This document relates to a data backup system for an infusion pump device.
Pump devices are commonly used to deliver one or more fluids to a targeted individual. For example, a medical infusion pump device may be used to deliver a medicine to a patient as part of a medical treatment. The medicine that is delivered by the infusion pump device can depend on the condition of the patient and the desired treatment plan. For example, infusion pump devices have been used to deliver insulin to the vasculature of diabetes patients so as to regulate blood-glucose levels.
Because of potential abuses or mistakes, a controller device for an infusion pump system can be configured such that only a physician or counselor can program certain information on the controller device. Accordingly, if a user loses or damages her controller device, the user must then get her physician or counselor to program another controller device. Furthermore, even user programmed information can be lost when a user loses or damages the controller device. Accordingly an infusion pump system can include a controller device that communicates with a pump device, the pump device having a memory device. The controller device can be configured to record controller-related data, such as user profile data on the memory device of the pump device. This user profile data that is stored in the memory of the pump device can serves as a data backup system that permits the user to program a new controller device in a situation where the original controller device is lost or damaged. In addition or in the alternative, the controller device can be configured to receive controller-related data, such as software update programs or backup controller data, from the memory device of the pump device.
In particular embodiments, a wearable infusion pump system may include a pump device and a controller device that is removably attachable to the pump device. The pump device can define a space to receive a medicine source and can include a drive system to dispense medicine from the pump device when the medicine source is received in the space. The pump device can include a memory device that stores user profile information. When the controller device is removably attached to the pump device, the controller device activates the drive system to dispense the medicine source. The controller device can receive the user profile information to program the controller device for use with the user.
In some embodiments, a method of programming a infusion pump system may include recording user profile information onto a memory device within a pump device and transmitting the user profile information from the memory device to a reusable controller device once the controller device is removably attached to the pump device. The pump device can have medicine and a drive system to dispense the medicine from the pump device.
In other embodiments, a method of programming a infusion pump system may include removably attaching a first reusable controller device to a disposable pump device, detaching the pump device from the first reusable controller device, and removably attaching the pump device to a second reusable controller device. The first controller device can include a first memory device comprising user profile information. The pump device can have medicine and a drive system to dispense the medicine from the pump device. The pump device can also include a pump memory device. The first reusable controller device thereby transmits the user profile information from the first memory device to the pump memory device when the pump device is removably connected to the first controller device and the second controller device receives the user profile information from the pump memory device when the second controller device is removably attached to the pump device.
In particular embodiments, a medicinal fluid supply system may include a drive system to dispense a medicine from a portable infusion pump unit, control circuitry to communicate electronic control signals to the drive system, an energy source electrically connected to the control circuitry, a first memory device comprising user profile information, and a second memory device comprising the user profile information. The drive system can powered by the electrical energy stored in the rechargeable power supply.
In some embodiments, a wearable infusion pump system can include a pump device and a controller device that is removably attachable to the pump device. The pump device may define a space to receive a medicine source and may include a drive system to dispense medicine from the pump device when the medicine source is received in the space. The pump device can include a first memory device storing a software program including machine executable instructions. The controller device may include a second memory device. When the controller device is removably attached to the pump device, the controller device activates the drive system to dispense the medicine source. The controller device can receiving the software program from the first memory device and store at least a portion of the software program on the second memory device, the controller device executing the machine readable instructions.
Some or all of the embodiments described herein may provide one or more of the following advantages. First, some embodiments of an infusion pump system may include a configuration that records user profile data on a memory device in the pump device. This configuration may permit a user to transition to a new controller without needing to have that new controller programmed by a physician or counselor. Moreover, the user profile can also save the user time by avoiding the need for the user to reprogram the new controller with user entered data.
Second, some embodiments of the infusion pump system can use the user profile information as a key to ensure that the pump device is not being used by multiple users having different controller devices. For example, it can ensure that people living together do not accidentally use their house mates' pump device. The controller device can detect the presence of user profile information and confirm that it matches the user profile of the controller device 200.
Third, some embodiments of the infusion pump system can use the user profile information as a key for the user to confirm his or her identity. For example, when programming a new controller with the user profile on the pump device, the controller can query the user to confirm that the user profile belongs to the person in possession of the pump device and the new controller.
Fourth, some embodiments of the controller device are configured to removably attach to the pump device in a manner that provides a reliable electrical connection therebetween. Such an electrical connection may permit communication from the controller device to the drive system of the pump device.
Fifth, some embodiments of the pump device may be attached to the controller device so that a user can readily monitor infusion pump operation by simply viewing the user interface connected to the pump device. In these circumstances, the user may activate and control the pump device without the requirement of locating and operating a separate monitoring module.
Sixth, some embodiments of the infusion pump system may be configured to be portable, wearable, and (in some circumstances) concealable. For example, a user can conveniently wear the infusion pump system on the user's skin under clothing or can carry the pump device in the user's pocket (or other portable location) while receiving the medicine dispensed from the pump device.
The details of one or more embodiments set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The controller device 200 may be configured as a reusable component that provides electronics and a user interface to control the operation of the pump device 100. In such circumstances, the pump device 100 can be a disposable component that is disposed of after a single use. For example, as described in more detail below in connection with
The infusion pump system 10 may also include a memory device 318 included in the pump device 100 to store controller-related data, such as user profile data (e.g., as shown in
Furthermore, the memory device 318 included in the pump device 100 can store controller-related data, such as controller software updates (e.g., refer to
Briefly, in use, the pump device 100 is configured to removably attach to the controller device 200 in a manner that provides a secure fitting, an overall compact size, and a reliable electrical connection that is resistant to water migration. For example, as described in more detail below in connection with
Referring again to
In some embodiments, the pump device 100 can include one or more structures that interfere with the removal of the medicine cartridge 120 after the medicine cartridge 120 is inserted into the cavity 116. For example, as shown in
Still referring to
As shown in
Still referring to
Accordingly, when the controller device 200 is connected to the pump device 100, the user can be provided with the opportunity to readily monitor the infusion pump operation by simply viewing the user interface 220 of the controller device 200 connected to the pump device 100. Such monitoring capabilities may provide comfort to a user who may have urgent questions about the current operation of the pump device 100. Also, in these embodiments, there may be no need for the user to carry and operate a separate module to monitor the operation of the infusion pump device 100, thereby simplifying the monitoring process and reducing the number of devices that must be carried by the user. If a need arises in which the user desires to monitor the operation of the pump device 100 or to adjust the settings of the pump system 10 (e.g., to request a bolus amount of medicine), the user can readily operate the user interface 220 of the controller device 200, which is removably attached to the pump device 100, without the requirement of locating and operating a separate monitoring module.
Referring now to
The controller device 200 can include a controller housing structure 210 having a number of features that are configured to mate with complementary features of the pump housing structure 110 so as to form a releasable mechanical connection. For example, the pump housing structure 110 can include a barrel 111 that mates with a complementary barrel channel 211 of the controller housing 210. Also, the pump housing 110 can include slider channel 112 that slidably engages a complementary rail 212 defined by the controller housing 210. The slider channel 112 can guide the relative motion between the pump device 100 and the controller device 200 in the longitudinal direction during the attachment process. Similarly, the pump housing 110 can include a segmented rail 114a-b (
Still referring to
In addition, other paths for migration of external contaminants into the assembled pump system 10 can be sealed. For example, the infusion pump system 10 can include one or more seals that are arranged to hinder migration of external contaminants between the cap device 130 and the pump housing 110 into the cavity 116 of the pump device 100. In some embodiments, the seal 131 arranged between the cap device 130 and the barrel 111 can provide an effective water-resistant seal against water migration into the cavity. As such, the medicine cartridge 120 and pump drive system (not shown in
Still referring to
Accordingly, the pump device 100 and the controller device 200 can be mounted to one another so that the assembled system 10 is resistant to water migration both into the pump housing structure 110 and the controller housing structure 210. Such a configuration can also provide water-resistant protection for the electrical connection between the pump device 100 and the controller device 200. Thus, the sensitive internal components in the controller device 200 and the pump device 100 can be reliably protected from water migration if the user encounters water (e.g., rain, incidental splashing, and the like) while using the pump system 10.
Referring to
The pump system 10 is shown in
Referring to
Referring to
Referring now to
The controller device 200, however, may be reused with subsequent new pump devices 100′ and new medicine cartridges 120′. As such, the control circuitry, the user interface components, and other components that may have relatively higher manufacturing costs can be reused over a longer period of time. For example, in some embodiments, the controller device 200 can be designed to have an expected operational life of about 1 year to about 7 years, about 2 years to about 6 years, or about 3 years to about 5 years—depending on a number of factors including the usage conditions for the individual user. Accordingly, the user can be permitted to reuse the controller device 200 (which can include complex or valuable electronics) while disposing of the relatively low-cost pump device 100 after each use. Such a pump system 10 can provide enhanced user safety as a new pump device 100′ (and drive system therein) is employed with each new fluid cartridge 120. Although the pump devices 100 may be disposable, a user can disconnect and reconnect a pump devices 100 multiple times before discarding the pump devices 100 when the medicine cartridges 120 are empty.
Referring to
Referring to
As previously described, the guided motion in the longitudinal direction 219 provides the user with a convenient “one-movement” process to attach the pump device 100′ and the controller device 200. For example, the user can readily slide the pump device 100′ and the controller device 200 toward one another in a single movement (e.g., in the longitudinal direction) that causes both a physical connection and an electrical connection. Thus, the infusion pump system 10 can permit users to readily join the pump device 100′ and the controller device 200 without compound or otherwise difficult hand movements-a feature that can be beneficial to child users or to elderly users.
Referring now to
Still referring to
Some embodiments of the control circuitry 240 can include a cable connector (e.g., a USB connection port or another data cable port) that is accessible on an external portion of the controller housing 210. As such, a cable can be connected to the control circuitry 240 to upload data or program settings to the controller circuit or to download data from the control circuitry 240. For example, historical data of medicine delivery can be downloaded from the control circuitry 240 (via the cable connector) to a computer system of a physician or a user for purposes of analysis and program adjustments. Optionally, the data cable can also provide recharging power.
In some embodiments, the pump device 100 can include a first power source 345 (refer to
The first power source 345 can include a disposable and/or non-rechargeable battery (e.g., a zinc-air cell). The first power source 345 can have a large volumetric energy density compared to the second power source 245. For example, the first power source 345 can be a zinc-air cell battery that has a volumetric energy density of greater than about 900 Watt-hours/Liter (Wh/L), about 1000 Wh/L to about 1700 Wh/L, and about 1200 Wh/L to about 1600 Wh/L. Also, the zinc-air cell battery can have a long storage life, as described above. One exemplary zinc-air cell battery is available from Duracell Corporation of Bethel, Conn., which can provide a potential voltage of about 1.1V to about 1.6V (about 1.2V to about 1.4 V, and about 1.3 V in one embodiment), a current output of about 8 mA to about 12 mA (about 10 mA in one embodiment), and a storage capacity of greater than about 600 mA·h (about 650 mA·h in one embodiment).
Referring again to
The second power source 245 can include a high current-output device that is contained inside the controller housing 210. The second power source 245 can be charged over a period of time (e.g., by a first power source 345) and can intermittently deliver high-current bursts to the drive system 300 over brief moments of time. For example, the second power source 245 can include a lithium-polymer battery. The second power source 245 (e.g., lithium polymer battery) disposed in the controller device 200 can have an initial current output that is greater than that of the first power source 345 (e.g., zinc-air cell battery) disposed in the pump device 100, but the first power source 345 can have an energy density that is greater than the second power source 245 (e.g., the lithium polymer battery disposed in the controller device 200 can have a volumetric energy density of less than about 600 Wh/L). In addition, the second power source 245 (e.g., lithium-polymer battery) can be readily rechargeable, which can permit the first power source 345 disposed in the pump device 100 to provide electrical energy to the second power source 245 for purposes of recharging. One exemplary lithium-polymer battery can provide a initial current output of about greater than 80 mA (about 90 mA to about 110 mA, and about 100 mA in one embodiment) and a maximum potential voltage of about 4.0V to 4.4V (about 4.2 V in one embodiment). In other embodiments, it should be understood that the second power source 245 can include a capacitor device capable of being recharged over time and intermittently discharging a current burst to activate the drive system 300. Additional embodiments of the power source 245 can include a combination of batteries and capacitors.
Accordingly, the infusion pump system 10 can have two power sources 345 and 245—one arranged in the disposable pump device 100 and another arranged in the reusable controller device 200—which can permit a user to continually operate the controller device 200 without having to recharge a battery via a plug-in wall charger or other cable. Because the controller device 200 can be reusable with a number of pump devices 100 (e.g., attach the new pump device 100′ after the previous pump device 100 is expended and disposed), the second power source 245 in the controller device can be recharged over a period of time, each time when a new pump device 100 is connected thereto. Such a configuration can be advantageous in those embodiments where the pump device 100 is configured to be a disposable, one-time-use device that attaches to a reusable controller device 200. For example, in those embodiments, the “disposable” pump devices 100 recharge the second power source 245 in the “reusable” controller device 200, thereby reducing or possibly eliminating the need for separate recharging of the controller device 200 via a power cord plugged into a wall outlet.
Referring now to
Some embodiments of the drive system 300 can include a battery powered actuator (e.g., reversible motor 320 or the like) that resets a ratchet mechanism 330, a spring device (not shown) that provides the driving force to the ratchet mechanism 330, and a drive wheel 360 that is rotated by the ratchet mechanism 330 to advance the flexible piston rod 370 toward the medicine cartridge 120.
As shown in
Referring to
The connector circuit 310 in the pump device 100 can include a memory device 318 that can store data regarding the pump device 100, its operational history, and the user. The memory device 318 can include nonvolatile memory (e.g., a flash memory chip), a Serial EEPROM powered by the power source in the controller device 200, static RAM and a power source to allow the static RAM to retain the stored data, or a combination thereof. The memory device 318 can be configured to store data such as: a unique serial number designated for the pump device 100; a manufacturer identifier code; a lot number code; a manufacturing date stamp; a model number; compatibility codes used to ensure that the pump device 100, the controller device 200, and the fluid cartridge 120 can work together; an energy requirement profile for the drive system of the pump device; user profile information; an event log including time and date stamped records of pump activations, user input, and/or sensor input; data regarding the pump battery life (e.g., the power remaining in the first power source 345); a drive cycle counter; an estimation of pump motor run time; the type of medicine contained in the fluid cartridge 120; and an estimation of the medicine remaining in the fluid cartridge 120. The data stored on the memory device 318 can be received by the controller device 200 or an external device for use by a physician. In some embodiments, the controller device 200 can communicate with the memory device 318 so as to write data onto the memory device 318. In some embodiments, some data on the memory device 318 may be write protected as a safety precaution.
In some embodiments, the memory device 318 can include data representing an estimate of the amount of medicine remaining in the fluid cartridge 120. This data can be used by the controller device 200 to alert a user as to how much medicine is remaining in the pump device 100. The estimate can be determined by identifying the cartridge capacity when the pump device 100 is first attached to the controller device 200 and subtracting an amount corresponding to the dose whenever the pump actuates. In some embodiments, the controller device 200 may determine cartridge capacity by a machine-readable indicia, by an optical, electrical, or mechanical feature of the cartridge, or by user input or selection. In some embodiments, a manufacturer may identify a fluid cartridge 120 capacity and a dose volume for each pump actuation and record the fluid cartridge 120 capacity and the dose volume on the memory device. During the use of the pump device 100, the controller device 200 can subtract a dose volume from the fluid cartridge 120 capacity for each pump actuation and rewrite the new fluid cartridge 120 capacity to the memory device 318. Accordingly, the controller device 200 can determine the remaining fluid cartridge capacity for a pump device 100 that has been partially used, detached, and again attached to the same or even a different controller device 200.
In some embodiments, the memory device 318 can include data indicating the battery life of a battery in the pump device 100. As discussed above, the pump device 100 can include a first power source 345 (e.g., a zinc-air cell), which may be used to charge the second power source 245 in the controller device 200. The first power source 345 can be a non-rechargeable battery. In some embodiments, the memory device 318 can store an indication of whether the battery life of first power source 345 in the pump device 100 is in a depleted or non-depleted state. The controller device 200 can determine if the first power source 345 is in a depleted state by detecting a voltage output of the first power source 345. If the voltage output of the first power source 345 falls below a threshold voltage (e.g., 0.6 V), the controller device 200 can record an indication that the first power source 345 is depleted in the memory device 318. This can prevent the controller device 200 from attempting to charge the second power source 245 within the controller device 200 with a depleted first power source 345 when a pump device 100 with a depleted first power source 345 is reattached to a controller device 200. In some embodiments, the memory device 318 can include data estimating the amount of battery life remaining for the first power source 345. The controller device 200 can update this estimation by counting the number of recharge operations, calculating an amount of self discharge from a self-discharge rate for the first power source 345, which can also be recorded in the memory device 318, and a time and date stamp for the first use of the pump device, for when tab 141 was removed and/or a manufacturing date for the pump device.
In some embodiments, the memory device 318 can include data indicating a medicinal fluid type, an unique serial number, a manufacturer identifier code, a manufacturing lot code, a manufacturing date and/or time stamp, and a model number. This data may be useful quality control information that remains with the pump device 100 throughout its shelf-life and operational life. In some embodiments, this data may be write protected. If, for example, a manufacturing error is identified for a particular pump device 100, the unique serial number, the manufacturer identifier code, the manufacturing lot code, the manufacturing date stamp, and/or the model number can be used to promptly identify when and/or where the error occurred. A manufacturing date and/or time stamp can also allow the controller device 200 to identify expired medication. Furthermore, this information can also be used to allow the controller device 200 to determine if the pump device 100 is compatible with the controller device 200 or if the pump device 100 includes the correct medical fluid cartridge 120 for the user.
In some cases, a user may want to administer different medical fluids at different points in time with the same pump system 10. As an example, Symlin® (pramlintide acetate) can be administered prior to eating to slow gastric emptying. In some embodiments of the pump system 10, the user can enter in data (e.g., via the user interface 220) about a meal prior to eating. After receiving data about the meal, the pump system 10 can request that the user remove the existing pump device 100, containing insulin for example, and replace it with pump device 100 containing Symlin®. After checking certain data (e.g., that the new pump device 100 does contain Symlin®, that there is Symlin® remaining, that the Symlin® is not expired, and the like), the pump system 10 can cause a bolus of Symlin® to be administered to the user. Upon infusion of the Symlin®, the pump system 10 can request that the insulin containing pump device 100 be re-attached.
Referring to
In some embodiments, the memory device 318 can include compatibility codes that can be used to ensure that the pump device 100, the controller device 200, and the cartridge 120 can work together. For example, controller device 200 can be adapted such that only a physician can program which medications the user is allowed to receive and pump devices can include compatibility codes in the memory device 318 indicating whether the medication in the pump device is compatible with that controller's settings. Furthermore, some pump devices may require an updated or older controller (or that the controller includes include particular software) and the compatibility codes can indicate to a controller that that particular pump device should not be actuated by that controller.
Referring to
In some circumstances, the controller device 200 can initially interrogate the memory 318 to determine if a pump device 100 already stores user profile data (e.g., stored as backup data when the pump device 100 was previously attached to another controller device 200). If a pump device 100 is detached and reattached to the same controller device 200, the controller device 200 can verify that the pump device 100 is being for used the correct user by comparing the user profile data in the pump memory 318 to the user profile data stored in the controller device 200. Furthermore, if the user has two controller devices 200, the controller devices 200 should have the same user profile, thereby allowing the user to change controller devices 200.
Another feature of recording user profile data on the memory device 318 of the pump device 100 is that the memory device 318 can serve as a backup of the user profile in the case that the controller device 200 becomes inoperable or in the case that the user misplaces the controller device 200. In some embodiments, the controller device 200 can be configured such that only a physician can set some of the user profile information (e.g., the types of medications allowed and/or the menu options available to the user). This operation may facilitate that a user does not misuse the medication, that the user knows how to control her blood glucose level (e.g., as a user becomes more knowledgeable about her condition, how to control her condition, and how the infusion pump system operates, a physician or practitioner can allow the user access to more advanced features of the infusion pump system), and verify that the controller device 200 does not dispense the wrong medication in the case where the user obtained a pump device 100 containing the wrong medication. The user profile information stored on the memory device 318 of a pump device 100 can allow a user to more quickly make a clone of the controller device 200, without the need for access to the original controller device 200 and without the need to seek out her physician to program a new controller device 200. Furthermore, some of the information stored in the user profile can be information determined by the controller device 200 during use with the user, as opposed to information programmed into the controller by either the user or a physician or practitioner.
A new controller device 200, when first attached to a pump device 100 having a user profile recorded from an old controller device 200, can receive the user profile information from the memory 318 of the pump device 100 and allow the user to make a clone controller quickly and without the help of a physician or practitioner. In some embodiments, as shown in
In some embodiments, not shown, an individually removable memory device can be used to produce a user profile backup. For example, a flash memory device having a USB connection can be attached to the controller device 200 to receive the user profile information, The backup copy of the user profile information could then be used to program a second controller device 200 if the first is damaged or misplaced.
A date and time stamp of when the pump device 100 is first used can also ensure that the medicine in the pump device is not expired. For example, this time and data stamp for when the pump device 100 was first used can be associated with when the user profile data was first transferred to the memory device 318. This could identify the pump device to not only the first controller device 200 but also to additional controller clones.
Furthermore, the data storage processes described herein can be implemented on pump systems in which the controller device is not removable from the pump device. For example, in some embodiments, the infusion system can include a pump unit that houses the drive system, the control circuitry, the energy source, and the first memory device (without a removable controller housing). In such circumstances, an individually removable memory device can be used to produce a user profile backup. For example, a flash memory device having a USB connection can be attached to the pump unit to receive the user profile information from the control circuitry housed therein. The backup copy of the user profile information could then be used to program a second pump unit if the first is damaged or misplaced.
Referring now to
In some embodiments, a manufacturer can include the software program (e.g., a software update or patch) on the memory device 318 for use with the controller device 200 as a way of distributing a software update for the controller device 200. The controller device 200 can then perform the update either by overwriting its main program entirely with the new code, or by patching selected portions or subroutines according to a list in the software program of the pump memory 318. For example, as shown in
As previously described, the memory device 318 can include pump motor run time or pump activation cycle count. This data can be used to limit use of the pump device 100 when it has been determined that the pump device 100 has exceeded its usable life. The drive cycle counter can also be useful for maintaining an accurate estimate of the volume of medicine that remains in the medicine cartridge 120. For example, the number of drive cycles that are required to incrementally advance the plunger 125 and thereby dispense a full medicine cartridge 120 may be a predetermined value (e.g., in some embodiments, 6,300 drive cycles result in full dispensation of a new medicine cartridge). Accordingly, the drive cycle counter stored in the memory device 318 can keep track of the number of drive cycles that have occurred through the operational life of the pump device 100. Each time the motor 320 completes a new drive cycle and incrementally advances the piston rod 370 to dispense some medicine, the controller device 200 can store an updated value for the drive cycle counter stored in the memory device 318. When the updated value stored in drive cycle counter stored in the memory device 318 approaches the predetermined value, the controller device 200 can alert the user that the medicine cartridge is approaching exhaustion. Furthermore, because the memory device 318 is arranged in the pump device 100, the drive cycle counter stored in the memory device 318 remains local to the pump device 100. If the pump device 100 is temporarily disconnected from the controller device 200 and then reconnected (or reconnected to a different controller device 200), the controller device 200 can retrieve the value for the drive cycle counter stored in the memory device 318 and promptly ascertain how much medicine remains in the medicine cartridge 120.
In some embodiments, the memory device 318 can include a microcontroller. For example, the memory device 318 can include an EEPROM device integrated on-chip, and the microcontroller can be capable of running a communication protocol between the controller device 200 and the pump device 100. The microcontroller can, in some embodiments, multiplex signals from limit switches or other sensors required to operate the pump mechanics and/or confirm a series of operations directed by the controller. In some embodiments, the microcontroller can update the data stored on the memory device 318 regarding, for example, the number of drive cycles. By having the microprocessor update the data on the memory device 318, the number of pin connectors between the pump device 100 and the controller device 200 can be reduced.
Referring to
For example, the energy requirement profile can be developed to optimize a plurality of variables, such as power consumption, gear RPM, and the like and the PMW system can be configured to provide a pattern of voltage pulses correlated to the energy requirement profile from the second power source 245 (e.g., the lithium polymer battery) to the drive system. In some embodiments, the torque profile can be developed to maintain the motor 320 at a constant rate of rotation, in spite of changing torque demands on the motor 320 (e.g., from the drive system 300). Maintaining the motor 320 at a substantially constant rate of rotation can have the advantageous qualities of reducing power consumption, reducing vibration, and/or increasing the life of the motor 320.
In some embodiments, the controller device 200 can detect whether the drive system 300 completes the medicine dispensing operation and adjust the delivered energy profile to meet the energy requirement profile needed for the drive system. The controller device 200 can store the delivered energy profile as an adjusted energy requirement profile for that particular pump device 100. For example, an energy requirement profile for a pump device can be stored in the memory device 318 in the pump device. In cases where the controller device 200 adjusts the delivered energy profile to meet the energy requirement profile needed for the drive system, the controller device 200 can update the energy requirement profile stored on the memory device 318 for subsequent medicine dispensing operations.
Referring to
In some embodiments, the controller device 200 can detect a time period for the drive system to complete a medicine dispensing operation and adjust the delivered energy profile to meet the energy requirement profile needed for the drive system. For example, a PWM profile that provides more energy than required can result in a more rapid actuation of the pump device. If the controller device 200 detects that the drive system completed the medicine dispensing operation in less time than a predetermined actuation time, then the controller device 200 can downwardly adjust the delivered energy profile. If the actuation takes more time than a predetermined actuation time, the controller device 200 can upwardly adjust the delivered energy profile. For example, a controller device 200 can correct a torque curve 470 initially recorded in the memory device 318 using one of the torque curves 470 shown in
Referring to
In some embodiments of the system 10, the voltage received by the drive system 300 from the second power source 245 can vary due to, for example, the charge remaining in the second power source 245. However, as the output voltage of the second power source 245 rises and falls, these pulse widths can be adjusted to supply the necessary torque. In one embodiment, a scalar multiple can be applied to the duration of the pulse width to correct for increased or decreased voltage. For example, if the sampled supply voltage to the motor 320 is 3.2 V, instead of the 4V rated output voltage, a scalar multiplier (e.g., 1.25) can be applied to the pulse width to correct for the change in voltage. In the preceding embodiments of the PWM system, the voltage of the pulses remained constant, while the width of the pulses were adjusted to maintain the motor 320 at a constant RPM. It should be clear to one skilled in the art that other embodiments of the pulse width modulation system could employ other methods. In one alternate example, the pulse widths could be kept constant, while the pauses in between the pulses could be increased or decreased to simulate a pre-determined torque curve. In additional embodiments, the RPM of the motor 320 could be monitored and the pulse widths could be adjusted based on the RPM of the motor 320. In some embodiments, the controller and/or the pump device 100 can store a series of tables in memory for converting between a detected voltage output and an adjustment to the pulse duration (pulse widths) and/or pulse frequency. For example, a detected voltage output of between 3.4 V and 3.5 V can result in the use of a particular table defining a particular PWM pattern for voltage outputs in that range or a particular scalar multiplier adjustment to another PWM pattern stored in memory. The use of tables for particular voltage outputs can reduce the number of computations needed to adjust the PWM pattern for changes in voltage output.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of this disclosure. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2605765 | Kollsman | Aug 1952 | A |
3886938 | Szabo et al. | Jun 1975 | A |
4077405 | Haerten et al. | Mar 1978 | A |
4231368 | Becker | Nov 1980 | A |
4265241 | Portner et al. | May 1981 | A |
4300554 | Hessberg et al. | Nov 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4398908 | Siposs | Aug 1983 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4443218 | DeCant, Jr. et al. | Apr 1984 | A |
4493704 | Beard et al. | Jan 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4850817 | Nason et al. | Jul 1989 | A |
5045064 | Idriss | Sep 1991 | A |
5088981 | Howson et al. | Feb 1992 | A |
5190522 | Wojcicki et al. | Mar 1993 | A |
5250027 | Lewis et al. | Oct 1993 | A |
5261882 | Sealfon et al. | Nov 1993 | A |
5314412 | Rex | May 1994 | A |
5335994 | Weynant Nee Girones | Aug 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5342180 | Daoud | Aug 1994 | A |
5395340 | Lee | Mar 1995 | A |
5411487 | Castagna | May 1995 | A |
5545143 | Fischell et al. | Aug 1996 | A |
5551850 | Williamson et al. | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5626566 | Petersen et al. | May 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5741216 | Hemmingsen et al. | Apr 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5816306 | Giacomel | Oct 1998 | A |
5852803 | Ashby, III et al. | Dec 1998 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5925018 | Ungerstedt | Jul 1999 | A |
5928201 | Poulsen et al. | Jul 1999 | A |
5947934 | Hansen et al. | Sep 1999 | A |
5951530 | Steengaard et al. | Sep 1999 | A |
5957889 | Poulsen et al. | Sep 1999 | A |
5984894 | Poulsen et al. | Nov 1999 | A |
5984897 | Petersen et al. | Nov 1999 | A |
5997475 | Bortz | Dec 1999 | A |
6003736 | Ljunggren | Dec 1999 | A |
6010485 | Buch-Rasmussen et al. | Jan 2000 | A |
6033377 | Rasmussen et al. | Mar 2000 | A |
6045537 | Klitmose | Apr 2000 | A |
6074372 | Hansen | Jun 2000 | A |
6110149 | Klitgaard et al. | Aug 2000 | A |
6156014 | Petersen et al. | Dec 2000 | A |
6171276 | Lippe et al. | Jan 2001 | B1 |
6231540 | Smedegaard | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248090 | Jensen et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6277098 | Klitmose et al. | Aug 2001 | B1 |
6302855 | Lav et al. | Oct 2001 | B1 |
6302869 | Klitgaard | Oct 2001 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6379339 | Klitgaard et al. | Apr 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6404098 | Kayama et al. | Jun 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6461331 | Van Antwerp | Oct 2002 | B1 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6508788 | Preuthun | Jan 2003 | B2 |
6524280 | Hansen et al. | Feb 2003 | B2 |
6533183 | Aasmul et al. | Mar 2003 | B2 |
6537251 | Klitmose | Mar 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544229 | Danby et al. | Apr 2003 | B1 |
6547764 | Larsen et al. | Apr 2003 | B2 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6554800 | Nezhadian et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562011 | Buch-Rasmussen et al. | May 2003 | B1 |
6564105 | Starkweather et al. | May 2003 | B2 |
6569126 | Poulsen et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6582404 | Klitgaard et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6605067 | Larsen | Aug 2003 | B1 |
6613019 | Munk | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650951 | Jones et al. | Nov 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6659978 | Kasuga et al. | Dec 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6663602 | Møller | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6669669 | Flaherty et al. | Dec 2003 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6690192 | Wing | Feb 2004 | B1 |
6691043 | Ribeiro, Jr. | Feb 2004 | B2 |
6692457 | Flaherty | Feb 2004 | B2 |
6692472 | Hansen et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6702779 | Connelly et al. | Mar 2004 | B2 |
6715516 | Ohms et al. | Apr 2004 | B2 |
6716198 | Larsen | Apr 2004 | B2 |
6723072 | Mahoney et al. | Apr 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6736796 | Shekalim | May 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6744350 | Blomquist | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6786246 | Ohms et al. | Sep 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6796970 | Klitmose et al. | Sep 2004 | B1 |
6799149 | Hartlaub | Sep 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6827702 | Lebel et al. | Dec 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6854653 | Eilersen | Feb 2005 | B2 |
6855129 | Jensen et al. | Feb 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878132 | Kipfer | Apr 2005 | B2 |
6893415 | Madsen et al. | May 2005 | B2 |
6899695 | Herrera | May 2005 | B2 |
6899699 | Enggaard | May 2005 | B2 |
6922590 | Whitehurst | Jul 2005 | B1 |
6936006 | Sabra | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6945961 | Miller et al. | Sep 2005 | B2 |
6948918 | Hansen | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6979326 | Mann et al. | Dec 2005 | B2 |
6997911 | Klitmose | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
7005078 | Van Lintel et al. | Feb 2006 | B2 |
7008399 | Larsen et al. | Mar 2006 | B2 |
7014625 | Bengtsson | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7018361 | Gillespie et al. | Mar 2006 | B2 |
7025743 | Mann | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7054836 | Christensen et al. | May 2006 | B2 |
7104972 | Møller et al. | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7133329 | Skyggebjerg et al. | Nov 2006 | B2 |
7232423 | Mernoe | Jun 2007 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
20010056262 | Cabiri | Dec 2001 | A1 |
20020004651 | Ljndggreen et al. | Jan 2002 | A1 |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020091358 | Klitmose | Jul 2002 | A1 |
20020126036 | Flaherty et al. | Sep 2002 | A1 |
20030055380 | Flaherty | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030088238 | Poulsen | May 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20030216683 | Shekalim | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040019325 | Shekalim | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040064096 | Flaherty et al. | Apr 2004 | A1 |
20040078028 | Flaherty et al. | Apr 2004 | A1 |
20040087894 | Flaherty | May 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040092878 | Flaherty | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127844 | Flaherty | Jul 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040176727 | Shekalim | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040220551 | Flaherty et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050021005 | Flaherty et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050065760 | Murtfeldt et al. | Mar 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050095063 | Fathallah | May 2005 | A1 |
20050160858 | Mernoe | Jul 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050182366 | Vogt et al. | Aug 2005 | A1 |
20050192561 | Mernoe | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050215982 | Malave et al. | Sep 2005 | A1 |
20050222645 | Malave et al. | Oct 2005 | A1 |
20050238507 | DiIanni et al. | Oct 2005 | A1 |
20050245878 | Mernoe et al. | Nov 2005 | A1 |
20050251097 | Mernoe | Nov 2005 | A1 |
20050267402 | Stewart et al. | Dec 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060069382 | Pedersen | Mar 2006 | A1 |
20060074381 | Malave et al. | Apr 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060135913 | Ethelfeld | Jun 2006 | A1 |
20060142698 | Ethelfeld | Jun 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060184119 | Remde et al. | Aug 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20060206054 | Shekalim | Sep 2006 | A1 |
20060247581 | Pedersen et al. | Nov 2006 | A1 |
20070073228 | Mernoe et al. | Mar 2007 | A1 |
20070073235 | Estes et al. | Mar 2007 | A1 |
20070073236 | Mernoe et al. | Mar 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070156092 | Estes et al. | Jul 2007 | A1 |
20070167905 | Estes et al. | Jul 2007 | A1 |
20070167912 | Causey et al. | Jul 2007 | A1 |
20080208627 | Skyggebjerg | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
2543545 | May 2005 | CA |
196 27 619 | Jan 1998 | DE |
102 36 669 | Feb 2004 | DE |
0 496 141 | Jul 1992 | EP |
0 612 004 | Aug 1994 | EP |
0 580 723 | Oct 1995 | EP |
1 045 146 | Oct 2000 | EP |
1 136 698 | Sep 2001 | EP |
1 177 802 | Feb 2002 | EP |
0 721 358 | May 2002 | EP |
1 384 490 | Jan 2004 | EP |
1 495 775 | Jan 2005 | EP |
1 527 792 | May 2005 | EP |
1 754 498 | Feb 2007 | EP |
2 585 252 | Jan 1987 | FR |
747 701 | Apr 1956 | GB |
2 218 831 | Nov 1989 | GB |
WO 9015928 | Dec 1990 | WO |
WO 9721457 | Jun 1997 | WO |
WO 9811927 | Mar 1998 | WO |
WO 9857683 | Dec 1998 | WO |
WO 9921596 | May 1999 | WO |
WO 9939118 | Aug 1999 | WO |
WO 9948546 | Sep 1999 | WO |
WO 0172360 | Oct 2001 | WO |
WO 0191822 | Dec 2001 | WO |
WO 0191833 | Dec 2001 | WO |
WO 0240083 | May 2002 | WO |
WO 02057627 | Jul 2002 | WO |
WO 02100469 | Dec 2002 | WO |
WO 03103763 | Dec 2003 | WO |
WO 2004056412 | Jul 2004 | WO |
WO 2004110526 | Dec 2004 | WO |
WO 2005002652 | Jan 2005 | WO |
WO 2005039673 | May 2005 | WO |
WO 2005072794 | Aug 2005 | WO |
WO 2005072795 | Aug 2005 | WO |
WO 2006105792 | Oct 2006 | WO |
WO 2006105793 | Oct 2006 | WO |
WO 2006105794 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090069785 A1 | Mar 2009 | US |