The present disclosure relates generally to techniques for noise suppression and, more particularly, for user-specific noise suppression.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Many electronic devices employ voice-related features that involve recording and/or transmitting a user's voice. Voice note recording features, for example, may record voice notes spoken by the user. Similarly, a telephone feature of an electronic device may transmit the user's voice to another electronic device. When an electronic device obtains a user's voice, however, ambient sounds or background noise may be obtained at the same time. These ambient sounds may obscure the user's voice and, in some cases, may impede the proper functioning of a voice-related feature of the electronic device.
To reduce the effect of ambient sounds when a voice-related feature is in use, electronic devices may apply a variety of noise suppression schemes. Device manufactures may program such noise suppression schemes to operate according to certain predetermined generic parameters calculated to be well-received by most users. However, certain voices may be less well suited for these generic noise suppression parameters. Additionally, some users may prefer stronger or weaker noise suppression.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
Embodiments of the present disclosure relate to systems, methods, and devices for user-specific noise suppression. For example, when a voice-related feature of an electronic device is in use, the electronic device may receive an audio signal that includes a user voice. Since noise, such as ambient sounds, also may be received by the electronic device at this time, the electronic device may suppress such noise in the audio signal. In particular, the electronic device may suppress the noise in the audio signal while substantially preserving the user voice via user-specific noise suppression parameters. These user-specific noise suppression parameters may be based at least in part on a user noise suppression preference or a user voice profile, or a combination thereof.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Present embodiments relate to suppressing noise in an audio signal associated with a voice-related feature of an electronic device. Such a voice-related feature may include, for example, a voice note recording feature, a video recording feature, a telephone feature, and/or a voice command feature, each of which may involve an audio signal that includes a user's voice. In addition to the user's voice, however, the audio signal also may include ambient sounds present while the voice-related feature is in use. Since these ambient sounds may obscure the user's voice, the electronic device may apply noise suppression to the audio signal to filter out the ambient sounds while preserving the user's voice.
Rather than employ generic noise suppression parameters programmed at the manufacture of the device, noise suppression according to present embodiments may involve user-specific noise suppression parameters that may be unique to a user of the electronic device. These user-specific noise suppression parameters may be determined through voice training, based on a voice profile of the user, and/or based on a manually selected user setting. When noise suppression takes place based on user-specific parameters rather than generic parameters, the sound of the noise-suppressed signal may be more satisfying to the user. These user-specific noise suppression parameters may be employed in any voice-related feature, and may be used in connection with automatic gain control (AGC) and/or equalization (EQ) tuning.
As noted above, the user-specific noise suppression parameters may be determined using a voice training sequence. In such a voice training sequence, the electronic device may apply varying noise suppression parameters to a user's voice sample mixed with one or more distractors (e.g., simulated ambient sounds such as crumpled paper, white noise, babbling people, and so forth). The user may thereafter indicate which noise suppression parameters produce the most preferable sound. Based on the user's feedback, the electronic device may develop and store the user-specific noise suppression parameters for later use when a voice-related feature of the electronic device is in use.
Additionally or alternatively, the user-specific noise suppression parameters may be determined by the electronic device automatically depending on characteristics of the user's voice. Different users' voices may have a variety of different characteristics, including different average frequencies, different variability of frequencies, and/or different distinct sounds. Moreover, certain noise suppression parameters may be known to operate more effectively with certain voice characteristics. Thus, an electronic device according to certain present embodiments may determine the user-specific noise suppression parameters based on such user voice characteristics. In some embodiments, a user may manually set the noise suppression parameters by, for example, selecting a high/medium/low noise suppression strength selector or indicating a current call quality on the electronic device.
When the user-specific parameters have been determined, the electronic device may suppress various types of ambient sounds that may be heard while a voice-related feature is being used. In certain embodiments, the electronic device may analyze the character of the ambient sounds and apply a user-specific noise suppression parameter that is expected to thus suppress the current ambient sounds. In another embodiment, the electronic device may apply certain user-specific noise suppression parameters based on the current context in which the electronic device is being used.
In certain embodiments, the electronic device may perform noise suppression tailored to the user based on a user voice profile associated with the user. Thereafter, the electronic device may more effectively isolate ambient sounds from an audio signal when a voice-related feature is being used because the electronic device generally may expect which components of an audio signal correspond to the user's voice. For example, the electronic device may amplify components of an audio signal associated with a user voice profile while suppressing components of the audio signal not associated with the user voice profile.
User-specific noise suppression parameters also may be employed to suppress noise in audio signals containing voices other than that of the user that are received by the electronic device. For example, when the electronic device is used for a telephone or chat feature, the electronic device may employ the user-specific noise suppression parameters to an audio signal from a person with whom the user is corresponding. Since such an audio signal may have been previously processed by the sending device, such noise suppression may be relatively minor. In certain embodiments, the electronic device may transmit the user-specific noise suppression parameters to the sending device, so that the sending device may modify its noise suppression parameters accordingly. In the same way, two electronic devices may function systematically to suppress noise in outgoing audio signals according to each other's user-specific noise suppression parameters.
With the foregoing in mind, a general description of suitable electronic devices for performing the presently disclosed techniques is provided below. In particular,
Turning first to
By way of example, the electronic device 10 may represent a block diagram of the handheld device depicted in
In the electronic device 10 of
The noise suppression 20 may be performed by data processing circuitry such as the processor(s) 12 or by circuitry dedicated to performing certain noise suppression on audio signals processed by the electronic device 10. For example, the noise suppression 20 may be performed by a baseband integrated circuit (IC), such as those manufactured by Infineon, based on externally provided noise suppression parameters. Additionally or alternatively, the noise suppression 20 may be performed in a telephone audio enhancement integrated circuit (IC) configured to perform noise suppression based on externally provided noise suppression parameters, such as those manufactured by Audience. These noise suppression ICs may operate at least partly based on certain noise suppression parameters. Varying such noise suppression parameters may vary the output of the noise suppression 20.
The location-sensing circuitry 22 may represent device capabilities for determining the relative or absolute location of electronic device 10. By way of example, the location-sensing circuitry 22 may represent Global Positioning System (GPS) circuitry, algorithms for estimating location based on proximate wireless networks, such as local Wi-Fi networks, and so forth. The I/O interface 24 may enable electronic device 10 to interface with various other electronic devices, as may the network interfaces 26. The network interfaces 26 may include, for example, interfaces for a personal area network (PAN), such as a Bluetooth network, for a local area network (LAN), such as an 802.11x Wi-Fi network, and/or for a wide area network (WAN), such as a 3G cellular network. Through the network interfaces 26, the electronic device 10 may interface with a wireless headset that includes a microphone 32. The image capture circuitry 28 may enable image and/or video capture, and the accelerometers/magnetometer 30 may observe the movement and/or a relative orientation of the electronic device 10.
When employed in connection with a voice-related feature of the electronic device 10, such as a telephone feature or a voice recognition feature, the microphone 32 may obtain an audio signal of a user's voice. Though ambient sounds may also be obtained in the audio signal in addition to the user's voice, the noise suppression 20 may process the audio signal to exclude most ambient sounds based on certain user-specific noise suppression parameters. As described in greater detail below, the user-specific noise suppression parameters may be determined through voice training, based on a voice profile of the user, and/or based on a manually selected user setting.
The handheld device 34 may include an enclosure 36 to protect interior components from physical damage and to shield them from electromagnetic interference. The enclosure 36 may surround the display 18, which may display indicator icons 38. The indicator icons 38 may indicate, among other things, a cellular signal strength, Bluetooth connection, and/or battery life. The I/O interfaces 24 may open through the enclosure 36 and may include, for example, a proprietary I/O port from Apple Inc. to connect to external devices. As indicated in
User input structures 40, 42, 44, and 46, in combination with the display 18, may allow a user to control the handheld device 34. For example, the input structure 40 may activate or deactivate the handheld device 34, the input structure 42 may navigate user interface 20 to a home screen, a user-configurable application screen, and/or activate a voice-recognition feature of the handheld device 34, the input structures 44 may provide volume control, and the input structure 46 may toggle between vibrate and ring modes. The microphone 32 may obtain a user's voice for various voice-related features, and a speaker 48 may enable audio playback and/or certain phone capabilities. Headphone input 50 may provide a connection to external speakers and/or headphones.
As illustrated in
A user may use a voice-related feature of the electronic device 10, such as a voice-recognition feature or a telephone feature, in a variety of contexts with various ambient sounds.
When the user speaks the voice audio signal 58, it may enter the microphone 32 of the electronic device 10. At approximately the same time, however, ambient sounds 60 also may enter the microphone 32. The ambient sounds 60 may vary depending on the context 56 in which the electronic device 10 is being used. The various contexts 56 in which the voice-related feature may be used may include at home 62, in the office 64, at the gym 66, on a busy street 68, in a car 70, at a sporting event 72, at a restaurant 74, and at a party 76, among others. As should be appreciated, the typical ambient sounds 60 that occur on a busy street 68 may differ greatly from the typical ambient sounds 60 that occur at home 62 or in a car 70.
The character of the ambient sounds 60 may vary from context 56 to context 56. As described in greater detail below, the electronic device 10 may perform noise suppression 20 to filter the ambient sounds 60 based at least partly on user-specific noise suppression parameters. In some embodiments, these user-specific noise suppression parameters may be determined via voice training, in which a variety of different noise suppression parameters may be tested on an audio signal including a user voice sample and various distractors (simulated ambient sounds). The distractors employed in voice training may be chosen to mimic the ambient sounds 60 found in certain contexts 56. Additionally, each of the contexts 56 may occur at certain locations and times, with varying amounts of electronic device 10 motion and ambient light, and/or with various volume levels of the voice signal 58 and the ambient sounds 60. Thus, the electronic device 10 may filter the ambient sounds 60 using user-specific noise suppression parameters tailored to certain contexts 56, as determined based on time, location, motion, ambient light, and/or volume level, for example.
In the noise suppression technique 80, the microphone 32 of the electronic device 10 may obtain a user voice signal 58 and ambient sounds 60 present in the background. This first audio signal may be encoded by a codec 82 before entering noise suppression 20. In the noise suppression 20, transmit noise suppression (TX NS) 84 may be applied to the first audio signal. The manner in which noise suppression 20 occurs may be defined by certain noise suppression parameters (illustrated as transmit noise suppression (TX NS) parameters 86) provided by the processor(s) 12, memory 14, or nonvolatile storage 16, for example. As discussed in greater detail below, the TX NS parameters 86 may be user-specific noise suppression parameters determined by the processor(s) 12 and tailored to the user and/or context 56 of the electronic device 10. After performing the noise suppression 20 at numeral 84, the resulting signal may be passed to an uplink 88 through the network interface 26.
A downlink 90 of the network interface 26 may receive a voice signal from another device (e.g., another telephone). Certain noise receiver noise suppression (RX NS) 92 may be applied to this incoming signal in the noise suppression 20. The manner in which such noise suppression 20 occurs may be defined by certain noise suppression parameters (illustrated as receive noise suppression (RX NS) parameters 94) provided by the processor(s) 12, memory 14, or nonvolatile storage 16, for example. Since the incoming audio signal previously may have been processed for noise suppression before leaving the sending device, the RX NS parameters 94 may be selected to be less strong than the TX NS parameters 86. The resulting noise-suppressed signal may be decoded by the codec 82 and output to receiver circuitry and/or a speaker 48 of the electronic device 10.
The TX NS parameters 86 and/or the RX NS parameters 94 may be specific to the user of the electronic device 10. That is, as shown by a diagram 100 of
Voice training 104 may allow the electronic device 10 to determine the user-specific noise suppression parameters 102 by way of testing a variety of noise suppression parameters combined with various distractors or simulated background noise. Certain embodiments for performing such voice training 104 are discussed in greater detail below with reference to
In general, the electronic device 10 may employ the user-specific noise suppression parameters 102 when a voice-related feature of the electronic device is in use (e.g., the TX NS parameters 86 and the RX NS parameters 94 may be selected based on the user-specific noise suppression parameters 102). In certain embodiments, the electronic device 10 may apply certain user-specific noise suppression parameters 102 during noise suppression 20 based on an identification of the user who is currently using the voice-related feature. Such a situation may occur, for example, when an electronic device 10 is used by other family members. Each member of the family may represent a user that may sometimes use a voice-related feature of the electronic device 10. Under such multi-user conditions, the electronic device 10 may ascertain whether there are user-specific noise suppression parameters 102 associated with that user.
For example,
If the voice profile detected at block 114 does not match any known users with whom user-specific noise suppression parameters 102 are associated (block 116), the electronic device 10 may apply certain default noise suppression parameters for noise suppression 20 (block 118). However, if the voice profile detected in block 114 does match a known user of the electronic device 10, and the electronic device 10 currently stores user-specific noise suppression parameters 102 associated with that user, the electronic device 10 may instead apply the associated user-specific noise suppression parameters 102 (block 120).
As mentioned above, the user-specific noise suppression parameters 102 may be determined based on a voice training sequence 104. The initiation of such a voice training sequence 104 may be presented as an option to a user during an activation phase 130 of an embodiment of the electronic device 10, such as the handheld device 34, as shown in
Additionally or alternatively, a voice training sequence 104 may begin when a user selects a setting of the electronic device 10 that causes the electronic device 10 to enter a voice training mode. As shown in
A flowchart 160 of
To determine which noise suppression parameters a user most prefers, the electronic device 10 may alternatingly apply certain test noise suppression parameters while noise suppression 20 is applied to the test audio signals before requesting feedback from the user. For example, the electronic device 10 may apply a first set of test noise suppression parameters, here labeled “A,” to the test audio signal including the user's voice sample and the one or more distractors, before outputting the audio to the user via a speaker 48 (block 166). Next, the electronic device 10 may apply another set of test noise suppression parameters, here labeled “B,” to the user's voice sample before outputting the audio to the user via the speaker 48 (block 168). The user then may decide which of the two audio signals output by the electronic device 10 the user prefers (e.g., by selecting either “A” or “B” on a display 18 of the electronic device 10) (block 170).
The electronic device 10 may repeat the actions of blocks 166-170 with various test noise suppression parameters and with various distractors, learning more about the user's noise suppression preferences each time until a suitable set of user noise suppression preference data has been obtained (decision block 172). Thus, the electronic device 10 may test the desirability of a variety of noise suppression parameters as actually applied to an audio signal containing the user's voice as well as certain common ambient sounds. In some embodiments, with each iteration of blocks 166-170, the electronic device 10 may “tune” the test noise suppression parameters by gradually varying certain noise suppression parameters (e.g., gradually increasing or decreasing a noise suppression strength) until a user's noise suppression preferences have settled. In other embodiments, the electronic device 10 may test different types of noise suppression parameters in each iteration of blocks 166-170 (e.g., noise suppression strength in one iteration, noise suppression of certain frequencies in another iteration, and so forth). In any case, the blocks 166-170 may repeat until a desired number of user preferences have been obtained (decision block 172).
Based on the indicated user preferences obtained at block(s) 170, the electronic device 10 may develop user-specific noise suppression parameters 102 (block 174). By way of example, the electronic device 10 may arrive at a preferred set of user-specific noise suppression parameters 102 when the iterations of blocks 166-170 have settled, based on the user feedback of block(s) 170. In another example, if the iterations of blocks 166-170 each test a particular set of noise suppression parameters, the electronic device 10 may develop a comprehensive set of user-specific noise suppression parameters based on the indicated preferences to the particular parameters. The user-specific noise suppression parameters 102 may be stored in the memory 14 or the nonvolatile storage 16 of the electronic device 10 (block 176) for noise suppression when the same user later uses a voice-related feature of the electronic device 10.
In another embodiment, represented by a single-device voice recording system 200 of
Corresponding to blocks 166-170,
When the user has heard the result of applying the two sets of noise suppression parameters “A” and “B” to the test audio signal, the handheld device 34 may ask the user, for example, “Did you prefer A or B?” (numeral 216). The user then may indicate a noise suppression preference based on the output noise-suppressed signals. For example, the user may select either the first noise-suppressed audio signal (“A”) or the second noise-suppressed audio signal (“B”) via a screen 218 on the handheld device 34. In some embodiments, the user may indicate a preference in other manners, such as by saying “A” or “B” aloud.
The electronic device 10 may determine the user preferences for specific noise suppression parameters in a variety of manners. A flowchart 220 of
If, after block 222, the user prefers the noise suppression parameters “B” (decision block 224), the electronic device 10 may apply the new noise suppression parameters “C” and “D” (block 234). In certain embodiments, the new noise suppression parameters “C” and “D” may be variations of the noise suppression parameters “B”. If the user prefers the noise suppression parameters “C” (decision block 236), the electronic device 10 may set the user-specific noise suppression parameters to be a combination of “B” and “C” (block 238). Otherwise, if the user prefers the noise suppression parameters “D” (decision block 236), the electronic device 10 may set the user-specific noise suppression parameters to be a combination of “B” and “D” (block 240). As should be appreciated, the flowchart 220 is presented as only one manner of performing blocks 166-172 of the flowchart 160 of
The voice training sequence 104 may be performed in other ways. For example, in one embodiment represented by a flowchart 250 of
Thereafter, the electronic device 10 may determine which noise suppression parameters a user most prefers to determine the user-specific noise suppression parameters 102. In a manner similar to blocks 166-170 of
Like block 174 of
As mentioned above, certain embodiments of the present disclosure may involve obtaining a user voice sample 194 without distractors 182 playing aloud in the background. In some embodiments, the electronic device 10 may obtain such a user voice sample 194 the first time that the user uses a voice-related feature of the electronic device 10 in a quiet setting without disrupting the user. As represented in a flowchart 270 of
The flowchart 270 of
The electronic device 10 may assess the current signal-to-noise ration (SNR) of the audio signal received by the microphone 32 while the voice-related feature is being used (block 282). If the SNR is sufficiently high (e.g., above a preset threshold), the electronic device 10 may obtain a user voice sample 194 from the audio received by the microphone 32 (block 286). If the SNR is not sufficiently high (e.g., below the threshold) (decision block 284), the electronic device 10 may continue to apply the default noise suppression parameters (block 280), continuing to at least periodically reassess the SNR. A user voice sample 194 obtained in this manner may be later employed in the voice training sequence 104 as discussed above with reference to
Specifically, in addition to the voice training sequence 104, the user-specified noise suppression parameters 102 may be determined based on certain characteristics associated with a user voice sample 194. For example,
Based on the various characteristics associated with the user voice sample 194, the electronic device 10 may determine the user-specific noise suppression parameters 102 (block 296). For example, as shown by a voice characteristic diagram 300 of
As mentioned above, the user-specific noise suppression parameters 102 also may be determined by a direct selection of user settings 108. One such example appears in
When a user selects the user-selectable button 322, the handheld device 34 may display a noise suppression selection screen 324. Through the noise suppression selection screen 324, a user may select a noise suppression strength. For example, the user may select whether the noise suppression should be high, medium, or low strength via a selection wheel 326. Selecting a higher noise suppression strength may result in the user-specific noise suppression parameters 102 suppressing more ambient sounds 60, but possibly also suppressing more of the voice of the user 58, in a received audio signal. Selecting a lower noise suppression strength may result in the user-specific noise suppression parameters 102 permitting more ambient sounds 60, but also permitting more of the voice of the user 58, to remain in a received audio signal.
In other embodiments, the user may adjust the user-specific noise suppression parameters 102 in real time while using a voice-related feature of the electronic device 10. By way of example, as seen in a call-in-progress screen 330 of
In certain embodiments, subsets of the user-specific noise suppression parameters 102 may be determined as associated with certain distractors 182 and/or certain contexts 60. As illustrated by a parameter diagram 340 of
The distractor-specific parameters 344-352 may be determined when the user-specific noise suppression parameters 102 are determined. For example, during voice training 104, the electronic device 10 may test a number of noise suppression parameters using test audio signals including the various distractors 182. Depending on a user's preferences relating to noise suppression for each distractor 182, the electronic device may determine the distractor-specific parameters 344-352. By way of example, the electronic device may determine the parameters for crumpled paper 344 based on a test audio signal that included the crumpled paper distractor 184. As described below, the distractor-specific parameters of the parameter diagram 340 may later be recalled in specific instances, such as when the electronic device 10 is used in the presence of certain ambient sounds 60 and/or in certain contexts 56.
Additionally or alternatively, subsets of the user-specific noise suppression parameters 102 may be defined relative to certain contexts 56 where a voice-related feature of the electronic device 10 may be used. For example, as represented by a parameter diagram 360 shown in
Like the distractor-specific parameters 344-352, the context-specific parameters 364-378 may be determined when the user-specific noise suppression parameters 102 are determined. To provide one example, during voice training 104, the electronic device 10 may test a number of noise suppression parameters using test audio signals including the various distractors 182. Depending on a user's preferences relating to noise suppression for each distractor 182, the electronic device 10 may determine the context-specific parameters 364-378.
The electronic device 10 may determine the context-specific parameters 364-378 based on the relationship between the contexts 56 of each of the context-specific parameters 364-378 and one or more distractors 182. Specifically, it should be noted that each of the contexts 56 identifiable to the electronic device 10 may be associated with one or more specific distractors 182. For example, the context 56 of being in a car 70 may be associated primarily with one distractor 182, namely, road noise 192. Thus, the context-specific parameters 376 for being in a car may be based on user preferences related to test audio signals that included road noise 192. Similarly, the context 56 of a sporting event 72 may be associated with several distractors 182, such as babbling people 186, white noise 188, and rock music 190. Thus, the context-specific parameters 368 for a sporting event may be based on a combination of user preferences related to test audio signals that included babbling people 186, white noise 188, and rock music 190. This combination may be weighted to more heavily account for distractors 182 that are expected to more closely match the ambient sounds 60 of the context 56.
As mentioned above, the user-specific noise suppression parameters 102 may be determined based on characteristics of the user voice sample 194 with or without the voice training 104 (e.g., as described above with reference to
When a voice-related feature of the electronic device 10 is in use, the electronic device 10 may tailor the noise suppression 20 both to the user and to the character of the ambient sounds 60 using the distractor-specific parameters 344-352 and/or the context-specific parameters 364-378. Specifically,
Turning to
The character of the ambient sounds 60 may be similar to one or more of the distractors 182. Thus, in some embodiments, the electronic device 10 may apply the one of the distractor-specific parameters 344-352 that most closely match the ambient sounds 60 (block 386). For the context 56 of being at a restaurant 74, for example, the ambient sounds 60 detected by the microphone 32 may most closely match babbling people 186. The electronic device 10 thus may apply the distractor-specific parameter 346 when such ambient sounds 60 are detected. In other embodiments, the electronic device 10 may apply several of the distractor-specific parameters 344-352 that most closely match the ambient sounds 60. These several distractor-specific parameters 344-352 may be weighted based on the similarity of the ambient sounds 60 to the corresponding distractors 182. For example, the context 56 of a sporting event 72 may have ambient sounds 60 similar to several distractors 182, such as babbling people 186, white noise 188, and rock music 190. When such ambient sounds 60 are detected, the electronic device 10 may apply the several associated distractor-specific parameters 346, 348, and/or 350 in proportion to the similarity of each to the ambient sounds 60.
In a similar manner, the electronic device 10 may select and apply the context-specific parameters 364-378 based on an identified context 56 where the electronic device 10 is used. Turning to
As shown by a device context factor diagram 400 of
For example, a first factor 404 of the device context factors 402 may be the character of the ambient sounds 60 detected by the microphone 32 of the electronic device 10. Since the character of the ambient sounds 60 may relate to the context 56, the electronic device 10 may determine the context 56 based at least partly on such an analysis.
A second factor 406 of the device context factors 402 may be the current date or time of day. In some embodiments, the electronic device 10 may compare the current date and/or time with a calendar feature of the electronic device 10 to determine the context. By way of example, if the calendar feature indicates that the user is expected to be at dinner, the second factor 406 may weigh in favor of determining the context 56 to be a restaurant 74. In another example, since a user may be likely to commute in the morning or late afternoon, at such times the second factor 406 may weigh in favor of determining the context 56 to be a car 70.
A third factor 408 of the device context factors 402 may be the current location of the electronic device 10, which may be determined by the location-sensing circuitry 22. Using the third factor 408, the electronic device 10 may consider its current location in determining the context 56 by, for example, comparing the current location to a known location in a map feature of the electronic device 10 (e.g., a restaurant 74 or office 64) or to locations where the electronic device 10 is frequently located (which may indicate, for example, an office 64 or home 62).
A fourth factor 410 of the device context factors 402 may be the amount of ambient light detected around the electronic device 10 via, for example, the image capture circuitry 28 of the electronic device. By way of example, a high amount of ambient light may be associated with certain contexts 56 located outdoors (e.g., a busy street 68). Under such conditions, the factor 410 may weigh in favor of a context 56 located outdoors. A lower amount of ambient light, by contrast, may be associated with certain contexts 56 located indoors (e.g., home 62), in which case the factor 410 may weigh in favor of such an indoor context 56.
A fifth factor 412 of the device context factors 402 may be detected motion of the electronic device 10. Such motion may be detected based on the accelerometers and/or magnetometer 30 and/or based on changes in location over time as determined by the location-sensing circuitry 22. Motion may suggest a given context 56 in a variety of ways. For example, when the electronic device 10 is detected to be moving very quickly (e.g., faster than 20 miles per hour), the factor 412 may weigh in favor of the electronic device 10 being in a car 70 or similar form of transportation. When the electronic device 10 is moving randomly, the factor 412 may weigh in favor of contexts in which a user of the electronic device 10 may be moving about (e.g., at a gym 66 or a party 76). When the electronic device 10 is mostly stationary, the factor 412 may weigh in favor of contexts 56 in which the user is seated at one location for a period of time (e.g., an office 64 or restaurant 74).
A sixth factor 414 of the device context factors 402 may be a connection to another device (e.g., a Bluetooth handset). For example, a Bluetooth connection to an automotive hands-free phone system may cause the sixth factor 414 to weigh in favor of determining the context 56 to be in a car 70.
In some embodiments, the electronic device 10 may determine the user-specific noise suppression parameters 102 based on a user voice profile associated with a given user of the electronic device 10. The resulting user-specific noise suppression parameters 102 may cause the noise suppression 20 to isolate ambient sounds 60 that do not appear associated with the user voice profile, and thus may be understood to likely be noise.
As shown in
With such a voice profile, the electronic device 10 may perform the noise suppression 20 in a manner best applicable to that user's voice. In one embodiment, as represented by a flowchart 430 of
One manner of doing so is shown through
By contrast, a plot 450 of
From such a comparison, when the electronic device 10 carries out noise suppression 20, it may determine or select the user-specific noise suppression parameters 102 such that the frequencies of the audio signal of the plot 440 that correspond to the frequencies of the user voice profile of the plot 450 are generally amplified, while the other frequencies are generally suppressed. Such a resulting noise-suppressed audio signal is modeled by a plot 460 of
The above discussion generally focused on determining the user-specific noise suppression parameters 102 for performing the TX NS 84 of the noise suppression 20 on an outgoing audio signal, as shown in
For example, as presented by a flowchart 470 of
Based on the feedback from the user at block 474, the electronic device 10 may develop user-specific noise suppression parameters 102 (block 476). The user-specific parameters 102 developed based on the flowchart 470 of
The flowchart 480 may begin when a voice-related feature of the electronic device 10, such as a telephone or chat feature, is in use and is receiving an audio signal from another electronic device 10 that includes a far-end user's voice (block 482). Subsequently, the electronic device 10 may determine the character of the far-end user's voice in the audio signal (block 484). Doing so may entail, for example, comparing the far-end user's voice in the received audio signal with certain other voices that were tested during the voice training 104 (when carried out as discussed above with reference to
In general, when a first electronic device 10 receives an audio signal containing a far-end user's voice from a second electronic device 10 during two-way communication, such an audio signal already may have been processed for noise suppression in the second electronic device 10. According to certain embodiments, such noise suppression in the second electronic device 10 may be tailored to the near-end user of the first electronic 10, as described by a flowchart 490 of
The above-discussed technique of
The specific embodiments described above have been shown by way of example, and it should be understood that these embodiments may be susceptible to various modifications and alternative forms. It should be further understood that the claims are not intended to be limited to the particular forms disclosed, but rather to cover all modifications, equivalents, and alternatives falling within the spirit and scope of this disclosure.