User selectable receiver addresses for wireless communication systems

Information

  • Patent Grant
  • 6215413
  • Patent Number
    6,215,413
  • Date Filed
    Friday, December 8, 1995
    29 years ago
  • Date Issued
    Tuesday, April 10, 2001
    23 years ago
Abstract
Selectable receiver addressing is used to control how messages are output from different receivers. Users selectively enable and disable personal addresses in the receiver. The receiver polls time slots where the data for enabled addresses may be transmitted. Enabled addresses are compared with transmitted receiver addresses. If the transmitted address matches one of the enabled receiver addresses, the message is output to the receiver user. If the transmitted address does not match the receiver address, the message is not processed and, accordingly, the receiver operator is not disturbed.
Description




BACKGROUND OF THE INVENTION




This invention relates generally to wireless communication systems and more particularly to an RF receiver with user selectable receiver addressing.




Present paging systems identify messages for pager receivers with a pager address number. The address number matches a unique address permanently stored in the pager receiver. Pager messages and associated pager addresses are reformatted into a time division multiplexed data stream and transmitted over a radio frequency (RF) signal. The pager receiver monitors transmitted signals for messages with a transmitted address that matches the receiver address. If a message includes a transmitted address that corresponds with the receiver address, the message is processed and displayed on the pager receiver.




Multiple addresses exist in some receivers but the multiple addresses are used for group services or provide different functions such as selecting between voice or data. The multiple addresses are not selectable by the pager user.




A single pager receiver is often used by more than one person. For example, if the pager is used while driving a car, the pager user depends on the current car driver and car passengers. When multiple people use the same pager receiver, every message transmitted to the pager receiver is displayed. Thus, the person currently driving the car receives all messages for family members. However, the driver may not want to be disrupted by pager messages sent to other family members.




In another example, a father, while carrying a pager in a business meeting, may not want to receive messages directed to his daughter. Further, many pager messages give little information identifying the message sender. Thus, the father may waste time responding to messages directed to his daughter, son or wife.




Different persons each having their own personal pager receiver may each need to receive pager messages transmitted to a common telephone number. For example, workers at the same factory may each need to respond to pager messages sent to a common work number. Each employee may also want to receive personal pager messages unrelated to the work messages.




While some employees receive both work-related pager messages and personal pager messages during work hours, some employees may not want to receive work-related pager messages during off hours or the personal pager messages of others during work hours. Thus, the pager user must carry two different pager receivers, one pager receiver for work-related messages and a second pager receiver for personal-related messages.




In a similar manner, cellular telephone calls are identified by a unique telephone number permanently stored in a cellular telephone. If the cellular phone is shared by different family members, calls sent to one family member may be answered by other family members currently in possession of the cellular telephone. Cellular telephone users are charged a fee each time a cellular phone call is answered. Thus, time and money is wasted when cellular telephone calls are answered by the wrong family member.




Cellular telephones can also operate with different personality modules which each store a different cellular telephone number. The current user of the cellular telephone snaps his or her personality module into a cellular telephone. The cellular telephone then receives phone calls for the phone number matching the currently inserted personality module.




The personality modules cannot select between multiple authorized receiver addresses previously stored in the cellular telephone. Thus, the personality modules can then be used by anyone even without proper authorization. If lost or stolen, the owner of the lost personality module may be charged for cellular telephone calls made by others on any telephone. Thus, personality modules create a security risk if lost or stolen.




Accordingly, a need remains for selectively and securely changing multiple receiver addresses in wireless RF receivers according to the current receiver user.




SUMMARY OF THE INVENTION




Selectable receiver addressing is used to control how messages are output from different receivers. Receiver users selectively enable and disable personal addresses in the receiver. The receiver turns on for brief periods of time corresponding with time slots in digitally transmitted data. The receiver is synchronized to turn on during transmission time slots where data may be transmitted having associated transmitted receiver addresses matching any one of the enabled addresses stored in the receiver.




If a transmitted receiver address matches one of the stored and enabled receiver addresses, the message is supplied to the receiver output. If the transmitted address does not match the stored receiver address, the message is not supplied and accordingly the receiver user is not disturbed.




Selectable receiver addressing increases communication efficiency and functionality of pager receivers and other wireless receiving devices by customizing each receiver to the current receiver user. Since messages are selectively output from each receiver, the current user can prevent interruptions from messages for others while also directing messages from other receiver devices to the receiver device currently in the user's possession. As a result, fewer pager receivers can be used to more accurately relay messages to the correct person.




The receiver addresses are enabled and disabled with select and deselect buttons or through other user input devices that serve to identify the current receiver user. For example, the same system that identifies a car operator, controls car mirrors and controls the position of a car seat can be used to select the personal receiver addresses. The processor thus enables the personal receiver address associated with the current car user.




In turn, the receiver polls for messages during time periods corresponding with transmitted receiver addresses matching the personal receiver address of the car user.




Other devices used to automatically identify the receiver user include infrared (IR) signals transmitted from a personal wrist watch or a personal identification code read with a bar code reader. The IR signal or bar code reader transmits the user identification code to the receiver which in turn enables an associated receiver address.




Alternatively, receiver addresses and associated receiver commands are transmitted on the same RF signals carrying pager messages. The receiver user directs a transmitter clearinghouse to send new receiver addresses and associated command codes. The receiver reads the command codes and, if necessary, changes the currently stored receiver addresses. The receiver then polls for messages having message addresses matching the new set of enabled receiver addresses.




Receiver addresses are also enabled and disabled according to the time of day. In one embodiment, a receiver address is automatically enabled on a first pager receiver during a first time period and the same receiver address is automatically enabled on a second pager receiver during a second time period. Thus, two people can carry different pager receivers and receive messages for the same receiver address at different selected time periods.




Selectable receiver addresses are also incorporated into two-way communication systems such as cellular telephones. A cellular telephone user selectively enables and disables a personal address in the cellular phone. Phone messages with transmitted addresses not matching the enabled receiver address are either not processed by the cellular phone or relayed to an alternative phone number, such as a home phone number. Thus, the cellular phone user is not disrupted by phone calls for others.




The foregoing and other objects, features and advantages of the invention will become more readily apparent from the following detailed description of a preferred embodiment of the invention which proceeds with reference to the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram showing a wireless car pager receiver including user selectable receiver addressing according to one embodiment of the invention.





FIG. 2

is a diagram of multiple wireless pager receivers each having programmable receiver addressing according to another embodiment of the invention.





FIG. 3

is a detailed schematic diagram of the receivers shown in

FIGS. 1 and 2

.





FIG. 4

is a step diagram showing a method for processing control and message data for the receivers shown in

FIGS. 1 and 2

.





FIG. 5A

is a diagram showing some control data addressing commands transmitted by a clearinghouse for changing receiver addresses.





FIG. 5B

is a diagram showing variable receiver polling protocols for selected receiver addresses.





FIG. 6

is a diagram showing different menus for the receivers shown in

FIGS. 1 and 2

.





FIG. 7

is a step diagram showing a method for changing receiver addresses with different receiver inputs.





FIG. 8

is a diagram showing cellular telephones with selectable receiver addressing according to another embodiment of the invention.











DETAILED DESCRIPTION





FIG. 1

is a diagram showing a pager receiver


12


with programmable user addressing according to the invention mounted in a car


10


. The pager receiver


12


stores multiple user addresses


16


that are manually selectable though select and deselect buttons


22


or automatically selectable through driver preference controller


21


. A message clearinghouse


30


transmits receiver addresses and associated control data


26


and pager messages


28


to the pager receiver


12


. Transmission of pager messages from a clearinghouse


30


to a pager receiver and pager message formats are discussed in detail in U.S. Pat. No. 4,713,808 to Gaskill et al. entitled


Watch Pager System and Communication Protocol


and is herein incorporated by reference.




Each stored receiver address


16


identifies a different authorized user of the pager receiver


12


. In

FIG. 1

, the car


10


is used by any member of a family which includes driver A (Dad), driver B (Mom) and driver C (Son). Because drivers may not want to receive or reply to pager messages addressed to others, each driver can select or deselect which receiver addresses


16


are enabled and disabled, in turn, selecting which messages are supplied to a message display


18


. The current set of available receiver addresses


16


is defined as a menu.




A first method for selecting receiver addresses comprises user select buttons


22


. The current car driver


24


is shown the authorized receiver addresses


16


on message display


18


. The driver then scrolls down the menu


16


selecting or deselecting any combination of receiver address


16


. For example, when the father is alone in car


10


, he may only enable the receiver address for driver A. In turn, messages are only output to message display


18


when the message has an associated transmitted receiver address matching the enabled stored receiver address for driver A.




Stored receiver addresses


16


are also enabled and disabled according to control signals from the driver preference controller


21


. Driver preference controller


21


is coupled to various user adjustable devices in the car


10


such as the radio (not shown), rear and side view mirror controller


17


and car seat controller


20


. The driver preference controller


21


receives an identification code for the current driver and then automatically adjusts the various user adjustable devices


17


and


20


according to prestored parameters for the identified driver. Driver preference controllers are well known to those skilled in the art and are therefore not described in detail.




The output from driver preference controller


21


used for controlling the mirror controller


17


and seat controller


20


is also input to the receiver pager


12


. The receiver pager


12


enables the stored receiver address corresponding with the driver preference control signals. Thus, a receiver address is automatically enabled without manually using select and deselect buttons


22


.




Another method for changing receiver addresses comprises transmitting receiver addresses and control data from clearinghouse


30


. A user may want to permanently remove a receiver address or add a new receiver address to menu


16


. For example, driver C (Son) may leave home or start driving another car. Clearinghouse


30


is notified to remove or permanently disable the receiver address for driver C from menu


16


. The clearinghouse


30


transmits control data


26


to receiver


12


. Control data


26


includes commands that direct pager receiver


12


to delete or disable the receiver address for driver C from menu


16


.




Selectable receiver addressing provides more efficient use of receiver pagers. Different users can program different paging devices so that messages are received only with the paging device currently in the user's possession. For example, a user may have access to a portable clip-on pager device (not shown) and the pager receiver in car


10


. If the user forgets the portable pager device while driving in car


10


, messages sent to the portable clip-on paging device would not be received and acted upon until the driver returns to the location where the portable paging device was last placed.




With the system shown in

FIG. 1

, the user simply enables a receiver address in pager receiver


12


having the same receiver address currently enabled in the portable clip-on paging device. Thus, the user can instantly receive pager messages in car


10


which are normally directed to another paging device.





FIG. 2

is a diagram of three pager receivers


32


,


34


, and


36


each having programmable receiver addressing according to another embodiment of the invention and each mounted inside a wrist watch. Each receiver includes two selectable receiver addresses. The first receiver address


38


is a personal address for receiving personal pager messages. The second receiver address


40


is a work address for receiving work-related pager messages. A button


42


on each watch pager manually enables or disables work address


40


. Similar to the system in

FIG. 1

, a clearinghouse


30


transmits both receiver addresses and control data


26


and pager messages


28


to any of the watch pagers


32


,


34


and


36


.




Receiver addresses are enabled and disabled similar to the system shown in

FIG. 1

either manually with button


42


or automatically from the control data


26


transmitted from clearinghouse


30


.




Receiver addresses can also be enabled and disabled automatically according to the time of day. Either a timer located in the watch pagers


32


,


34


and


36


(

FIG. 3

) or a timer (not shown) located at clearinghouse


30


enables receiver addresses on different watch pagers.




To explain further, a first person (Bill) wears watch pager


32


and is normally at work from 8:00 a.m. through 4:00 p.m. A second person (John) wears watch pager


34


and is normally at work from 4:00 p.m. through 12:15 a.m. A third person (Sue) wears watch pager


36


and is normally at work from 12:15 a.m. through 8:00 a.m.




Watch pager


32


is either programmed so that receiver work address


40


is enabled in watch pager


32


between 8:00 a.m. and 4:00 p.m. Similarly, the receiver work address


40


is enabled in watch pager


34


between 4:00 p.m. and 12:15 a.m. and receiver work address


40


is enabled in watch pager


36


between 12:15 a.m. and 8:00 a.m.




Thus, Bill, John and Sue only receive work pager messages while on the job and are not disturbed by work messages while off duty. The button


42


overrides the above-described timing sequence. Thus, any of the three watch pagers can be commanded to display work messages even when the worker is normally off-duty.





FIG. 3

is a detailed diagram of the pager receivers shown in both

FIGS. 1 and 2

. A processor


52


is coupled to a manual selector such as the buttons


22


shown in

FIG.1

or the button


42


shown in FIG.


2


. For the car pager


10


shown in

FIG. 1

, electrical signals from the driver preference controller


21


are coupled to processor


52


. A packet buffer


56


is coupled to processor


52


and stores the receiver addresses, control data and message data transmitted from clearinghouse


30


(

FIGS. 1 and 2

) received through an antenna


14


.




Storage location


66


is coupled to processor


52


and permanently stores a primary address which uniquely identifies the receiver. Storage locations


68


and


70


are coupled to processor


52


and store secondary addresses associated with different selectable user addresses. Display


18


is coupled to processor


52


and displays pager messages having an address matching one of the enabled addresses in storage locations


66


,


68


or


70


.




A timer


58


is coupled to processor


52


and serves to control receiver polling according to selected receiver addresses as explained in detail in FIG.


5


B.




Packet


45


is a diagram showing one format for data transmitted from the clearinghouse


30


(

FIGS. 1 and 2

) to the pager receiver processor


52


. Packet


45


includes a control section


46


that contains a primary address for a target pager receiver and control data that determine how receiver addresses are enabled and disabled. Format section


48


contains information regarding the format for messages contained in data section


50


. Data section


50


can contain any of the following: pager messages, an associated transmitted receiver address


51


and new receiver addresses that are loaded into storage locations


68


and


70


. The format for the TDMA data packets is described in detail in U.S. Pat. No. 4,713,808 to Gaskill et al.





FIG. 4

explains how message and control data is processed in processor


52


. Step


72


temporarily stores packets


45


into packet buffer


56


(FIG.


3


). Decision step


74


looks for a bit combination in the control section


46


that identifies the packet


45


as containing either control data or message data. If the data section


50


contains control data, decision step


80


compares the primary address transmitted in control section


46


with the primary address stored in storage location


66


(FIG.


3


). If the primary addresses do not match, the control data is not intended for the receiver and decision step


80


returns to step


72


to poll for the next packet


45


.




If the primary address in control section


46


matches the primary address in storage location


66


, step


82


decodes the control data. Step


84


loads, deletes, enables or disables receiver addresses in storage locations


66


,


68


and


70


according to commands decoded for the control data as further described in FIG.


5


A. Step


86


synchronizes the receiver to poll transmitted signals during time slots that may contain data for the enabled receiver addresses. Step


86


is described in detail in FIG.


5


B. The processor


52


then returns to step


72


to poll for subsequently transmitted packets


45


.




If the bit combination in control section


46


indicates that the data section


50


contains message data, decision step


76


compares the transmitted receiver address


51


in data section


50


to each enabled address in storage locations


66


,


68


and


70


. If the receiver address matches an enabled receiver address in the storage locations, step


78


supplies the message in data section


50


to display


18


(FIG.


3


). If the transmitted address


51


in data section


50


does not match an enabled receiver address, decision step


76


returns to step


72


and polls for the next packet


45


.





FIG. 5A

is a table showing a sample of some different receiver address commands transmitted in control section


46


(

FIG. 3

) and performed in step


84


in FIG.


4


. The control data


46


can command the processor


52


(

FIG. 3

) to either load, delete, enable or disable different addresses at different receiver storage locations. The specific address loaded or disabled is transmitted in data section


50


of the packet


45


.





FIG. 5B

is a diagram showing how the receiver


32


polls transmitted data according to enabled receiver addresses. As mentioned above, data is transmitted in a continuous time division multiplexed data stream


130


. Multiple time slots of 13.6 milliseconds are grouped together into subframes of approximately 14 seconds. Packets


131


for one or more of the receiver addresses are transmitted in different time slots in the subframe. The same packet is transmitted several times in the same master frame to increase system reliability.




To extend operating life in battery operated receivers, the receiver


32


polls according to enabled receiver addresses. For example, when stored receiver addresses A and B are enabled, the receiver is activated at times


132


and


134


. Times


132


and


134


are synchronized with time slots that may contain packets having transmitted receiver addresses matching address A and address B.




Referring to data stream


131


, if only receiver address A is enabled in receiver


32


, the receiver


32


is only turned on during time period


132


. Since receiver address B is not enabled, the receiver


32


does not waste battery power polling time slots containing packets for disabled receiver addresses.





FIG. 6

is a diagram showing additional data that is transmitted along with various receiver addresses in data section


50


. A menu


88


for receiver addresses in the car receiver shown in

FIG. 1

includes a title, name and telephone number for drivers A, B and C and a default address for car


10


. The wrist pagers


32


,


34


and


36


shown in

FIG. 2

store a menu


90


,


92


and


94


, respectively, which includes a title, name and telephone number for both a personal receiver address and for a work receiver address.





FIG. 7

is a step diagram showing the steps performed by the processor


52


in

FIG. 3

when responding to direct user inputs. Step


96


polls for an enable or disable input. Decision step


98


determines if the input comes from the manual buttons. For example, in

FIG. 1

, processor


52


monitors buttons


22


and in

FIG. 2

, processor


52


monitors button


42


. The selected receiver addresses are enabled or disabled in step


100


.




For a car pager, decision step


102


determines if the input signal comes from the driver preference controller


21


(FIG.


1


). Step


104


identifies the user according to the driver preference control signals. Step


106


then enables the receiver address associated with the identified user and disables all other receiver addresses.




If decision step


108


determines that the timer


58


(

FIG. 3

) is selected, step


110


enables the selected address for the selected time period and disables the selected address outside the selected time period. Accordingly, the receiver only polls time slots that may contain messages for selected addresses (See FIG.


5


B).





FIG. 8

is a diagram showing another embodiment of the invention used in conjunction with a cellular telephone system. Cellular telephones


112


and


122


each contain four selectable authorized receiver addresses in menu


114


similar to the menu


16


stored in car pager


12


(FIG.


1


). Watches


116


,


118


and


120


each transmit an infrared (IR) signal that identify the watch user. For example, watch


116


transmits an IR identification signal associated with address A (Dad), watch


118


transmits an IR identification signal associated with address C (Son) and watch


120


transmits an IR identification signal associated with address B (Mom).




Each cellular telephone


112


and


122


contain receiver circuitry similar to that shown in FIG.


3


and operates in the following manner. If located in the vicinity of cellular phone


112


, the IR signals from both watches


116


and


118


enable stored receiver addresses A and C on receiver menu


114


. Since only watch


120


is within the vicinity of cellular phone


122


, only receiver address B (Mom) is enabled in cellular phone


122


. The cellular phones


112


and


122


also include a receiver address select button


124


for manually enabling and disabling the receiver addresses in menu


114


.




Cellular phone


112


then only processes calls having telephone numbers matching receiver address A (Dad) or receiver address C (Son). Similarly, cellular phone


122


only processes calls with telephone numbers associated with receiver address B (Mom).




The cellular telephone stores a list of authorized user addresses. For example, both cellular phone


112


and


122


contain only four authorized users (A, B, C, and Default). Calls will not be processed for receiver addresses transmitted from watches that are not included in menu


114


. Thus, the system shown in

FIG. 8

provides more security than personality modules which can operate on any phone that accepts the modules.




Telephone calls in the system shown in

FIG. 8

are also more efficiently transmitted to different cellular phone users than standard cellular phone systems. For example, the mother will not receive telephone calls sent to the son or father's telephone numbers. Thus, money is saved since the mother does not spend phone time answering calls for other family members.




Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. I claim all modifications and variation coming within the spirit and scope of the following claims.



Claims
  • 1. A RF receiver for receiving wireless RF transmission data including associated transmitted receiver addresses, comprising:an output device for supplying the transmission data; multiple storage locations containing stored Selectable receiver addresses; a manually operable selection means located on said receiver for enabling and disabling stored receiver addresses; and a processor coupled to the output device, storage locations and selection device, the processor supplying data to the output device having a data address matching at least one of the enabled receiver addresses.
  • 2. A system according to claim 1 wherein the output device for receiver comprises a visual display and the memory for said said receiver stores a menu containing a list of authorized receiver addresses, the memory supplying the menu to the visual display.
  • 3. A method for selecting user addresses in wireless RF receivers, comprising:transmitting signals in a time division multiplexed format, the signals including data and associated transmitted receiver addresses; storing multiple receiver addresses in each one of the receivers, each stored receiver address associated with a different receiver user; receiving the signals with the RF receivers; comparing the transmitted receiver addresses with the stored receiver addresses in the receivers; supplying data in receivers having transmitted receivers addresses matching at least one of the stored receiver addresses; and manually selectively enabling and disabling at said receiver the stored receiver addresses thereby selectively changing the data supplied to the receivers for each user.
  • 4. A method according to claim 3 including enabling a common receiver address in a receiver according to predetermined time periods.
US Referenced Citations (30)
Number Name Date Kind
4392242 Kai Jul 1983
4713808 Gaskill et al. Dec 1987
4875038 Siwiak et al. Oct 1989
4882579 Siwiak Nov 1989
4891637 Siwiak et al. Jan 1990
4897835 Gaskill et al. Jan 1990
4928096 Leonardo et al. May 1990
4940963 Gutman et al. Jul 1990
4951044 Nelson et al. Aug 1990
4964121 Moore Oct 1990
5070329 Jasinaki Dec 1991
5117460 Berry et al. May 1992
5124697 Moore Jun 1992
5142279 Jasinski et al. Aug 1992
5142692 Owen Aug 1992
5148469 Price Sep 1992
5150110 Breeden Sep 1992
5153582 Davis Oct 1992
5155479 Ragan Oct 1992
5159331 Park et al. Oct 1992
5162790 Jasinski Nov 1992
5166932 Hoff et al. Nov 1992
5170487 Peek Dec 1992
5185604 Nepple et al. Feb 1993
5187470 King et al. Feb 1993
5189413 Gaskill et al. Feb 1993
5220366 King Jun 1993
5260700 Merchant et al. Nov 1993
5311516 Kuznicki et al. May 1994
5398021 Moore Mar 1995
Non-Patent Literature Citations (1)
Entry
“High Speed Subcarrier Is Wave of Future” by Lyle Henry, Guest Commentary, Radio World, Jun. 1, 1994.