone Charging Station Near You, retrieved at https://chargeitspot.com/locations/ on Nov. 28, 2017. |
Core System Requirements Specification (SyRS), Jun. 30, 2011, Research and Innovative Technology Administration. |
Daimler AG, Remote Parking Pilot, Mar. 2016 (3 Pages). |
Jingbin Liu, IParking: An Intelligent Indoor Location-Based Smartphone Parking Service, Oct. 31, 2012, 15 pages. |
Land Rover develops a smartphone remote control for its SUVs, James Vincent, Jun. 18, 2015. |
Land Rover, Land Rover Remote Control via Iphone RC Range Rover Sport Showcase—Autogefühl, Retrieved from https://www.youtube.com/watch?v=4ZaaYNaEFio (at 43 seconds and 1 minute 42 seconds), Sep. 16, 2015. |
Perpendicular Parking—https://prezi.com/toqmfyxriksl/perpendicular-parking/. |
SafeCharge, Secure Cell Phone Charging Stations & Lockers, retrieved at https://www.thesafecharge.com on Nov. 28, 2017. |
Search Report dated Jan. 19, 2018 for GB Patent Application No. 1711988.4 (3 pages). |
Search Report dated Jul. 11, 2017 for GB Patent Application No. 1700447.4 (3 Pages). |
Search Report dated May 21, 2018 for Great Britain Patent Application No. GB 1800277.4 (5 Pages). |
Search Report dated Nov. 22, 2018 for GB Patent Application No. GB 1809829.3 (6 pages). |
Search Report dated Nov. 27, 2018 for GB Patent Application No. GB 1809112.4 (3 pages). |
Search Report dated Nov. 28, 2017, for GB Patent Application No. GB 1710916.6 (4 Pages). |
Search Report dated Nov. 28, 2018 for GB Patent Application No. GB 1809842.6 (5 pages). |
Search Report dated Oct. 10, 2018 for GB Patent Application No. 1806499.8 (4 pages). |
Tesla Model S Owner's Manual v2018.44. Oct. 29, 2018. |
Vehicle's Orientation Measurement Method by Single-Camera Image Using Known-Shaped Planar Object, Nozomu Araki, Takao Sato, Yasuo Konishi and Hiroyuki Ishigaki, 2010. |
Number | Date | Country | |
---|---|---|---|
20200122716 A1 | Apr 2020 | US |