(1) Field of the Invention
This invention relates generally to display drivers and relates more specifically to passively segmented Electronic Paper Display (EPD) drivers.
(2) Description of the Prior Art
Electronic paper, e-paper, or electronic ink display is a display technology designed to mimic the appearance of ordinary ink on paper. Unlike a conventional flat panel display, which uses a backlight to illuminate its pixels, electronic paper reflects light like ordinary paper and is capable of holding text and images indefinitely without drawing electricity, while allowing the image to be changed later.
To build e-paper, several different technologies exist, some using plastic substrate and electronics so that the display is flexible. E-paper is considered more comfortable to read than conventional displays. This is due to the stable image, which does not need to be refreshed constantly, the wider viewing angle, and the fact that it reflects ambient light rather than emitting its own light. An e-paper display can be read in direct sunlight without the image fading. Lightweight and durable, e-paper can currently provide color display. The contrast ratio in available displays might be described as similar to that of newspaper.
Currently passive segmented Electronic Paper Display (EPD) drivers as e.g. Solomon Systech Limited Tri-Level Generic Display Driver SSD1623 require the image data to be displayed to be generated by a controller microprocessor. As example, for a prior art bi-level EPD driver a host processor has to generate a complete drive waveform by combining OLD/NEW data with phase/delay waveform requirements.
Other newer EPD drivers contain some internal One Time Programmable (OTP) non-volatile memory to store the phase/delay waveform but require the OLD/NEW data to be loaded from the host processor in order to generate complete the complete drive waveform
It is a challenge for the designers of EPD drivers to remove the requirement for host processors to store display images and/or display image decodes of numerical data, to simplify the process required to construct the display image from stored bitmaps, and to providing pre-programmed multiple phase tables (phase/delay waveform definitions, which allow a simple mechanism to alter the waveform generation.
Solutions dealing with EPD drivers are described in the following patents:
U.S. Patent Application Publication (US 2009/0109468 to Barclay et al.) discloses a portable paperless electronic printer for displaying a printed document on an electronic paper display. The paperless electronic printer includes an input to receive print data from an output of a printer driver of a computerized electronic device, a non-volatile electrophoretic display to provide an electronic paper display of stored said print data for a said document page to mimic said document page when printed on paper; and a processor coupled to said input, to non-volatile memory, and to said non-volatile electrophoretic display and configured to input said print data, to store said data derived from said print data in said non-volatile memory, and to provide to said non-volatile electrophoretic display data for displaying a said document page derived from said stored data.
U.S. patent (U.S. Pat. No. 6,906,705 to Matsuo et al.) proposes providing an electronic paper file with high operating performance. The electronic paper file is assumed to comprises an electronic paper of a flexible display medium and a cover to which a plurality of electronic papers is attachable. In the invention, the first storage means stores display-data to be displayed on the electronic paper. The first display control means obtains from the first storage means the display-data corresponding to the desired page selected by the page selecting means and then display them on the electronic paper. Accordingly, even if the enormous pages of the electronic paper were not attached to the electronic paper file, the invention can display the whole of mass data such as an encyclopedia or theses data. Therefore, it is possible to improve the operating performance of the electronic paper file.
U.S. Patent Application (US 2004/0041785 to Stevens et al.) proposes electronic paper methods and systems. In accordance with one embodiment, an electronic paper driver is provided and is configured to receive a document in a first format from an application and convert the document in the first format to a second format that can be used for rendering a display on electronic paper.
Furthermore the data sheet of Tri-Level Generic Display Driver SSD1623 from Solomon Systech Limited describes a CMOS generic driver with controller. SD1623 is equipped with SPI interface with hardware address map setting pin, allowing two or more SSD1623 connected to same SPI bus, increasing the available number of segments.
A principal object of the present invention is to achieve a display driver requiring minimal memory storage and computational effort of a related host computer.
A further object of the invention is to achieve an electronic paper display driver requiring minimal memory storage and computational effort of a related host computer.
A further object of the invention is to achieve a display driver having an internal non-volatile memory for storing bitmaps and phase tables.
A further object of the invention is to simplify the process required to construct the display image from bitmaps stored.
Moreover an object of the invention is providing multiple phase tables allowing a simple mechanism to alter the waveform generation.
Furthermore an objective of the invention is to deploy an internal sequencer controlling the charge pump and segments output.
In accordance with the objects of this invention a method for a display driver saving memory storage and computation effort of a host processor has been achieved. The method invented comprises, firstly, the steps of: (1) providing a display driver IC, comprising a non-volatile memory, a display sequencer to control a DC-to-DC converter and segment outputs and registers to store new and OLD display data, (2) storing phase table data and display graphics bitmaps into the non-volatile memory, and (3) selecting icon data to create image data to be displayed. Furthermore the display driver invented comprises: (4) selecting phase table data for required waveforms, (5) applying phase table data to icon data previously selected to generate display waveforms, and (6) driving segments output to display image data.
In accordance with the objects of this invention a display driver saving memory storage and computation effort of a host processor has been achieved. The display driver invented comprises, firstly: a non-volatile memory, a digital block comprising a sequencer controlling a charge pump and segments outputs, and an analog circuitry comprising said charge pump providing electrical power for driving display of images. Furthermore the display driver comprises a circuit block comprising said charge pump and analog circuitry, a high voltage output block; providing segment output to the display, and an arrangement of registers wherein NEW and OLD display data are kept and wherein phase decode is performed. Finally the display driver comprises an interface block.
In the accompanying drawings forming a material part of this description, there is shown:
Systems and methods for a tri-voltage EPD display driver. A preferred embodiment of the invention has 96 segments output being configurable as a master/slave arrangement to drive a total of 192 segments with two cascaded drivers. The device contains an integrated charge-pump for +/−15V, internal phase table generation, and panel-graphics decoding for ease of use. The interface is a pin selectable Inter Integrated Circuit (I2C) or 4-wire serial peripheral interface (SPI).
The internal OTP memory 21 is storing both display graphics data and phase table data (display waveform definition). Any non-volatile memory is applicable for this purpose. The internal OTP memory 21 can be pre-programmed by the/any end-user to store both fixed “icon” images or numerical decode images, depending on the panel application. The stored “icon” image has a direct one-to-one correspondence of data-bit to segment driver output, which allows complete freedom to accommodate any EPD panel design and segment assignment.
Furthermore the EPD driver 20 comprises an LDO 22 and an Analog &Charge Pump block 23. The Analog &Charge Pump block 23 comprises a generator for a Power on reset (POR) pulse, an internal bias current generator, a bandgap voltage source, a bandgap filter, a high frequency clock for the charge pumps and a divider for the logic part of the EPD driver, a multi-stage charge pump, and an internal bias voltage generator generating various internal cascode voltages for the high voltage (HV) outputs block 24. In a preferred embodiment the HV output block 24 operates in a range of about +/−15 V; other ranges of output voltages are possible as well. The Analog &Charge Pump block 23 can also comprise additional components.
The sequencer&control block 25 is a digital block controlling the operation of the EPD driver 20. The sequencer&control block 25 comprises a main sequencer and state machines performing e.g. display control, phase data load from the OTP memory 21, and data pattern load from OTP memory 21. Other functions as e.g. trim and test functions are also performed by the state machines. Other data processing means as e.g. micro processors could also be used for the sequencer&control block 25.
Furthermore the EPD driver 20 comprises an I2C/SPI interface block 26 allowing both single byte commands and multi-byte commands. Moreover the EPD driver 20 comprises an arrangement of registers; especially NEW/OLD registers 27 containing data to be displayed.
In order to change the display image, the display waveform, requires both the current (commonly referred to “OLD”) display image data and the “NEW” display image data. This allows the display waveform generation to accommodate both segments that change from black/white and white/black as well as segments that remain unchanged at either black and white.
It should be noted that the present invention is not only applicable to black/white EPD but also applies to a ‘color’ EPD pane. The difference is the die color of the EPD ink used.
A host processor has 8 commands implemented in the EPD driver invented that allow a user to define the OLD and NEW data:
There is no restriction on the host processor, i.e. the system controller that communicates with the EPD driver IC, as long as it has a communication protocol that conforms to the I2C and SPI requirements. The commands to control the EPD driver IC are initiated from the host processor. The EPD driver IC is essentially a ‘dumb’ peripheral; it cannot initiate any interface communication.
This allows the user to either load the data from the host processor or from a specified OTP address. The user can then either load the data directly into the NEW/OLD register—replacing the data previously stored, or perform a logical “OR” of the data into the NEW/OLD register—, which adds to the data previously stored. When supplying data from the host processor, the number of bytes sent depends on the EPD panel size connected; this is done to keep communication data lengths to a minimum.
For example, the EPD display driver is used to generate a programmable keyboard legend for a mobile phone, depending on the phone usage the keyboard legend change to correspond to correspond with a current status; for example numeric keys for phone number entry, alphabetic keys for text entry, etc. In this example the user pre-programs the key legend bitmaps into the OTP memory at different addresses. In order to change the displayed keyboard legend the host processor issues the command to load the NEW register from the OTP address containing the required legend. The EPD display driver can then be configured to the start the display waveform sequence using the defined phase table at the given OTP address; and at the conclusion of the waveform sequence copies the NEW register to the OLD register, ready for the next display commands.
As a second example, the user requires a binary-coded-decimal (BCD) to 7-segment display decode for multiple digits. This is managed by storing each of the BCD segment decodes separately in the OTP memory, then building up the display image using the “OR new OTP address” command. By using the “OTP LOAD NEW” and “OTP OR NEW” commands the new display image can be built up. This is particularly useful when 7-segment type displays are used, as the decode for each digit can be addressed by simple arithmetic. It is obvious that not only 7-segment type displays can be used with the present invention; displays having other number of segments could be used as well.
In order to illustrate the example above
The invention removes the requirement for a host processor to store display images and/or display image decodes of numerical data and simplifies the process required to construct a display image from stored bitmaps. Furthermore the invention provides pre-programmed multiple phase tables (phase/delay waveform definitions), allowing a simple mechanism to alter the waveform generation, required for example to accommodate temperature variations, blanking the display before updating an image, etc.
Each phase table is of arbitrary length, wherein each phase delay has a selected step of 1 to 31 “ticks” in the preferred embodiment.
Phase period=voltage period×# tick clock cycles.
In summary, main points of the present invention are
Alternatively other DC-to-DC converters for generating the +/−15V could also be used. For example the use of boost converters (with an external inductor) would suffice—but would require more external components. Also an external capacitive DC/DC converter would be possible.
It should be noted that the invention could be applied not only to EPD display drivers but also to a multitude of other display technologies.
Any display technology that requires fixed ‘icon’ images or images built of multiple ‘pictures’ OR'd together, as e.g. LCD, LED, OLED, etc., are applicable to the present invention. The specifics of generating +/−15V and the sequencer to driver the display is primarily for an EPD technology.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10392002 | Apr 2010 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3858197 | Shimizu et al. | Dec 1974 | A |
6906705 | Matsuo et al. | Jun 2005 | B2 |
20040041785 | Stevens et al. | Mar 2004 | A1 |
20080238894 | Ng et al. | Oct 2008 | A1 |
20090109468 | Barclay et al. | Apr 2009 | A1 |
20090256798 | Low et al. | Oct 2009 | A1 |
20090309870 | Takei | Dec 2009 | A1 |
Entry |
---|
Product Preveiw, SSD1623, “96 Segments With Common 3-Level Generic Display Driver,” CMOS Solomon Systech Limited, Copyright 2009, 1 page. |
European Search Report 10392002.1-2205, Mail date—Oct. 11, 2010, Dialog Semiconductor GmbH. |
“Configurable Timing Controller Design for Active Matrix Electrophoretic Display,” by Wen-Chung Kao et al., 2009 IEEE Transactions on Consumer Electronics, vol. 55, No. 1, Feb. 1, 2009, pp. 1-5. |
Number | Date | Country | |
---|---|---|---|
20110248984 A1 | Oct 2011 | US |