This application is a U.S. National Phase Patent Application which claims benefit to International Patent Application No. PCT/US2016/024410 filed on Mar. 28, 2016.
Embodiments generally relate to the prevention of thermal related injuries. More particularly, embodiments relate to user protection from thermal hot spots through device skin morphing.
Electronic devices such as smart phones and tablet computers may generate heat during operation. The heat may be transferred to the skin (e.g., housing) of the electronic device in the form of “hot spots” located on the external surface of the skin, wherein the hot spots may potentially be harmful to the touch of a user. While conventional electronic devices may be designed to operate in a manner that prevents hot spots from occurring, such an approach may result in reduced performance.
The various advantages of the embodiments will become apparent to one skilled in the art by reading the following specification and appended claims, and by referencing the following drawings, in which:
Turning now to
In order to provide user protection from the hot spot, the illustrated rear housing 12 automatically “morphs” to include protrusions 16 that provide a cooler alternative for the user to touch (e.g., with fingers, thumbs, etc.). As will be discussed in greater detail, a fluid having a relatively low thermal conductivity (e.g., less than approximately 10−2 W/(m*K)) may be pumped into the regions behind the protrusions 16. Accordingly, the illustrated system 10 provides enhanced user protection. The system 10 may also operate at higher performance levels (e.g., increased processor frequency and/or voltage levels) that may improve the user experience without concern over thermal related injury.
Turning now to
Additionally, a fluid 34 may be positioned within the one or more channels 26. In one example, the fluid 34 has a relatively low thermal conductivity. For example, the fluid 34 might include SILICA AEROGEL, which has a thermal conductivity of less than approximately 10−2 W/(m*K) (e.g., less than the thermal conductivity of air). The fluid 34 may also have a relatively high viscosity (e.g., above a predetermined threshold that may be temperature dependent). A higher viscosity solution may be suitable due to the apparatus 22 having a relatively high latency tolerance. As already noted, the fluid 34 may cause the opaque elastic region 32 to expand into a protrusion (e.g., as shown in
In the illustrated example, a reservoir 36 having a thermally responsive wall 40 (e.g., including a bimetal material) is coupled to a first end of a conduit 38 having a second end coupled to the one or more channels 26. Accordingly, heat 42 may cause a contraction of the thermally responsive wall 40 (e.g., as shown in
In the illustrated example, a thermal protection apparatus 60 is positioned near a potential hot spot on the housing 52. The thermal protection apparatus 60 may be similar to the apparatus 22 (
Additionally, a conduit 64 may have a first end coupled to a reservoir 66 (e.g., elastic bladder) with a thermally responsive wall and a second end coupled to one or more channels of the apparatus 60. In such a case, contraction of the thermally responsive wall may pump the fluid through the array of openings and into a plurality of expansion areas between the opaque elastic regions and the substrate. Additionally, expansion of the thermally responsive wall may draw the fluid from the plurality of expansion areas and through the array of openings. Accordingly, positioning the reservoir 66 adjacent to a heat source such as, for example, the host processor 48, the mass storage 56, the 10 unit 50 and/or the system memory 54 may enable the apparatus 60 to provide thermal protection without involving costly, large and/or power consuming components such as microcontrollers, pumps, actuation valves, and so forth.
In one example, a reservoir including a thermally responsive wall is provided at block 78. The thermally responsive wall may include, for example, a bimetal or other suitable material. The reservoir may also be positioned adjacent to a heat source at block 80. Illustrated block 82 couples a first end of a conduit to the one or more channels, wherein a second end of the conduit may be coupled to the reservoir at block 84. In such a case, contraction of the thermally responsive wall may pump the fluid through the array of openings and into a plurality of expansion areas between the plurality of opaque elastic regions and the substrate. Additionally, expansion of the thermally responsive wall may draw the fluid from the plurality of expansion areas and through the array of openings. The order of operations shown in the method 70 may vary depending on the circumstances.
Example 1 may include a user-based computing system comprising a processor, a memory subsystem, a substrate including surfaces defining one or more channels and an array of openings adjacent to the one or more channels, a rear housing including an outer layer coupled to the substrate, the outer layer including a plurality of opaque elastic regions adjacent to the array of openings, a fluid positioned within the one or more channels, and an embedded display positioned on a front of the system.
Example 2 may include the system of Example 1, wherein the plurality of opaque elastic regions are expandable to become protrusions including one or more of a rectangular shape, a donut shape or a dome shape.
Example 3 may include the system of Example 1, wherein the plurality of opaque elastic regions are arranged to form a message.
Example 4 may include the system of Example 1, further including a reservoir including a thermally responsive wall, and a conduit having a first end coupled to the one or more channels and a second end coupled to the reservoir, wherein contraction of the thermally responsive wall pumps the fluid through the array of openings and into a plurality of expansion areas between the plurality of opaque elastic regions and the substrate, and wherein expansion of the thermally responsive wall draws the fluid from the plurality of expansion areas and through the array of openings.
Example 5 may include the system of Example 4, wherein the thermally responsive wall includes a bimetal material.
Example 6 may include the system of Example 4, wherein the reservoir is positioned adjacent to one or more of the processor or the memory subsystem.
Example 7 may include the system of any one of Examples 1 to 6, wherein the fluid has a thermal conductivity of less than approximately 10−2 W/(m*K).
Example 8 may include the system of any one of Examples 1 to 6, wherein the fluid has a viscosity that is above a predetermined threshold.
Example 9 may include a thermal protection apparatus comprising a substrate including surfaces defining one or more channels and an array of openings adjacent to the one or more channels, an outer layer coupled to the substrate, the outer layer including a plurality of opaque elastic regions positioned adjacent to the array of opening, and a fluid positioned within the one or more channels.
Example 10 the apparatus of Example 9, wherein the plurality of opaque elastic regions are expandable to become protrusions including one or more of a rectangular shape, a donut shape or a dome shape.
Example 11 may include the apparatus of Example 9, wherein the plurality of opaque elastic regions are arranged to form a message.
Example 12 may include the apparatus of Example 9, further including a reservoir including a thermally responsive wall, and a conduit having a first end coupled to the one or more channels and a second end coupled to the reservoir, wherein contraction of the thermally responsive wall pumps the fluid through the array of openings and into a plurality of expansion areas between the plurality of opaque elastic regions and the substrate, and wherein expansion of the thermally responsive wall draws the fluid from the plurality of expansion areas and through the array of openings.
Example 13 may include the apparatus of Example 12, wherein the thermally responsive wall includes a bimetal material.
Example 14 may include the apparatus of Example 12, wherein the reservoir is positioned adjacent to a heat source.
Example 15 may include the apparatus of any one of Examples 9 to 14, wherein the fluid has a thermal conductivity of less than approximately 10−2 W/(m*K).
Example 16 may include the apparatus of any one of Examples 9 to 14, wherein the fluid has a viscosity that is above a predetermined threshold.
Example 17 may include a method of manufacturing a thermal protection apparatus, comprising providing a substrate including surfaces defining one or more channels and an array of openings adjacent to the one or more channels, coupling an outer layer to the substrate, the outer layer including a plurality of opaque elastic regions positioned adjacent to the array of openings, and positioning a fluid within the one or more channels.
Example 18 may include the method of Example 17, wherein the plurality of opaque elastic regions are expandable to become one or more of a rectangular shape, a donut shape or a dome shape.
Example 19 may include the method of Example 17, further including arranging the plurality of opaque elastic regions to form a message.
Example 20 may include the method of Example 17, further including providing a reservoir including a thermally responsive wall, coupling a first end of a conduit to the one or more channels, and coupling a second end of the conduit to the reservoir, wherein contraction of the thermally responsive wall pumps the fluid through the array of openings and into a plurality of expansion areas between the plurality of opaque elastic regions and the substrate, and wherein expansion of the thermally responsive wall draws the fluid from the plurality of expansion areas and through the array of openings.
Example 21 may include the method of Example 20, wherein the thermally responsive wall includes a bimetal material.
Example 22 may include the method of Example 20, further including positioning the reservoir adjacent to a heat source.
Example 23 may include the method of any one of Examples 17 to 22, wherein the fluid has a thermal conductivity of less than approximately 10−2 W/(m*K).
Example 24 may include the method of any one of Examples 17 to 22, wherein the fluid has a viscosity that is above a predetermined threshold.
Embodiments are applicable for use with all types of semiconductor integrated circuit (“IC”) chips. Examples of these IC chips include but are not limited to processors, controllers, chipset components, programmable logic arrays (PLAs), memory chips, network chips, systems on chip (SoCs), SSD/NAND controller ASICs, and the like. In addition, in some of the drawings, signal conductor lines are represented with lines. Some may be different, to indicate more constituent signal paths, have a number label, to indicate a number of constituent signal paths, and/or have arrows at one or more ends, to indicate primary information flow direction. This, however, should not be construed in a limiting manner. Rather, such added detail may be used in connection with one or more exemplary embodiments to facilitate easier understanding of a circuit. Any represented signal lines, whether or not having additional information, may actually comprise one or more signals that may travel in multiple directions and may be implemented with any suitable type of signal scheme, e.g., digital or analog lines implemented with differential pairs, optical fiber lines, and/or single-ended lines.
Example sizes/models/values/ranges may have been given, although embodiments are not limited to the same. As manufacturing techniques (e.g., photolithography) mature over time, it is expected that devices of smaller size could be manufactured. In addition, well known power/ground connections to IC chips and other components may or may not be shown within the figures, for simplicity of illustration and discussion, and so as not to obscure certain aspects of the embodiments. Further, arrangements may be shown in block diagram form in order to avoid obscuring embodiments, and also in view of the fact that specifics with respect to implementation of such block diagram arrangements are highly dependent upon the platform within which the embodiment is to be implemented, i.e., such specifics should be well within purview of one skilled in the art. Where specific details (e.g., circuits) are set forth in order to describe example embodiments, it should be apparent to one skilled in the art that embodiments can be practiced without, or with variation of, these specific details. The description is thus to be regarded as illustrative instead of limiting.
The term “coupled” may be used herein to refer to any type of relationship, direct or indirect, between the components in question, and may apply to electrical, mechanical, fluid, optical, electromagnetic, electromechanical or other connections. In addition, the terms “first”, “second”, etc. may be used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.
As used in this application and in the claims, a list of items joined by the term “one or more of” may mean any combination of the listed terms. For example, the phrases “one or more of A, B or C” may mean A, B, C; A and B; A and C; B and C; or A, B and C.
Those skilled in the art will appreciate from the foregoing description that the broad techniques of the embodiments can be implemented in a variety of forms. Therefore, while the embodiments have been described in connection with particular examples thereof, the true scope of the embodiments should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/024410 | 3/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/171697 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8804331 | Refai-Ahmed | Aug 2014 | B2 |
20080154159 | Kwong | Jun 2008 | A1 |
20140158341 | Campbell et al. | Jun 2014 | A1 |
20140318493 | Spix | Oct 2014 | A1 |
20150029658 | Yairi | Jan 2015 | A1 |
20150205420 | Calub et al. | Jul 2015 | A1 |
20150319889 | Flory | Nov 2015 | A1 |
20160363970 | Zhou | Dec 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion for International Patent Application No. PCT/US2016/024410, dated Dec. 9, 2016, 12 pages. |
Tactus, “Taking Touch Screen Interfaces Into a New Dimension”, 2012, 13 pages, Tactus Technology Inc. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2016/024410, dated Oct. 11, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190121408 A1 | Apr 2019 | US |