This Application claims priority of EP 06 009 203, which is hereby incorporated by reference in its entirety.
The specification describes the use of selected DPP IV inhibitors for the treatment of physiological functional disorders and for reducing the risk of the occurrence of such functional disorders in at-risk patient groups. In addition, the use of the above-mentioned DPP IV inhibitors in conjunction with other active substances is described, by means of which improved treatment outcomes can be achieved. These applications may be used to prepare corresponding medicaments.
The enzyme DPP-IV, also known by the name CD26, is a serine protease which promotes the cleaving of dipeptides in proteins with a proline or alanine group at the N-terminal end. DPP-IV inhibitors thereby influence the plasma level of bioactive peptides including the peptide GLP-1 and are highly promising molecules for the treatment of diabetes mellitus.
Type 1 diabetes mellitus, which occurs mainly in juveniles under 30 years of age, is categorised as an autoimmune disease. With a corresponding genetic disposition and under the influence of various factors, insulitis occurs, followed by destruction of the B-cells, so that the pancreas is no longer able to produce much, if any, insulin.
Type 2 diabetes mellitus is not categorised as an autoimmune disease and manifests itself in a fasting blood sugar level exceeding 125 mg of glucose per dl of plasma; the measurement of blood glucose values is a standard procedure in routine medical analysis. Prediabetes is suspected if the fasting blood sugar level exceeds the maximum normal level of 99 mg of glucose per dl of plasma but does not exceed the threshold of 125 mg of glucose per dl of plasma, which is relevant for diabetes. This is also referred to as pathological fasting glucose (impaired fasting glucose). Another indication of prediabetes is a disrupted glucose tolerance, i.e. a blood sugar level of 140-199 mg of glucose per dl of plasma 2 hours after taking 75 mg of glucose on an empty stomach within the scope of an oral glucose tolerance test.
If a glucose tolerance test is carried out, the blood sugar level of a diabetic will be in excess of 199 mg of glucose per dl of plasma 2 hours after 75 g of glucose have been taken on an empty stomach. In a glucose tolerance test 75 g of glucose are administered orally to the patient being tested after 10-12 hours of fasting and the blood sugar level is recorded immediately before taking the glucose and 1 and 2 hours after taking it. In a healthy subject the blood sugar level will be between 60 and 99 mg per dl of plasma before taking the glucose, less than 200 mg per dl 1 hour after taking it and less than 140 mg per dl after 2 hours. If after 2 hours the value is between 140 and 199 mg this is regarded as abnormal glucose tolerance or in some cases glucose intolerance.
In the monitoring of the treatment of diabetes mellitus the HbA1c value, the product of a non-enzymatic glycation of the haemoglobin B chain, is of exceptional importance. As its formation depends essentially on the blood sugar level and the life time of the erythrocytes the HbA1c in the sense of a “blood sugar memory” reflects the average blood sugar level of the preceding 4-12 weeks. Diabetic patients whose HbA1c level has been well controlled over a long time by more intensive diabetes treatment (i.e. <6.5% of the total haemoglobin in the sample) are significantly better protected from diabetic microangiopathy. The available treatments for diabetes can give the diabetic an average improvement in their HbA1c level of the order of 1.0-1.5%. This reduction in the HbA1C level is not sufficient in all diabetics to bring them into the desired target range of <6.5% and preferably <6% HbA1c.
If insulin resistance can be detected this is a particularly strong indication of the presence of the complex metabolic disorder of prediabetes. Thus, it may be that in order to maintain glucose homoeostasis a person needs 2-3 times as much insulin as another person. The most certain method of determining insulin resistance is the euglycaemic-hyperinsulinaemic clamp test. The ratio of insulin to glucose is determined within the scope of a combined insulin-glucose infusion technique. There is found to be insulin resistance if the glucose absorption is below the 25th percentile of the background population investigated (WHO definition). Rather less laborious than the clamp test are so called minimal models in which, during an intravenous glucose tolerance test, the insulin and glucose concentrations in the blood are measured at fixed time intervals and from these the insulin resistance is calculated. Another method of measurement is the mathematical HOMA model. The insulin resistance is calculated by means of the fasting plasma glucose and the fasting insulin concentration. In this method it is not possible to distinguish between hepatic and peripheral insulin resistance. These processes are not really suitable for evaluating insulin resistance in daily practice. As a rule, other parameters are used in everyday clinical practice to assess insulin resistance. Preferably, the patient's triglyceride concentration is used, for example, as increased triglyceride levels correlate significantly with the presence of insulin resistance.
To simply somewhat, in practice it is assumed that people are insulin-resistant if they have at least 2 of the following characteristics:
1) overweight or obesity
2) high blood pressure
3) dyslipidaemia (an altered content of total lipids in the blood)
4) at least one close relative in whom abnormal glucose tolerance or type 2 diabetes has been diagnosed.
Overweight means in this instance that the Body Mass Index (BMI) is between 25 and 30 kg/m2, the BMI being the quotient of the body weight in kg and the square of the height in metres. In manifest obesity the BMI is 30 kg/m2 or more.
It is immediately apparent, from the above definition of insulin resistance, that hypotensive agents are suitable and indicated for treating it if, among other things, high blood pressure is found in the patient.
A similar indication of prediabetes is if the conditions for metabolic syndrome are met, the main feature of which is insulin resistance. According to the ATP IHINCEP Guidelines (Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) in the Journal of the American Medical Association 285:2486-2497, 2001) metabolic syndrome is present if a patient has at least 3 of the following characteristics:
1) Abdominal obesity, defined as a waist measurement of >40 inches or 102 cm in men and >35 inches or 94 cm in women
2) Triglyceride levels >150 mg/dl
3) HDL-cholesterol levels <40 mg/dl in men
4) High blood pressure >130/>85 mm Hg
5) Fasting blood sugar of >110 mg/dl
This definition of metabolic syndrome immediately shows that hypotensives are suitable for treating it if the patient is found to have high blood pressure, among other things.
A triglyceride blood level of more than 150 mg/dl also indicates the presence of pre-diabetes. This suspicion is confirmed by a low blood level for HDL cholesterol. In women, levels below 55 mg per dl of plasma are regarded as too low while in men levels below 45 mg per dl of plasma are regarded as too low. Triglycerides and HDL cholesterol in the blood can also be determined by standard methods in medical analysis and are described for example in Thomas L (Editor): “Labor und Diagnose”, TH-Books Verlagsgesellschaft mbH, Frankfurt/Main, 2000. A suspicion of prediabetes is further confirmed if the fasting blood sugar levels also exceed 99 mg of glucose per dl of plasma.
The term gestational diabetes (diabetes of pregnancy) denotes a form of the sugar disease which develops during pregnancy and usually ceases again immediately after the birth. Gestational diabetes is diagnosed by a screening test which is carried out between the 24th and 28th weeks of pregnancy. It is usually a simple test in which the blood sugar level is measured one hour after the administration of 50 g of glucose solution. If this 1 h level is above 140 mg/dl, gestational diabetes is suspected. Final confirmation may be obtained by a standard glucose tolerance test with 75 g of glucose.
Hyperglycaemia describes a functional disorder in which an excessively high glucose level is measured in the blood, either in the fasting state (increased glucose level of 100-125 mg/dl or diabetic-hyperglycaemic level of >125 mg/dl compared with the normal level of <100 mg/dl,) or in non-fasting state (elevated glucose level of >180 mg/dl).
By adrenergic postprandial syndrome (reactive hypoglycaemia) the clinician means a functional disorder in which a disproportionately high insulin level leads to a drop in the blood sugar level (hypoglycaemia) caused by an imbalance between rapidly digested carbohydrates and a high insulin level persisting after a meal.
The term diabetic foot refers to lesions on the foot caused by diabetes mellitus, the primary cause of which is a polyneuropathy that can be put down to inadequate metabolic control. A diabetic foot is diagnosed by the occurrence of typical lesions (e.g. ulcers) in an existing case of diabetes mellitus.
The term diabetes-associated ulcer refers to an ulcerous inflammatory skin defect in a patient with diabetes mellitus. A diabetes-associated ulcer is diagnosed by typical anamnesis and physical examination (e.g. inspection of the foot).
The term diabetic hyperlipidaemia is used if a patient with diabetes mellitus suffers an increase in total cholesterol or, more typically in diabetic hyperlipidaemia, an increase in the plasma triglycerides, with or without a reduction in HDL cholesterol.
The term diabetic dyslipidaemia is used if the total cholesterol is not raised but the distribution of HDL- and LDL-cholesterol is altered, i.e. the patient's HDL cholesterol level is too low (e.g. <55 mg/dl for women and <45 mg/dl for men).
The term heart failure is used if either subjective symptoms or objective findings indicate an inability of the heart to achieve the necessary ejection output. Subjective symptoms may be e.g. difficulty breathing under stress or at rest. Objective findings include a reduced ejection output of the heart according to ultrasound (reduced ejection volume), congestion of the lungs according to X-ray, and/or reduced walking distances.
Some selected DPP IV inhibitors are particularly suitable for the preparation of a medicament for the therapeutic treatment of patients who have been diagnosed with a medical or physiological functional disorder selected from among pre-diabetes, glucose intolerance (impaired glucose tolerance), pathological fasting glucose (impaired fasting glucose), diabetic foot, diabetes-associated ulcer, diabetic hyperlipidaemia, diabetic dyslipidaemia, newly diagnosed type 1 diabetes (to maintain a residual secretion of insulin from the pancreas), gestational diabetes (diabetes of pregnancy), hyperglycaemia, adrenergic postprandial syndrome (reactive hypoglycaemia) or heart failure.
These medicaments may also be used to reduce the risk that in spite of treatment the patient will suffer an impaired glucose metabolism, an elevated HbA1c value, an impaired fasting glucose value, manifest type 2 diabetes, a diabetic foot, a diabetes-associated ulcer, diabetic hyperlipidaemia or diabetic dyslipidaemia, and that in spite of the therapy insulin treatment will become necessary or macrovascular complications will occur.
Examples of macrovascular complications of this kind are myocardial infarct, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, haemorrhagic or ischaemic stroke, peripheral arterial occlusive disease, cardiomyopathy, left heart insufficiency, right heart insufficiency, global heart insufficiency, heart rhythm disorders and vascular restenosis. These macrovascular complications are known to the skilled man and described in detail in the standard textbooks.
In addition the substances are suitable for enhancing the vitality and secretion capacity of cells after the transplanting of islets of Langerhans or beta cells, and thereby ensuring a favourable outcome after transplantation. The substances may also be used during the isolation and transplantation phase of islets of Langerhans or beta cells, by adding the specified substances to the conventional isolation or storage medium in a suitable concentration of 1 nmol/l to 1 μmol/l, preferably in a concentration of 1 nmol/l to 100 nmol/l. This results in an improvement in the quality of the material to be transplanted. An improvement in quality is obtained particularly in combination with added amounts of GLP-1 (glucagon like peptide 1), preferably in a concentration of 1-100 nmol/l. Corresponding isolation or storage media and corresponding methods of enhancing the vitality and secretion capacity of islets of Langerhans or beta cells by the addition of DPP IV inhibitors to the media used are a further object of the invention.
Finally, the above-mentioned inhibitors are suitable for the treatment of various forms of arthritis, but particularly rheumatoid arthritis.
DPP IV inhibitors selected according to the present invention can be described by formula (I)
or formula (II)
wherein R1 denotes ([1,5]naphthyridin-2-yl)methyl, (quinazolin-2-yl)methyl, (quinoxalin-6-yl)methyl, (4-methyl-quinazolin-2-yl)methyl, 2-cyano-benzyl, (3-cyano-quinolin-2-yl)methyl, (3-cyano-pyridin-2-yl)methyl, (4-methyl-pyrimidin-2-yl)methyl, or (4,6-dimethyl-pyrimidin-2-yl)methyl and R2 denotes 3-(R)-amino-piperidin-1-yl, (2-amino-2-methyl-propyl)-methylamino or (2-(S)-amino-propyl)-methylamino.
Particularly preferred DPP IV inhibitors are the following compounds and the therapeutically active salts thereof:
These DPP IV inhibitors are distinguished from structurally comparable DPP IV inhibitors, as they combine exceptional potency and a long-lasting effect with favourable pharmacological properties, receptor selectivity and a favourable side-effect profile or bring about unexpected therapeutic advantages or improvements when combined with other pharmaceutical active substances. Their preparation is disclosed in the publications mentioned.
As different metabolic functional disorders often occur simultaneously, it is quite often indicated to combine a number of different active principles with one another. Thus, depending on the functional disorders diagnosed, improved treatment outcomes may be obtained if a DPP IV inhibitor is combined with an active substance selected from among the other antidiabetic substances, especially active substances that lower the blood sugar level or the lipid level in the blood, raise the HDL level in the blood, lower blood pressure or are indicated in the treatment of atherosclerosis or obesity.
The dosage required of the DPP IV inhibitors when administered intravenously is 0.1 mg to 10 mg, preferably 0.25 mg to 5 mg, and when administered orally 0.5 mg to 100 mg, preferably 2.5 mg to 50 mg, in each case 1 to 4 times a day. For this purpose the compounds, optionally in combination with another active substance, may be formulated together with one or more inert conventional carriers and/or diluents, e.g. with maize starch, lactose, glucose, microcrystalline cellulose, magnesium stearate, polyvinylpyrrolidone, citric acid, tartaric acid, water, water/ethanol, water/glycerol, water/sorbitol, water/polyethyleneglycol, propylene-glycol, cetylstearylalcohol, carboxymethylcellulose or fatty substances such as hard fat or suitable mixtures thereof, to form conventional galenic preparations such as tablets, coated tablets, capsules, powders, suspensions or suppositories.
The DPP IV inhibitors according to the invention are thus prepared by the skilled man using permitted formulation excipients as described in the prior art. Examples of such excipients are diluents, binders, carriers, fillers, lubricants, flow agents, crystallisation retardants, disintegrants, solubilisers, colourings, pH regulators, surfactants and emulsifiers.
Examples of suitable diluents include cellulose powder, calcium hydrogen phosphate, erythritol, (low-substituted) hydroxypropylcellulose, mannitol, pregelatinised starch or xylitol.
Examples of suitable binders include copolymers of vinylpyrrolidone with other vinyl derivatives (copovidone), hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC) polyvinylpyrrolidone (povidone), pregelatinised starch, or low-substituted hydroxypropylcellulose.
Examples of suitable lubricants include talc, polyethyleneglycol, calcium behenate, calcium stearate, hydrogenated castor oil or magnesium stearate.
Examples of suitable disintegrants include maize starch or crospovidone.
Suitable methods of preparing pharmaceutical formulations of the DPP IV inhibitors according to the invention are
Suitable granulation methods are
The DPP IV inhibitors mentioned above may also be used in conjunction with other active substances, by means of which improved treatment results can be obtained. Such a combined treatment may be given as a free combination of the substances or in the form of a fixed combination, for example in a tablet or capsule. Pharmaceutical formulations of the combination partner needed for this may either be obtained commercially as pharmaceutical compositions or may be formulated by the skilled man using conventional methods. The active substances which may be obtained commercially as pharmaceutical compositions are described in numerous places in the prior art, for example in the list of drugs that appears annually, the “Rote Liste®” of the federal association of the pharmaceutical industry, or in the annually updated compilation of manufacturers' information on prescription drugs known as the “Physicians' Desk Reference”.
Examples of antidiabetic combination partners are metformin; sulphonylureas such as glibenclamide, tolbutamide, glimepiride, glipizide, gliquidon, glibornuride and gliclazide; nateglinide; repaglinide; thiazolidinediones such as rosiglitazone and pioglitazone; PPAR gamma modulators such as metaglidases; PPAR-gamma agonists such as GI 262570; PPAR-gamma antagonists; PPAR-gamma/alpha modulators such as tesaglitazar, muraglitazar and KRP297; PPAR-gamma/alpha/delta modulators; AMPK-activators such as AICAR; acetyl-CoA carboxylase (ACC1 and ACC2) inhibitors; diacylglycerol-acetyltransferase (DGAT) inhibitors; pancreatic beta cell GCRP agonists such as SMT3-receptor-agonists and GPR119; 11B-HSD-inhibitors; FGF19 agonists or analogues; alpha-glucosidase blockers such as acarbose, voglibose and miglitol; alpha2-antagonists; insulin and insulin analogues such as human insulin, insulin lispro, insulin glusilin, r-DNA-insulinaspart, NPH insulin, insulin detemir, insulin zinc suspension and insulin glargin; Gastric inhibitory Peptide (GIP); pramlintide; amylin or GLP-1 and GLP-1 analogues such as Exendin-4; SGLT2-inhibitors such as KGT-1251; inhibitors of protein tyrosine-phosphatase; inhibitors of glucose-6-phosphatase; fructose-1,6-bisphosphatase modulators; glycogen phosphorylase modulators; glucagon receptor antagonists; phosphoenolpyruvatecarboxykinase (PEPCK) inhibitors; pyruvate dehydrogenasekinase (PDK) inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); glucokinase/regulatory protein modulators incl. glucokinase activators; glycogen synthase kinase inhibitors; inhibitors of the SH2-domain-containing inositol 5-phosphatase type 2 (SHIP2); IKK inhibitors such as high-dose salicylate; JNK1 inhibitors; protein kinase C-theta inhibitors; beta 3 agonists such as ritobegron, YM 178, solabegron, talibegron, N-5984, GRC-1087, rafabegron, FMP825; aldosereductase inhibitors such as AS 3201, zenarestat, fidarestat, epalrestat, ranirestat, NZ-314, CP-744809, and CT-112; SGLT-1 or SGLT-2 inhibitors; KV 1.3 channel inhibitors; GPR40 modulators; SCD-1 inhibitors; CCR-2 antagonists; and other DPP IV inhibitors.
Examples of 11ß-HSD1-inhibitors are described in WO 2007/013929, WO 2007/007688, WO 2007/003521, WO 2006/138508, WO 2006/135795, WO 2006/135667, WO 2006/134481, WO 2006/134467, WO 2006/132436, WO 2006/132197, WO 2006/113261, WO 2006/106423, WO 2006/106052, WO 2006/105127, WO 2006/104280, WO 2006/100502, WO 2006/097337, WO 2006/095822, WO 2006/094633, WO 2006/080533, WO 2006/074330, WO 2006/074244, WO 2006/068992, WO 2006/068991, WO 2006/068199, WO 2006/066109, WO 2006/055752, WO 2006/053024, WO 2006/051662, WO 2006/050908, WO 2006/049952, WO 2006/048750, WO 2006/048331, WO 2006/048330, WO 2006/040329, WO 2006/037501, WO 2006/030805, WO 2006/030804, WO 2006/017542, WO 2006/024628, WO 2006/024627, WO 2006/020598, WO 2006/010546, WO 2006/002349, WO 2006/002350, WO 2006/012173, WO 2006/012227, WO 2006/012226, WO 2006/000371, WO 2005/118538, WO 2005/116002, WO 2005/110992, WO 2005/110980, WO 2005/108359, WO 2005/108361, WO 2005/108360, WO 2005/108368, WO 2005/103023, WO 2005/097764, WO 2005/097759, WO 2005/095350, WO 2005/075471, WO 2005/063247, WO 2005/060963, WO 2005/047250, WO 2005/046685, WO 2005/044192, WO 2005/042513, WO 2005/016877, WO 2004/113310, WO 2004/106294, WO 2004/103980, WO 2004/089896, WO 2004/089380, WO 2004/089471, WO 2004/089470, WO 2004/089367, WO 2005/073200, WO 2004/065351, WO 2004/058741, WO 2004/056745, WO 2004/056744, WO 2004/041264, WO 2004/037251, WO 2004/033427, WO 2004/011410, WO 2003/104208, WO 2003/104207, WO 2003/065983, WO 2003/059267, WO 2003/044009, WO 2003/044000, WO 2003/043999, WO 2002/076435, WO 2001/090094, WO 2001/090093, WO 2001/090092, WO 2001/090091, WO 2001/090090, US 2007/049632, US 2006/148871, US 2006/025445, US 2006/004049, US 2005/277647, US 2005/261302, US 2005/245534, US 2005/245532, US 2005/245533 and JP 2005/170939. The foregoing references are hereby incorporated by reference in their entireties. A representative example of an 11ß-HSD1-inhibitor is the compound:
and the salts thereof.
Examples of glycogen phosphorylase modulators are described in WO 2006/126695, WO 2006/082401, WO 2006/082400, WO 2006/059165, WO 2006/059164, WO 2006/059163, WO 2006/056815, WO 2006/055463, WO 2006/055462, WO 2006/055435, WO 2006/053274, WO 2006/052722, WO 2005/085245, WO 2005/085194, WO 2005/073231, WO 2005/073230, WO 2005/073229, WO 2005/067932, WO 2005/020987, WO 2005/020986, WO 2005/020985, WO 2005/019172, WO 2005/018637, WO 2005/013981, WO 2005/013975, WO 2005/012244, WO 2004/113345, WO 2004/104001, WO 2004/096768, WO 2004/092158, WO 2004/078743, WO 2004/072060, WO 2004/065356, WO 2004/041780, WO 2004/037233, WO 2004/033416, WO 2004/007455, WO 2004/007437, WO 2003/104188, WO 2003/091213, WO 2003/084923, WO 2003/084922, WO 2003/074532, WO 2003/074531, WO 2003/074517, WO 2003/074513, WO 2003/074485, WO 2003/074484, WO 2003/072570, WO 2003/059910, WO 2003/037864, WO 2002/096864, WO 2002/020530, WO 2001/094300, WO 2000/123347, WO 1996/39384, WO 1996/39385, EP 1391460, EP 1136071, EP 1125580, EP 1088824, EP 0978279, JP 2004196702, US 2004/002495, US 2003/195243, and U.S. Pat. No. 5,998,463. The foregoing references are hereby incorporated by reference in their entireties.
Examples of glucokinase-activators are described in WO 2007/017649, WO 2007/007910, WO 2007/007886, WO 2007/007042, WO 2007/007041, WO 2007/007040, WO 2007/006814, WO 2007/006761, WO 2007/006760, WO 2006/125972, WO 2006/125958, WO 2006/112549, WO 2006/059163, WO 2006/058923, WO 2006/049304, WO 2006/040529, WO 2006/040528, WO 2006/016194, WO 2006/016178, WO 2006/016174, WO 2005/121110, WO 2005/103021, WO 2005/095418, WO 2005/095417, WO 2005/090332, WO 2005/080360, WO 2005/080359, WO 2005/066145, WO 2005/063738, WO 2005/056530, WO 2005/054233, WO 2005/054200, WO 2005/049019, WO 2005/046139, WO 2005/045614, WO 2005/044801, WO 2004/081001, WO 2004/076420, WO 2004/072066, WO 2004/072031, WO 2004/063194, WO 2004/063179, WO 2004/052869, WO 2004/050645, WO 2004/031179, WO 2004/002481, WO 2003/095438, WO 2003/080585, WO 2003/055482, WO 2003/047626, WO 2003/015774, WO 2003/000267, WO 2003/000262, WO 2002/048106, WO 2002/046173, WO 2002/014312, WO 2002/008209, WO 2001/085707, WO 2001/085706, WO 2001/083478, WO 2001/083465, WO 2001/044216, and WO 2000/058293. The foregoing references are hereby incorporated by reference in their entireties.
Representative examples of glucokinase-activators are the compounds
wherein G1 denotes cyclopropyl or cyclobutyl and G2 denotes 5-fluoro-thiazol-2-yl, 1-methyl-1H-pyrazol-3-yl, or pyrazin-2-yl; and
wherein G3 denotes methyl or ethyl and G4 denotes thiazol-2-yl, 4-methyl-thiazol-2-yl, 5-methyl-thiazol-2-yl, or pyrazin-2-yl and the salts thereof.
Examples of SGLT1 or SGLT2-inhibitors are described in WO 2006/108842, WO 2006/087997, WO 2006/080577, WO 2006/080421, WO 2006/073197, WO 2006/064033, WO 2006/062224, WO 2006/054629, WO 2006/037537, WO 2006/035796, WO 2006/018150, WO 2006/008038, WO 2006/002912, WO 2006/010557, WO 2006/011502, WO 2006/011469, WO 2005/121161, WO 2005/012326, WO 2005/095429, WO 2005/095372, WO 2005/095373, WO 2005/092877, WO 2005/085267, WO 2005/085265, WO 2005/085237, WO 2005/063785, WO 2005/021566, WO 2005/012243, WO 2005/012242, WO 2005/012326, WO 2005/012318, WO 2005/011592, WO 2004/113359, WO 2004/099230, WO 2004/089967, WO 2004/089966, WO 2004/087727, WO 2004/080990, WO 2004/058790, WO 2004/052903, WO 2004/052902, WO 2004/019958, WO 2004/018491, WO 2004/014932, WO 2004/014931, WO 2004/013118, WO 2003/099836, WO 2003/080635, WO 2003/020737, WO 2003/011880, WO 2003/000712, WO 2002/098893, WO 2002/088157, WO 2002/083066, WO 2002/068440, WO 2002/068439, WO 2002/064606, WO 2002/053573, WO 2002/044192, WO 2002/036602, WO 2002/028872, WO 2001/074835, WO 2001/074834, WO 2001/068660, WO 2001/027128, WO 2001/016147, JP 2005247834, JP 2004359630, JP 2004196788, JP 2003012686, and US 2006/063722. The foregoing references are hereby incorporated by reference in their entireties.
Representative examples of SGLT1 or SGLT2-inhibitors are the following compounds and the salts or complexes thereof with natural amino acids
wherein G5 and G8 independently of one another denote hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, isopropyl, difluoromethyl, trifluoromethyl, ethynyl, prop-1-yn-1-yl, but-1-yn-1-yl, hydroxy, methoxy, ethoxy, difluoromethoxy, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy or cyclohexyloxy; and
G6 denotes fluorine, chlorine, methyl, ethyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, trimethylsilylethyl, ethynyl, 2-hydroxyprop-2-ylethynyl, 2-methoxyprop-2-ylethynyl, 3-hydroxy-1-propyn-1-yl, 3-methoxy-1-propyn-1-yl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, piperidin-4-yloxy, N-methylpiperidin-4-yloxy and N-acetylpiperidin-4-yloxy; and
G7 denotes hydrogen or fluorine;
wherein G denotes fluorine, chlorine, methyl, ethyl, ethynyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyclobutyloxy, cyclopentyloxy, 3-tetrahydrofuranyloxy, or 4-tetrahydropyranyloxy;
wherein G denotes fluorine, chlorine, methyl, ethyl, ethynyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyclobutyloxy, cyclopentyloxy, 3-tetrahydrofuranyloxy, or 4-tetrahydropyranyloxy;
wherein G8 denotes hydrogen, methoxycarbonyl, or ethoxycarbonyl and G9 denotes fluorine, chlorine, methyl, ethyl, ethynyl, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy, cyclobutyloxy, cyclopentyloxy, 3-tetrahydrofuranyloxy, or 4-tetrahydropyranyloxy; and
wherein:
G10 denotes C1-3-alkyl or perfluoro-C1-3-alkyl;
G11 denotes hydrogen, C1-3-alkyl or perfluoro-C1-3-alkyl;
G12 denotes fluorine, chlorine, bromine, C1-6-alkyl, C1-6-alkyl substituted by 1 to 3 fluorine atoms, C1-6-alkoxy, C1-6-alkoxy substituted by 1 to 3 fluorine atoms, C1-6-alkylthio, C2-6-alkenyl, C2-6-alkynyl, perfluoro-C1-3-alkyl, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, tetrahydrofuranyloxy, or 4-tetrahydropyranyloxy; and
G13 and G14 independently of one another denote hydrogen, fluorine, chlorine, bromine, C1-6-alkyl, C1-6-alkyl substituted by 1 to 3 fluorine atoms, C1-6-alkoxy, C1-6-alkoxy substituted by 1 to 3 fluorine atoms, C1-6-alkylthio, C2-6-alkenyl, C2-6-alkynyl, perfluoro-C1-3-alkyl; and
G15 denotes hydrogen, C2-20-alkanoyl, C1-6-alkoxycarbonyl or benzoyl.
A particularly preferred example of an antidiabetic combination partner is metformin in doses of about 100 mg to 500 mg or 200 mg to 850 mg (1-3 times a day), or about 300 mg to 1000 mg once or twice a day, or delayed-release metformin in doses of about 100 mg to 1000 mg or preferably 500 mg to 1000 mg once or twice a day or about 500 mg to 2000 mg once a day. Another particularly preferred example is pioglitazone in a dosage of about 1-10 mg, 15 mg, 30 mg, or 45 mg once a day. Another particularly preferred example is miglitol in a dosage of about 10 mg to 50 mg or up to 100 mg 1-3 times a day.
Examples of combination partners that lower the lipid level in the blood are HMG-CoA-reductase inhibitors such as simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin and rosuvastatin; fibrates such as bezafibrate, fenofibrate, clofibrate, gemfibrozil, etofibrate and etofyllinclofibrate; nicotinic acid and the derivatives thereof such as acipimox; PPAR-alpha agonists; PPAR-delta agonists; inhibitors of acyl-coenzyme A:cholesterolacyltransferase (ACAT; EC 2.3.1.26) such as avasimibe; cholesterol resorption inhibitors such as ezetimib; substances that bind to bile acid, such as cholestyramine, colestipol and colesevelam; inhibitors of bile acid transport; HDL modulating active substances such as D4F, reverse D4F, LXR modulating active substances and FXR modulating active substances; CETP inhibitors such as torcetrapib, JTT-705 or compound 12 from WO 2007/005572; LDL receptor modulators; and ApoB100 antisense RNA. A particularly preferred example is atorvastatin in a dosage of about 1 mg to 40 mg or 10 mg to 80 mg once a day.
Examples of combination partners that lower blood pressure are beta-blockers such as atenolol, bisoprolol, celiprolol, metoprolol and carvedilol; diuretics such as hydrochlorothiazide, chlortalidon, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; calcium channel blockers such as amlodipine, nifedipine, nitrendipine, nisoldipine, nicardipine, felodipine, lacidipine, lercanipidine, manidipine, isradipine, nilvadipine, verapamil, gallopamil and diltiazem; ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan and eprosartan. Particularly preferred examples are metoprolol in a dosage of 50 mg to 200 mg per day, Amlodipin in a dosage of 2.5 mg to 10 mg per day, ramipril in a dosage of 2.5 mg to 15 mg per day, valsartan in a dosage of 80 to 160 mg per day, and telmisartan in a dosage of 20 mg to 320 mg or 40 mg to 160 mg per day.
Examples of combination partners which increase the HDL level in the blood are Cholesteryl Ester Transfer Protein (CETP) inhibitors; inhibitors of endothelial lipase; regulators of ABC1; LXRalpha antagonists; LXRbeta agonists; PPAR-delta agonists; LXRalpha/beta regulators, and substances that increase the expression and/or plasma concentration of apolipoprotein A-I.
Examples of combination partners for the treatment of obesity are sibutramine; tetrahydrolipstatin (orlistat); alizyme; dexfenfluramine; axokine; cannabinoid receptor 1 antagonists such as the CB1 antagonist rimonobant; MCH-1 receptor antagonists; MC4 receptor agonists; NPY5 as well as NPY2 antagonists; beta3-AR agonists such as SB-418790 and AD-9677; 5HT2c receptor agonists such as APD 356; myostatin inhibitors; Acrp30 and adiponectin; steroyl CoA desaturase (SCD1) inhibitors; fatty acid synthase (FAS) inhibitors; CCK receptor agonists; Ghrelin receptor modulators; Pyy 3-36; orexin receptor antagonists; and tesofensine.
Examples of combination partners for the treatment of atherosclerosis are phospholipase A2 inhibitors; inhibitors of tyrosine-kinases (50 mg to 600 mg) such as PDGF-receptor-kinase (cf. EP-A-564409, WO 98/35958, U.S. Pat. No. 5,093,330, WO 2004/005281, and WO 2006/041976); oxLDL antibodies and oxLDL vaccines; apoA-1 Milano; ASA; and VCAM-1 inhibitors.
Examples of combination partners for the treatment of heart failure are beta-blockers such as atenolol, bisoprolol, celiprolol, and metoprolol; diuretics such as hydrochlorothiazide, chlortalidone, xipamide, furosemide, piretanide, torasemide, spironolactone, eplerenone, amiloride and triamterene; ACE inhibitors such as ramipril, lisinopril, cilazapril, quinapril, captopril, enalapril, benazepril, perindopril, fosinopril and trandolapril; as well as angiotensin II receptor blockers (ARBs) such as telmisartan, candesartan, valsartan, losartan, irbesartan, olmesartan and eprosartan; heart glycosides such as digoxin and digitoxin; combined alpha/beta-blockers such as carvedilol; B-type natriuretic peptide (BNP) and BNP-derived peptides and BNP-fusion products. Particularly preferred examples are metoprolol in a dosage of 50 mg to 200 mg per day, ramipril in a dosage of 2.5 mg to 15 mg per day, valsartan in a dosage of 80 to 160 mg per day, telmisartan in a dosage of 20 mg to 320 mg or 40 mg to 160 mg per day, eplereron in a dosage of 25-100 mg, digoxin in a dosage of 0.25 mg to 0.6 mg per day carvedilol in a dosage of 3.25 mg to 100 mg, BNP (e.g. nesiritide) in a dosage of 2 μg/kg as a bolus followed by 0.01 μg/kg/min.
Drug combinations comprising the selected DPP IV inhibitors contain for example 1.75 mg to 10.5 mg glibenclamide, 500 mg to 3000 mg tolbutamide, 0.5-6 g glimepiride, 2.5 mg to 40 mg glipizide, 1-4×30 mg gliquidone, to 3×25 mg glibornuride, 80 mg to 160 mg gliclazide; 500 mg to 1000 mg, preferably 500 mg, 850 mg or 1000 mg metformin; 60 mg to 180 mg nateglinide; 0.25 mg to 4 mg repaglinide; 2 mg to 45 mg thiazolidinedione; 200 mg to 600 mg metaglidases; 2.5 mg to 5 mg PPAR gamma/alpha modulators; 0.1 mg to 100 mg alpha glucosidase blocker; 1-250 IU insulin; 15 μg to 120 μg Pramlintide; 5 mg to 80 mg statin; 50 mg to 1000 mg fibrate; 1000 mg to 3000 mg nicotinic acid or derivative; about 250 mg acipimox; about 10 mg of a cholesterol resorption inhibitor; 0.5 g to 30 g of a bile acid binding substance; 10 mg to 600 mg and preferably 10 mg to 120 mg CETP inhibitor; 2.5 mg to 100 mg beta-blocker; 3 mg to 200 mg diuretic; 2.5 mg to 500 mg calcium channel blocker; 1 mg to 40 mg ACE inhibitor; 5 mg to 600 mg angiotensin II receptor blocker; 10 mg to 15 mg sibutramine; about 120 mg orlistat; 15 mg to 30 mg dexfenfluramine; or 5 mg to 20 mg cannabinoid receptor antagonist, eplerenone in a dosage of 25 mg to 100 mg; digoxin in a dosage of 0.25 mg to 0.6 mg per day; carvedilol in a dosage of 3.25 mg to 100 mg; BNP (e.g. nesiritide) in a dosage of 2 μg/kg as a bolus followed by 0.01 μg/kg/min.
The efficacy of a DPPIV inhibitor according to the invention in the treatment of pre-diabetes characterised by pathological fasting glucose and/or impaired glucose tolerance can be tested using clinical studies. In studies over a shorter period (e.g. 2-4 weeks) the success of the treatment is examined by determining the fasting glucose values and/or the glucose values after a meal or after a loading test (oral glucose tolerance test or food tolerance test after a defined meal) after the end of the period of therapy for the study and comparing them with the values before the start of the study and/or with those of a placebo group. In addition, the fructosamine value can be determined before and after therapy and compared with the initial value and/or the placebo value. A significant drop in the fasting or non-fasting glucose levels demonstrates the efficacy of the treatment. In studies over a longer period (12 weeks or more) the success of the treatment is tested by determining the HbA1c value, by comparison with the initial value and/or with the value of the placebo group. A significant change in the HbA1c value compared with the initial value and/or the placebo value demonstrates the efficacy of the DPP IV inhibitor for treating pre-diabetes.
Treating patients with pathological fasting glucose and/or impaired glucose tolerance (pre-diabetes) is also in pursuit of the goal of preventing the transition to manifest type 2 diabetes. The efficacy of a treatment can be investigated in a comparative clinical study in which pre-diabetes patients are treated over a lengthy period (e.g. 1-5 years) with either an active substance or a combination of active substances or with placebo or with a non-drug therapy or other medicaments. During and at the end of the therapy, by determining the fasting glucose and/or a loading test (e.g. oGTT), a check is made to determine how many patients exhibit manifest type 2 diabetes, i.e. a fasting glucose level of >125 mg/dl and/or a 2 h value according to oGTT of >199 mg/dl. A significant reduction in the number of patients who exhibit manifest type 2 diabetes when treated with active substance or a combination of active substances as compared to one of the other forms of treatment, demonstrates the efficacy of the active substance or combination of active substances in preventing a transition from pre-diabetes to manifest diabetes.
Treating patients with type 2 diabetes with the active substances according to the invention, in addition to producing an acute improvement in the glucose metabolic situation, prevents a deterioration in the metabolic situation in the long term. This can be observed is patients are treated for a longer period, e.g. 1-6 years, with the active substances or combinations of active substances according to the invention and are compared with patients who have been treated with other antidiabetic medicaments. There is evidence of therapeutic success compared with patients treated with other antidiabetic medicaments if no or only a slight increase in the fasting glucose and/or HbA1c value is observed. Further evidence of therapeutic success is obtained if a significantly smaller percentage of the patients treated with an active substance according to the invention or a combination of active substances according to the invention, compared with patients who have been treated with other medicaments, undergo a deterioration in the glucose metabolic position (e.g. an increase in the HbA1c value to >6.5% or >7%) to the point where treatment with an additional oral antidiabetic medicament or with insulin or with an insulin analogue or with another antidiabetic agent (e.g. GLP-1 analogue) is indicated.
In clinical studies running for different lengths of time (e.g. 2 weeks to 12 months) the success of the treatment is checked using a hyperinsulinaemic euglycaemic glucose clamp study. A significant rise in the glucose infusion rate at the end of the study, compared with the initial value or compared with a placebo group, or a group given a different therapy, proves the efficacy of an active substance or combination of active substances in the treatment of insulin resistance.
In clinical studies running for different lengths of time (e.g. 2 weeks to 60 months) on patients with type 2 diabetes the success of the treatment is checked by determining the total cholesterol, LDL-cholesterol, HDL-cholesterol, and plasma triglycerides. A significant fall in the total cholesterol, LDL-cholesterol, or plasma triglycerides and/or a rise in the HDL-cholesterol levels during or at the end of the study, compared with the initial value or compared with a placebo group, or a group given a different therapy, proves the efficacy of an active substance or combination of active substances in the treatment of diabetic dys- or hyperlipidaemia.
In clinical studies running for different lengths of time (e.g. 1 day to 24 months) the success of the treatment in patients with hyperglycaemia is checked by determining the fasting glucose or non-fasting glucose (e.g. after a meal or a loading test with oGTT or a defined meal). A significant fall in these glucose values during or at the end of the study, compared with the initial value or compared with a placebo group, or a group given a different therapy, proves the efficacy of an active substance or combination of active substances in the treatment of hyperglycaemia.
In clinical studies running for a shorter period (e.g. 2-4 weeks) the success of the treatment is checked by determining the fasting glucose values and/or the glucose values after a meal or after a loading test (oral glucose tolerance test or food tolerance test after a defined meal) at the end of the therapeutic period of the study and comparing them with the values before the start of the study and/or with those of a placebo group. In addition, the fructosamine value can be determined before and after treatment and compared with the initial value and/or a placebo value. A significant fall in the fasting or non-fasting glucose levels demonstrates the efficacy of an active substance or combination of active substances.
In longer-running studies (12 weeks or more) the success of the treatment is checked by determining the HbA1c value (compared with initial value and placebo group). A significant change in the HbA1c value compared with the starting value and/or placebo value demonstrates the efficacy of an active substance or combination of active substances in the treatment of gestational diabetes.
Patients with gestational diabetes have a significantly increased risk of contracting manifest type 2 diabetes after the pregnancy. Therapy may be provided with the objective of preventing the transition to manifest type 2. For this purpose, women with a history of gestational diabetes are treated either with an active substance according to the invention or a combination of active substances according to the invention or with placebo or with a non-drug therapy or with other medicaments, over a lengthy period (e.g. 1-4 years). During and at the end of the treatment a check is carried out by determining the fasting glucose and/or by a loading test (e.g. oGTT) to see how many patients have developed manifest type 2 diabetes (fasting glucose level >125 mg/dl and/or 2 h value after oGTT >199 mg/dl). A significant reduction in the number of patients who develop manifest type 2 diabetes when treated with an active substance according to the invention or a combination of active substances according to the invention, compared with a different type of therapy, is proof of the efficacy of an active substance or a combination of active substances in preventing manifest diabetes in women with a history of gestational diabetes.
The treatment of type 2 diabetes or pre-diabetes patients with an active substance according to the invention or a combination of active substances according to the invention prevents or reduces microvascular complications (e.g. diabetic neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic foot, diabetic ulcer) or macrovascular complications (e.g. myocardial infarct, acute coronary syndrome, unstable angina pectoris, stable angina pectoris, stroke, peripheral arterial occlusive disease, cardiomyopathy, heart failure, heart rhythm disorders, vascular restenosis). Type 2 diabetes or patients with pre-diabetes are treated long-term, e.g. for 1-6 years, with an active substance according to the invention or a combination of active substances according to the invention and compared with patients who have been treated with other antidiabetic medicaments or with placebo. Evidence of the therapeutic success compared with patients who have been treated with other antidiabetic medicaments or with placebo can be found in the smaller number of single or multiple complications. In the case of macrovascular events, diabetic foot and/or diabetic ulcer, the numbers are counted by anamnesis and various test methods. In the case of diabetic retinopathy the success of the treatment is determined by computer-controlled illumination and evaluation of the background to the eye or other ophthalmic methods. In the case of diabetic neuropathy, in addition to anamnesis and clinical examination, the nerve conduction rate can be measured using a calibrated tuning fork, for example. With regard to diabetic nephropathy the following parameters may be investigated before the start, during and at the end of the study: secretion of albumin, creatinin clearance, serum creatinin values, time taken for the serum creatinin values to double, time taken until dialysis becomes necessary.
The efficacy of the active substances or combinations of active substances according to the invention can be tested in clinical studies with varying run times (e.g. 12 weeks to 6 years) by determining the fasting glucose or non-fasting glucose (e.g. after a meal or a loading test with oGTT or a defined meal) or the HbA1c value. A significant fall in these glucose values or HbA1c values during or at the end of the study, compared with the initial value or compared with a placebo group, or a group given a different therapy, proves the efficacy of an active substance or combination of active substances in the treatment of Metabolic Syndrome. Examples of this are a reduction in systolic and/or diastolic blood pressure, a lowering of the plasma triglycerides, a reduction in total or LDL cholesterol, an increase in HDL cholesterol or a reduction in weight, either compared with the starting value at the beginning of the study or in comparison with a group of patients treated with placebo or a different therapy.
In order to prepare a granulating solution, copovidone is dissolved in purified water at ambient temperature. DPP IV inhibitor, mannitol, pre-gelatinised starch and maize starch are mixed in a suitable mixer in order to prepare a premix. The premix is moistened with the granulating solution and then granulated in a mixer with a high shear rate. The moist granules are screened through a screen with a mesh size of 1.6 mm. The granules are dried at about 60° C. in a fluidised bed dryer until a loss in drying value of 2-4% is obtained. The finished mixture is compressed to form tablet cores.
In a suitable mixer, hydroxypropylmethyl-cellulose, polyethyleneglycol, talc, titanium dioxide and iron oxide are suspended in purified water at ambient temperature to prepare a suspension for the tablet coating. The tablet cores are coated with this suspension until a weight increase of 3% is obtained. For example, the following tablet compositions may be obtained in this way:
This is done after successful isolation of the islets of Langerhans or pancreatic beta cells, by storing them, transporting them or cultivating them in a medium which contains DPP IV inhibitors in a concentration of 1 nmol/l to 1 μmol/l, preferably in a concentration of 1 nmol/l and 100 nmol/l, for future transplantation. In addition, after transplantation with islets of Langerhans or pancreatic beta cells, the patients (and these may also be animals) are treated with DPP IV inhibitors in a daily dosage of between 1 mg and 200 mg, preferably with a dose of 5 mg and 100 mg of a DPP IV inhibitor, in order to enhance the vitality and secretion capacity of the transplant. This is tested either by analysis of the insulin secretion after stimulation with glucose or another agent that increases insulin secretion. Moreover, the improvement in the quality may also be checked in vitro or in animal models using the TUNEL technique, which is described in Diabetologia 42:566, 1999 or Diabetes 48:738, 1999 (investigation of apoptosis and inhibition thereof).
For treating type 2 diabetes or pre-diabetes a DPP IV inhibitor according to the invention may be combined with the anti-diabetically active substance metformin, either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of metformin, e.g. with 500 mg, 850 mg or 1000 mg metformin as a single dose with a total daily dose of metformin of 500-2850 mg, or with 500 mg, 1000 mg, 1500 mg, or 2000 mg metformin in delayed-release form. The clinical efficacy of such a combination with metformin can be tested in a clinical study. For this, patients with type 2 diabetes or with pre-diabetes are treated either with a DPP IV inhibitor on its own or with metformin on its own or with a combination von DPP IV inhibitor and metformin. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is appropriate and effective can be found in the fact that the combination of a DPP-IV inhibitor with metformin leads to a significantly greater reduction in the fasting glucose and/or non-fasting glucose and/or the HbA1c value than either the DPP IV inhibitor alone or metformin alone.
For treating type 2 diabetes or pre-diabetes a DPP IV inhibitor according to the invention may be combined with the anti-diabetically active substance group comprising the glitazones or thiazolidinediones (e.g. pioglitazone or rosiglitazone), either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of pioglitazone (15 mg, 30 mg, or 45 mg) or rosiglitazone (2 mg, 4 mg or 8 mg, given either once or twice a day). The clinical efficacy of such a combination with rosiglitazone or pioglitazone can be tested in a clinical study. For this, patients with type 2 diabetes or with pre-diabetes are treated either with a DPP IV inhibitor on its own or with rosiglitazone or pioglitazone alone or with a combination of DPP IV inhibitor and rosiglitazone or pioglitazone. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is appropriate and effective can be found in the fact that the combination of a DPP-IV inhibitor with rosiglitazone or pioglitazone leads to a significantly greater reduction in the fasting glucose and/or non-fasting glucose and/or the HbA1c value than either the DPP IV inhibitor alone or rosiglitazone or pioglitazone alone.
For treating type 2 diabetes or pre-diabetes a DPP IV inhibitor according to the invention may be combined with the anti-diabetically active substance group comprising the SGLT-2 inhibitors, either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of SGLT-2 inhibitor (0.5 mg to 1000 mg). The clinical efficacy of such a combination with SGLT-2 inhibitor can be tested in a clinical study. For this, patients with type 2 diabetes or with pre-diabetes are treated either with a DPP IV inhibitor on its own or with a SGLT-2 inhibitor on its own or with a combination of DPP IV inhibitor and SGLT-2 inhibitor. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is appropriate and effective can be found in the fact that the combination of a DPP-IV inhibitor with the SGLT-2 inhibitor leads to a significantly greater reduction in the fasting glucose and/or non-fasting glucose and/or the HbA1c value than either the DPP IV inhibitor alone or the SGLT-2 inhibitor alone.
For treating a patient with type 2 diabetes or pre-diabetes or with Metabolic Syndrome a DPP IV inhibitor according to the invention may be combined with an anti-hypertensively active substance, either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of ACE-inhibitors (e.g. 2.5 mg to 15 mg ramipril), AT1-receptor-antagonists (e.g. 20 mg to 160 mg telmisartan), beta-blockers (e.g. 50 mg to 200 mg metoprolol), or diuretics (e.g. 12.5 mg to 25 mg hydrochlorothiazide). The clinical efficacy of such a combination with antihypertensives can be tested in a clinical study. For this, patients with type 2 diabetes or with pre-diabetes or with Metabolic Syndrome are treated either with a DPP IV inhibitor on its own or with an antihypertensive on its own or with a combination of DPP IV inhibitor and antihypertensive. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is appropriate and effective can be found in the fact that the combination of a DPP-IV inhibitor with the antihypertensive lowers the fasting glucose and/or non-fasting glucose and/or the HbA1c value at least as much as the DPP IV inhibitor alone, and if the combination of the DPP-IV inhibitor with the antihypertensive lowers the systolic and/or diastolic arterial blood pressure at least as much as the antihypertensive alone.
For treating a patient with type 2 diabetes or pre-diabetes or with Metabolic Syndrome or with diabetic dys- or hyperlipidaemia, a DPP IV inhibitor according to the invention may be combined with a lipid lowering agent/HDL-raising agent, either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of statins (e.g. 10 mg to 80 mg atorvastatin or 10 mg to 80 mg simvastatin), fibrates (e.g. fenofibrate), cholesterol absorption inhibitors, or with HDL-raising substances such as CETP-inhibitors (e.g. torcetrapib 10 mg to 120 mg once a day or 120 mg twice a day). The clinical efficacy of such a combination with lipid lowering agents/HDL-raising agents can be tested in a clinical study. For this, patients with type 2 diabetes or with pre-diabetes or with Metabolic Syndrome or with diabetic dys- or hyperlipidaemia are treated either with a DPP IV inhibitor on its own or with a lipid lowering agent/HDL-raising agent on its own or with a combination of DPP IV inhibitor and lipid lowering agent/HDL-raising agent. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is appropriate and effective can be found in the fact that the combination of the DPP-IV inhibitor with the lipid lowering agent/HDL-raising agent lowers the fasting glucose and/or non-fasting glucose and/or the HbA1c value at least as much as the DPP IV inhibitor alone, and if the combination of the DPP-IV inhibitor with a lipid lowering agent/HDL-raising agent lowers the total cholesterol or LDL-cholesterol or plasma triglycerides at least as much or increases the HDL-cholesterol value at least as much as the lipid lowering agent/HDL-raising agent alone.
For treating a patient with acute heart failure, a DPP IV inhibitor according to the invention may be combined with a substance that favourably affects heart failure, either in a free combination or in a fixed combination in a tablet. A therapeutically effective dose of the DPP IV inhibitor (e.g. a dose of between 0.1 and 100 mg) may be combined with different doses of ACE-inhibitors (e.g. 2.5 mg to 15 mg ramipril), AT1-receptor-antagonists (e.g. 20 mg to 160 mg telmisartan), beta-blockers (e.g. 50 mg to 200 mg metoprolol), combined alpha/beta-blockers (e.g. 3.25 mg to 100 mg carvedilol), diuretics (e.g. 12.5 mg to 25 mg hydrochlorothiazide), mineralocorticoid receptor antagonists (e.g. 25 mg to 100 mg eplerenone; and/or B-type natriuretic peptide (BNP) (e.g. 2 μg/kg as a bolus followed by 0.01 μg/kg/min nesiritide), a BNP-derived peptide or a BNP-fusion product. The combination of BNP and DPP-IV inhibitor leads to a higher concentration of full length BNP (1-32) in vivo. The clinical efficacy of the combinations specified can be tested in clinical studies. The treatment lasts between 1 day and 6 years. Evidence that the combination is effective in treating acute heart failure can be found in the fact that compared with other therapies the combination leads to a significant improvement in the clinical situation (higher cardiac ejection output and/or reversal of pulmonary congestion, and/or reversal of pulmonary wedge pressure, and/or a reduction in mortality caused by acute heart failure).
A DPP IV inhibitor according to the invention may be used to treat a patient with chronic heart failure. This treatment leads to a higher concentration of endogenous full length BNP (1-32) in vivo. The clinical efficacy of this treatment is tested in clinical studies. The treatment lasts between 2 weeks and 6 years. Evidence that the combination is effective in treating chronic heart failure can be found in the fact that a DPP-IV inhibitor according to the invention leads to a significant improvement in the clinical situation compared with a different treatment or placebo (less frequent hospitalisation due to acute heart failure, the ability to walk longer distances, a higher loadability in ergometrics, a higher cardiac ejection output and/or reversal of pulmonary congestion, and/or a reduction in mortality caused by heart failure).
Number | Date | Country | Kind |
---|---|---|---|
06009203 | May 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2056046 | Fourneau | Sep 1936 | A |
2375138 | Victors | May 1945 | A |
2629736 | Krimmel | Feb 1953 | A |
2730544 | Sahyun | Jan 1956 | A |
2750387 | Krimmel | Jun 1956 | A |
2928833 | Leake et al. | Mar 1960 | A |
3174901 | Sterne | Mar 1965 | A |
3236891 | Seemuller | Feb 1966 | A |
3454635 | Muth | Jul 1969 | A |
3673241 | Marxer | Jun 1972 | A |
3925357 | Okada et al. | Dec 1975 | A |
4005208 | Bender et al. | Jan 1977 | A |
4061753 | Bodor et al. | Dec 1977 | A |
4159345 | Takeo et al. | Jun 1979 | A |
4382091 | Benjamin et al. | May 1983 | A |
4599338 | Regnier et al. | Jul 1986 | A |
4639436 | Junge et al. | Jan 1987 | A |
4687777 | Meguro et al. | Aug 1987 | A |
4743450 | Harris et al. | May 1988 | A |
4764466 | Suyama et al. | Aug 1988 | A |
4816455 | Schickaneder et al. | Mar 1989 | A |
4873330 | Lindholm | Oct 1989 | A |
4968672 | Jacobson et al. | Nov 1990 | A |
5034225 | Bennett et al. | Jul 1991 | A |
5041448 | Janssens et al. | Aug 1991 | A |
5051509 | Nagano et al. | Sep 1991 | A |
5051517 | Findeisen et al. | Sep 1991 | A |
5084460 | Munson, Jr. et al. | Jan 1992 | A |
5120712 | Habener | Jun 1992 | A |
5130244 | Nishimaki et al. | Jul 1992 | A |
5164526 | Macher | Nov 1992 | A |
5219870 | Kim | Jun 1993 | A |
5223499 | Greenlee et al. | Jun 1993 | A |
5234897 | Findeisen et al. | Aug 1993 | A |
5258380 | Janssens et al. | Nov 1993 | A |
5266555 | Findeisen et al. | Nov 1993 | A |
5273995 | Roth | Dec 1993 | A |
5284967 | Macher | Feb 1994 | A |
5300298 | LaNoue | Apr 1994 | A |
5329025 | Wong et al. | Jul 1994 | A |
5332744 | Chakravarty et al. | Jul 1994 | A |
5389642 | Dorsch et al. | Feb 1995 | A |
5399578 | Buhlmayer et al. | Mar 1995 | A |
5407929 | Takahashi et al. | Apr 1995 | A |
5461066 | Gericke et al. | Oct 1995 | A |
5470579 | Bonte et al. | Nov 1995 | A |
5591762 | Hauel et al. | Jan 1997 | A |
5594003 | Hauel et al. | Jan 1997 | A |
5602127 | Hauel et al. | Feb 1997 | A |
5614519 | Hauel et al. | Mar 1997 | A |
5719279 | Kufner-Muhl et al. | Feb 1998 | A |
5728849 | Bouchard et al. | Mar 1998 | A |
5753635 | Buckman et al. | May 1998 | A |
5777115 | Leigh et al. | Jul 1998 | A |
5830908 | Grunenberg et al. | Nov 1998 | A |
5879708 | Makino et al. | Mar 1999 | A |
5958951 | Ahmdt et al. | Sep 1999 | A |
5965555 | Gebert et al. | Oct 1999 | A |
5965592 | Buhlmayer et al. | Oct 1999 | A |
6011049 | Whitcomb | Jan 2000 | A |
6107302 | Carter et al. | Aug 2000 | A |
6166063 | Villhauer | Dec 2000 | A |
6200958 | Odaka et al. | Mar 2001 | B1 |
6248758 | Klokkers et al. | Jun 2001 | B1 |
6303661 | Demuth et al. | Oct 2001 | B1 |
6342601 | Bantick et al. | Jan 2002 | B1 |
6372940 | Cavazza | Apr 2002 | B1 |
6399101 | Frontanes et al. | Jun 2002 | B1 |
6448323 | Jordan et al. | Sep 2002 | B1 |
6548481 | Demuth et al. | Apr 2003 | B1 |
6579868 | Asano et al. | Jun 2003 | B1 |
6689353 | Wang et al. | Feb 2004 | B1 |
6699845 | Asahi | Mar 2004 | B2 |
6727261 | Gobbi et al. | Apr 2004 | B2 |
6784195 | Hale et al. | Aug 2004 | B2 |
6821978 | Chackalamannil et al. | Nov 2004 | B2 |
6869947 | Kanstrup et al. | Mar 2005 | B2 |
6890898 | Bachovchin et al. | May 2005 | B2 |
6995183 | Hamann et al. | Feb 2006 | B2 |
7034039 | Oi et al. | Apr 2006 | B2 |
7060722 | Kitajima et al. | Jun 2006 | B2 |
7074794 | Kitajima et al. | Jul 2006 | B2 |
7074798 | Yoshikawa et al. | Jul 2006 | B2 |
7074923 | Dahanukar et al. | Jul 2006 | B2 |
7109192 | Hauel | Sep 2006 | B2 |
7179809 | Eckhardt et al. | Feb 2007 | B2 |
7183280 | Himmelsbach et al. | Feb 2007 | B2 |
7192952 | Kanstrup et al. | Mar 2007 | B2 |
7217711 | Eckhardt et al. | May 2007 | B2 |
7220750 | Himmelsbach et al. | May 2007 | B2 |
7235538 | Kanstrup et al. | Jun 2007 | B2 |
7247478 | Eberhardt et al. | Jul 2007 | B2 |
7282219 | Nomura et al. | Oct 2007 | B2 |
7291642 | Kauffmann-Hefner et al. | Nov 2007 | B2 |
7361687 | Barth et al. | Apr 2008 | B2 |
7393847 | Eckhardt et al. | Jul 2008 | B2 |
7407955 | Himmelsbach | Aug 2008 | B2 |
7432262 | Eckhardt et al. | Oct 2008 | B2 |
7439370 | Eckhardt | Oct 2008 | B2 |
7470716 | Eckhardt et al. | Dec 2008 | B2 |
7476671 | Eckhardt et al. | Jan 2009 | B2 |
7482337 | Himmelsbach | Jan 2009 | B2 |
7495002 | Langkopf et al. | Feb 2009 | B2 |
7495003 | Eckhardt et al. | Feb 2009 | B2 |
7495005 | Himmelsbach et al. | Feb 2009 | B2 |
7501426 | Himmelsbach | Mar 2009 | B2 |
7550455 | Himmelsbach et al. | Jun 2009 | B2 |
7560450 | Eckhardt et al. | Jul 2009 | B2 |
7566707 | Eckhardt et al. | Jul 2009 | B2 |
7569574 | Maier et al. | Aug 2009 | B2 |
7579449 | Eckhardt et al. | Aug 2009 | B2 |
7610153 | Carter, Jr. et al. | Oct 2009 | B2 |
7645763 | Himmelsbach et al. | Jan 2010 | B2 |
7718666 | Boehringer et al. | May 2010 | B2 |
7754481 | Eberhardt et al. | Jul 2010 | B2 |
7799782 | Munson et al. | Sep 2010 | B2 |
7820815 | Pfrengle et al. | Oct 2010 | B2 |
7838529 | Himmelsbach et al. | Nov 2010 | B2 |
7919572 | Angot et al. | Apr 2011 | B2 |
8039477 | Hendrix et al. | Oct 2011 | B2 |
8071583 | Himmelsbach | Dec 2011 | B2 |
8106060 | Pfrengle et al. | Jan 2012 | B2 |
8119648 | Himmelsbach et al. | Feb 2012 | B2 |
8158633 | Hendrix et al. | Apr 2012 | B2 |
8178541 | Himmelsbach et al. | May 2012 | B2 |
8232281 | Dugi et al. | Jul 2012 | B2 |
8338450 | Arora et al. | Dec 2012 | B2 |
8399414 | Harada et al. | Mar 2013 | B2 |
8455435 | Franz et al. | Jun 2013 | B2 |
8513264 | Mark et al. | Aug 2013 | B2 |
8541450 | Pfrengle et al. | Sep 2013 | B2 |
8637530 | Pfrengle et al. | Jan 2014 | B2 |
8664232 | Himmelsbach et al. | Mar 2014 | B2 |
8673927 | Dugi et al. | Mar 2014 | B2 |
8679520 | Horres et al. | Mar 2014 | B2 |
8697868 | Himmelsbach et al. | Apr 2014 | B2 |
8785455 | Hotter et al. | Jul 2014 | B2 |
8846695 | Dugi | Sep 2014 | B2 |
8853156 | Dugi et al. | Oct 2014 | B2 |
8865729 | Sieger et al. | Oct 2014 | B2 |
8883800 | Pfrengle et al. | Nov 2014 | B2 |
8883805 | Pfrengle et al. | Nov 2014 | B2 |
8962636 | Pfrengle et al. | Feb 2015 | B2 |
9034883 | Klein et al. | May 2015 | B2 |
9108964 | Himmelsbach et al. | Aug 2015 | B2 |
9149478 | Klein et al. | Oct 2015 | B2 |
9155705 | Friedl et al. | Oct 2015 | B2 |
9173859 | Dugi et al. | Nov 2015 | B2 |
9186392 | Klein et al. | Nov 2015 | B2 |
9199998 | Pfrengle et al. | Dec 2015 | B2 |
9212183 | Sieger et al. | Dec 2015 | B2 |
9266888 | Sieger et al. | Feb 2016 | B2 |
9321791 | Himmelsbach et al. | Apr 2016 | B2 |
9415016 | Friedl et al. | Aug 2016 | B2 |
9486426 | Eller | Aug 2016 | B2 |
9457029 | Dugi et al. | Oct 2016 | B2 |
9486526 | dugi | Nov 2016 | B2 |
9493462 | Sieger | Nov 2016 | B2 |
9815837 | Sieger | Nov 2017 | B2 |
10023574 | Himmelsbach | Jul 2018 | B2 |
10034877 | dugi | Jul 2018 | B2 |
10155000 | Meinicke et al. | Dec 2018 | B2 |
10301313 | Sieger et al. | May 2019 | B2 |
20010020006 | Demuth et al. | Sep 2001 | A1 |
20010051646 | Demuth et al. | Dec 2001 | A1 |
20020019411 | Robl et al. | Feb 2002 | A1 |
20020042393 | Oobae et al. | Apr 2002 | A1 |
20020049164 | Demuth et al. | Apr 2002 | A1 |
20020115718 | Chen et al. | Aug 2002 | A1 |
20020137903 | Ellsworth et al. | Sep 2002 | A1 |
20020160047 | Hussain et al. | Oct 2002 | A1 |
20020161001 | Kanstrup et al. | Oct 2002 | A1 |
20020169174 | Chackalamannil et al. | Nov 2002 | A1 |
20020198205 | Himmelsbach et al. | Dec 2002 | A1 |
20030040490 | Sugiyama et al. | Feb 2003 | A1 |
20030078269 | Pearson et al. | Apr 2003 | A1 |
20030100563 | Edmondson et al. | May 2003 | A1 |
20030104053 | Gusler et al. | Jun 2003 | A1 |
20030104983 | DeFelippis et al. | Jun 2003 | A1 |
20030105077 | Kanstrup et al. | Jun 2003 | A1 |
20030114390 | Washburn et al. | Jun 2003 | A1 |
20030130313 | Fujino et al. | Jul 2003 | A1 |
20030149071 | Gobbi et al. | Aug 2003 | A1 |
20030153509 | Bachovchin et al. | Aug 2003 | A1 |
20030166578 | Arch et al. | Sep 2003 | A1 |
20030199528 | Kanstrup et al. | Oct 2003 | A1 |
20030224043 | Appel et al. | Dec 2003 | A1 |
20030232987 | Dahanukar et al. | Dec 2003 | A1 |
20030236272 | Carr | Dec 2003 | A1 |
20040018468 | Gorokhovsky | Jan 2004 | A1 |
20040023981 | Ren et al. | Feb 2004 | A1 |
20040034014 | Kanstrup et al. | Feb 2004 | A1 |
20040037883 | Zhou et al. | Feb 2004 | A1 |
20040063725 | Barth et al. | Apr 2004 | A1 |
20040077645 | Himmelsbach et al. | Apr 2004 | A1 |
20040082570 | Yoshikawa et al. | Apr 2004 | A1 |
20040087587 | Himmelsbach et al. | May 2004 | A1 |
20040097510 | Himmelsbach et al. | May 2004 | A1 |
20040116328 | Yoshikawa et al. | Jun 2004 | A1 |
20040122048 | Benjamin et al. | Jun 2004 | A1 |
20040122228 | Maier et al. | Jun 2004 | A1 |
20040126358 | Warne et al. | Jul 2004 | A1 |
20040138214 | Himmelsbach et al. | Jul 2004 | A1 |
20040138215 | Eckhardt et al. | Jul 2004 | A1 |
20040152659 | Matsuoka et al. | Aug 2004 | A1 |
20040152720 | Hartig et al. | Aug 2004 | A1 |
20040166125 | Himmelsbach et al. | Aug 2004 | A1 |
20040171836 | Fujino et al. | Sep 2004 | A1 |
20040180925 | Matsuno et al. | Sep 2004 | A1 |
20040259843 | Madar et al. | Dec 2004 | A1 |
20040259903 | Boehringer et al. | Dec 2004 | A1 |
20040266806 | Sanghvi et al. | Dec 2004 | A1 |
20050020484 | Harada et al. | Jan 2005 | A1 |
20050020574 | Hauel et al. | Jan 2005 | A1 |
20050026921 | Eckhardt et al. | Feb 2005 | A1 |
20050027012 | Kohlrausch | Feb 2005 | A1 |
20050031682 | Cucala Escoi et al. | Feb 2005 | A1 |
20050032804 | Cypes et al. | Feb 2005 | A1 |
20050065145 | Cao et al. | Mar 2005 | A1 |
20050070562 | Jones et al. | Mar 2005 | A1 |
20050070594 | Kauschke et al. | Mar 2005 | A1 |
20050070694 | Gelfanova et al. | Mar 2005 | A1 |
20050097798 | Evans et al. | May 2005 | A1 |
20050107730 | Doty et al. | May 2005 | A1 |
20050119162 | Harada et al. | Jun 2005 | A1 |
20050130985 | Himmelsbach et al. | Jun 2005 | A1 |
20050143377 | Himmelsbach et al. | Jun 2005 | A1 |
20050171093 | Eckhardt et al. | Aug 2005 | A1 |
20050187227 | Himmelsbach et al. | Aug 2005 | A1 |
20050203095 | Eckhardt et al. | Sep 2005 | A1 |
20050234108 | Himmelsbach et al. | Oct 2005 | A1 |
20050234235 | Eckhardt et al. | Oct 2005 | A1 |
20050239778 | Konetzki et al. | Oct 2005 | A1 |
20050244502 | Mathias et al. | Nov 2005 | A1 |
20050256310 | Hulin et al. | Nov 2005 | A1 |
20050261271 | Feng et al. | Nov 2005 | A1 |
20050261352 | Eckhardt | Nov 2005 | A1 |
20050266080 | Desai et al. | Dec 2005 | A1 |
20050276794 | Papas et al. | Dec 2005 | A1 |
20060004074 | Eckhardt et al. | Jan 2006 | A1 |
20060008829 | Hess | Jan 2006 | A1 |
20060034922 | Cheng et al. | Feb 2006 | A1 |
20060039968 | Manikandan et al. | Feb 2006 | A1 |
20060039974 | Akiyama et al. | Feb 2006 | A1 |
20060047125 | Leonardi et al. | Mar 2006 | A1 |
20060058323 | Eckhardt et al. | Mar 2006 | A1 |
20060063787 | Yoshikawa et al. | Mar 2006 | A1 |
20060074058 | Holmes et al. | Apr 2006 | A1 |
20060079541 | Langkopf et al. | Apr 2006 | A1 |
20060094722 | Yasuda et al. | May 2006 | A1 |
20060100199 | Yoshikawa et al. | May 2006 | A1 |
20060106035 | Hendrix et al. | May 2006 | A1 |
20060111372 | Hendrix et al. | May 2006 | A1 |
20060111379 | Guillemont et al. | May 2006 | A1 |
20060134206 | Iyer et al. | Jun 2006 | A1 |
20060142310 | Pfrengle et al. | Jun 2006 | A1 |
20060154866 | Chu et al. | Jul 2006 | A1 |
20060159746 | Troup et al. | Jul 2006 | A1 |
20060173056 | Kitajima et al. | Aug 2006 | A1 |
20060205711 | Himmelsbach et al. | Sep 2006 | A1 |
20060205943 | Dahanukar et al. | Sep 2006 | A1 |
20060247226 | Himmelsbach et al. | Nov 2006 | A1 |
20060270668 | Chew et al. | Nov 2006 | A1 |
20060270701 | Kroth et al. | Nov 2006 | A1 |
20070027168 | Pfrengle et al. | Feb 2007 | A1 |
20070059797 | Low et al. | Mar 2007 | A1 |
20070060530 | Christopher et al. | Mar 2007 | A1 |
20070072803 | Chu et al. | Mar 2007 | A1 |
20070072810 | Asakawa | Mar 2007 | A1 |
20070088038 | Eckhardt et al. | Apr 2007 | A1 |
20070093659 | Bonfanti et al. | Apr 2007 | A1 |
20070142383 | Eckhardt et al. | Jun 2007 | A1 |
20070173452 | DiMarchi et al. | Jul 2007 | A1 |
20070185091 | Himmelsbach et al. | Aug 2007 | A1 |
20070196472 | Kiel et al. | Aug 2007 | A1 |
20070197522 | Edwards et al. | Aug 2007 | A1 |
20070197552 | Carr | Aug 2007 | A1 |
20070219178 | Muramoto | Sep 2007 | A1 |
20070254944 | Hughes | Nov 2007 | A1 |
20070259880 | Sakashita et al. | Nov 2007 | A1 |
20070259900 | Sieger et al. | Nov 2007 | A1 |
20070259925 | Boehringer et al. | Nov 2007 | A1 |
20070259927 | Suzuki et al. | Nov 2007 | A1 |
20070265349 | Rapin et al. | Nov 2007 | A1 |
20070281940 | Dugi et al. | Dec 2007 | A1 |
20070299076 | Piotrowski et al. | Dec 2007 | A1 |
20080014270 | Harada | Jan 2008 | A1 |
20080039427 | Ray et al. | Feb 2008 | A1 |
20080107731 | Kohlrausch et al. | May 2008 | A1 |
20080108816 | Zutter | May 2008 | A1 |
20080221200 | Allison et al. | Sep 2008 | A1 |
20080234291 | Francois et al. | Sep 2008 | A1 |
20080249089 | Himmelsbach et al. | Oct 2008 | A1 |
20080255159 | Himmelsbach et al. | Oct 2008 | A1 |
20080312243 | Eckhardt et al. | Dec 2008 | A1 |
20080318922 | Nakahira et al. | Dec 2008 | A1 |
20090023920 | Eckhardt | Jan 2009 | A1 |
20090054303 | Gougoutas et al. | Feb 2009 | A1 |
20090082256 | Abe et al. | Mar 2009 | A1 |
20090088408 | Meade et al. | Apr 2009 | A1 |
20090088569 | Eckhardt et al. | Apr 2009 | A1 |
20090093457 | Himmelsbach et al. | Apr 2009 | A1 |
20090131432 | Himmelsbach et al. | May 2009 | A1 |
20090136596 | Munson et al. | May 2009 | A1 |
20090137801 | Himmelsbach et al. | May 2009 | A1 |
20090149483 | Nakahira et al. | Jun 2009 | A1 |
20090186086 | Shankar et al. | Jul 2009 | A1 |
20090192314 | Pfrengle et al. | Jul 2009 | A1 |
20090253752 | Burkey et al. | Oct 2009 | A1 |
20090297470 | Franz | Dec 2009 | A1 |
20090301105 | Loerting | Dec 2009 | A1 |
20090325926 | Himmelsbach | Dec 2009 | A1 |
20100074950 | Sesha | Mar 2010 | A1 |
20100092551 | Nakamura et al. | Apr 2010 | A1 |
20100173916 | Himmelsbach et al. | Jul 2010 | A1 |
20100179191 | Himmelsbach et al. | Jul 2010 | A1 |
20100183531 | Johncock et al. | Jul 2010 | A1 |
20100204250 | Himmelsbach et al. | Aug 2010 | A1 |
20100209506 | Eisenreich | Aug 2010 | A1 |
20100310664 | Watson et al. | Dec 2010 | A1 |
20100317575 | Pinnetti et al. | Dec 2010 | A1 |
20100330177 | Pourkavoos | Dec 2010 | A1 |
20110009391 | Braun et al. | Jan 2011 | A1 |
20110028391 | Holst et al. | Feb 2011 | A1 |
20110046076 | Eickelmann et al. | Feb 2011 | A1 |
20110065731 | Dugi et al. | Mar 2011 | A1 |
20110092510 | Klein et al. | Apr 2011 | A1 |
20110098240 | Dugi et al. | Apr 2011 | A1 |
20110112069 | Himmelsbach et al. | May 2011 | A1 |
20110144083 | Himmelsbach et al. | Jun 2011 | A1 |
20110144095 | Himmelsbach et al. | Jun 2011 | A1 |
20110190322 | Klein et al. | Aug 2011 | A1 |
20110195917 | Dugi et al. | Aug 2011 | A1 |
20110206766 | Friedl et al. | Aug 2011 | A1 |
20110212982 | Christopher et al. | Sep 2011 | A1 |
20110263493 | Dugi et al. | Oct 2011 | A1 |
20110263617 | Mark et al. | Oct 2011 | A1 |
20110275561 | Graefe-Mody et al. | Nov 2011 | A1 |
20110301182 | Dugi | Dec 2011 | A1 |
20120003313 | Kohlrausch et al. | Jan 2012 | A1 |
20120035158 | Himmelsbach et al. | Feb 2012 | A1 |
20120040982 | Himmelsbach et al. | Feb 2012 | A1 |
20120053173 | Banno et al. | Mar 2012 | A1 |
20120094894 | Graefe-Mody et al. | Apr 2012 | A1 |
20120107398 | Schneider et al. | May 2012 | A1 |
20120121530 | Klein et al. | May 2012 | A1 |
20120122776 | Graefe-Mody et al. | May 2012 | A1 |
20120129874 | Sieger et al. | May 2012 | A1 |
20120142712 | Pfrengle et al. | Jun 2012 | A1 |
20120165251 | Klein et al. | Jun 2012 | A1 |
20120208831 | Himmelsbach et al. | Aug 2012 | A1 |
20120219622 | Kohlrausch et al. | Aug 2012 | A1 |
20120219623 | Meinicke | Aug 2012 | A1 |
20120232004 | Bachovchin et al. | Sep 2012 | A1 |
20120252782 | Himmelsbach et al. | Oct 2012 | A1 |
20120252783 | Himmelsbach et al. | Oct 2012 | A1 |
20120296091 | Sieger et al. | Nov 2012 | A1 |
20130064887 | Ito et al. | Mar 2013 | A1 |
20130122089 | Kohlrausch et al. | May 2013 | A1 |
20130172244 | Klein et al. | Jul 2013 | A1 |
20130184204 | Pfrengle et al. | Jul 2013 | A1 |
20130196898 | Dugi et al. | Aug 2013 | A1 |
20130236543 | Ito et al. | Sep 2013 | A1 |
20130303462 | Klein | Nov 2013 | A1 |
20130303554 | Klein et al. | Nov 2013 | A1 |
20130310398 | Mark et al. | Nov 2013 | A1 |
20130315975 | Klein et al. | Nov 2013 | A1 |
20130317046 | Johansen | Nov 2013 | A1 |
20130324463 | Klein et al. | Dec 2013 | A1 |
20140100236 | Busl et al. | Apr 2014 | A1 |
20140274889 | Johansen et al. | Sep 2014 | A1 |
20140315832 | Broedl et al. | Oct 2014 | A1 |
20140343014 | Klein et al. | Nov 2014 | A1 |
20140371243 | Klein et al. | Dec 2014 | A1 |
20150196565 | Klein et al. | Jul 2015 | A1 |
20150246045 | Klein et al. | Sep 2015 | A1 |
20150265538 | Balthes et al. | Sep 2015 | A1 |
20160058769 | Graefe-Mody et al. | Mar 2016 | A1 |
20160082011 | Klein et al. | Mar 2016 | A1 |
20160089373 | Johansen et al. | Mar 2016 | A1 |
20160106677 | Boeck et al. | Apr 2016 | A1 |
20160310435 | Friedl et al. | Oct 2016 | A1 |
20170020868 | Dugi et al. | Jan 2017 | A1 |
20170354660 | Meinicke et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2003280680 | Jun 2004 | AU |
2009224546 | Sep 2009 | AU |
1123437 | May 1982 | CA |
2136288 | May 1995 | CA |
2375779 | May 2000 | CA |
2418656 | Feb 2002 | CA |
2435730 | Sep 2002 | CA |
2496249 | Mar 2004 | CA |
2496325 | Mar 2004 | CA |
2498423 | Apr 2004 | CA |
2505389 | May 2004 | CA |
2508233 | Jun 2004 | CA |
2529729 | Dec 2004 | CA |
2543074 | Jun 2005 | CA |
2555050 | Sep 2005 | CA |
2556064 | Sep 2005 | CA |
2558067 | Oct 2005 | CA |
2558446 | Oct 2005 | CA |
2561210 | Oct 2005 | CA |
2562859 | Nov 2005 | CA |
2576294 | Mar 2006 | CA |
2590912 | Jun 2006 | CA |
2599419 | Nov 2006 | CA |
2651019 | Nov 2007 | CA |
2651089 | Nov 2007 | CA |
2720450 | Oct 2009 | CA |
101035522 | Sep 2007 | CN |
101234105 | Aug 2008 | CN |
101309689 | Nov 2008 | CN |
101590007 | Dec 2009 | CN |
104130258 | Nov 2014 | CN |
2205815 | Aug 1973 | DE |
2758025 | Jul 1979 | DE |
19705233 | Aug 1998 | DE |
10109021 | Sep 2002 | DE |
10117803 | Oct 2002 | DE |
10238243 | Mar 2004 | DE |
102004019540 | Nov 2005 | DE |
102004024454 | Dec 2005 | DE |
102004044221 | Mar 2006 | DE |
102004054054 | May 2006 | DE |
201300121 | Oct 2009 | EA |
0023032 | Jan 1981 | EP |
0149578 | Jul 1985 | EP |
0189941 | Aug 1986 | EP |
0223403 | May 1987 | EP |
0237608 | Sep 1987 | EP |
0248634 | Dec 1987 | EP |
0342675 | Nov 1989 | EP |
0389282 | Sep 1990 | EP |
0399285 | Nov 1990 | EP |
0400974 | Dec 1990 | EP |
409281 | Jan 1991 | EP |
0412358 | Feb 1991 | EP |
443983 | Aug 1991 | EP |
0475482 | Mar 1992 | EP |
0524482 | Jan 1993 | EP |
0638567 | Feb 1995 | EP |
0657454 | Jun 1995 | EP |
0775704 | May 1997 | EP |
0950658 | Oct 1999 | EP |
1054012 | Nov 2000 | EP |
1066265 | Jan 2001 | EP |
1310245 | May 2003 | EP |
1333033 | Aug 2003 | EP |
1338595 | Aug 2003 | EP |
1406873 | Apr 2004 | EP |
1500403 | Jan 2005 | EP |
1514552 | Mar 2005 | EP |
1523994 | Apr 2005 | EP |
1535906 | Jun 2005 | EP |
1537880 | Jun 2005 | EP |
1557165 | Jul 2005 | EP |
1586571 | Oct 2005 | EP |
1604989 | Dec 2005 | EP |
1743655 | Jan 2007 | EP |
1760076 | Mar 2007 | EP |
1829877 | Sep 2007 | EP |
1852108 | Nov 2007 | EP |
1897892 | Mar 2008 | EP |
2143443 | Jan 2010 | EP |
2166007 | Mar 2010 | EP |
2308878 | Apr 2011 | EP |
385302 | Apr 1973 | ES |
2256797 | Jul 2006 | ES |
2263057 | Dec 2006 | ES |
2707641 | Jan 1995 | FR |
2084580 | Apr 1982 | GB |
9003243 | May 1990 | HU |
9902308 | Jul 2000 | HU |
S374895 | Jun 1962 | JP |
61030567 | Feb 1986 | JP |
770120 | Mar 1995 | JP |
8333339 | Dec 1996 | JP |
11193270 | Jul 1999 | JP |
2000502684 | Mar 2000 | JP |
2001213770 | Aug 2001 | JP |
2001278812 | Oct 2001 | JP |
2001292388 | Oct 2001 | JP |
2002348279 | Dec 2002 | JP |
2003286287 | Oct 2003 | JP |
2003300977 | Oct 2003 | JP |
2004161749 | Jun 2004 | JP |
2004196824 | Jul 2004 | JP |
2004250336 | Sep 2004 | JP |
2005511636 | Apr 2005 | JP |
2005519059 | Jun 2005 | JP |
2006503013 | Jan 2006 | JP |
2006045156 | Feb 2006 | JP |
2006137678 | Jun 2006 | JP |
2007501231 | Jan 2007 | JP |
2007510059 | Apr 2007 | JP |
2007522251 | Aug 2007 | JP |
2007531780 | Nov 2007 | JP |
2008513390 | May 2008 | JP |
2008536881 | Sep 2008 | JP |
2010500326 | Jan 2010 | JP |
2010053576 | Mar 2010 | JP |
2010070576 | Apr 2010 | JP |
2010524580 | Jul 2010 | JP |
2010535850 | Nov 2010 | JP |
2010536734 | Dec 2010 | JP |
2011088838 | May 2011 | JP |
2011529945 | Dec 2011 | JP |
2012502081 | Jan 2012 | JP |
2012505859 | Mar 2012 | JP |
20070111099 | Nov 2007 | KR |
8706941 | Nov 1987 | WO |
199107945 | Jun 1991 | WO |
199205175 | Apr 1992 | WO |
199219227 | Nov 1992 | WO |
199402150 | Feb 1994 | WO |
199403456 | Feb 1994 | WO |
1994012200 | Jun 1994 | WO |
9532178 | Nov 1995 | WO |
199609045 | Mar 1996 | WO |
199611917 | Apr 1996 | WO |
199636638 | Nov 1996 | WO |
199718814 | May 1997 | WO |
199723447 | Jul 1997 | WO |
199723473 | Jul 1997 | WO |
199728808 | Aug 1997 | WO |
199746526 | Dec 1997 | WO |
1998007725 | Feb 1998 | WO |
199811893 | Mar 1998 | WO |
9818770 | May 1998 | WO |
199822464 | May 1998 | WO |
199828007 | Jul 1998 | WO |
199840069 | Sep 1998 | WO |
1998046082 | Oct 1998 | WO |
199856406 | Dec 1998 | WO |
199929695 | Jun 1999 | WO |
1999038501 | Aug 1999 | WO |
199950248 | Oct 1999 | WO |
1999049857 | Oct 1999 | WO |
199956561 | Nov 1999 | WO |
199967279 | Dec 1999 | WO |
2000003735 | Jan 2000 | WO |
200012064 | Mar 2000 | WO |
200072873 | May 2000 | WO |
200034241 | Jun 2000 | WO |
0069464 | Nov 2000 | WO |
200066101 | Nov 2000 | WO |
0072799 | Dec 2000 | WO |
0078735 | Dec 2000 | WO |
200072973 | Dec 2000 | WO |
200073307 | Dec 2000 | WO |
200107441 | Feb 2001 | WO |
2001032158 | May 2001 | WO |
2001040180 | Jun 2001 | WO |
200152825 | Jul 2001 | WO |
200152852 | Jul 2001 | WO |
2001047514 | Jul 2001 | WO |
2001051919 | Jul 2001 | WO |
2001066548 | Sep 2001 | WO |
2001068603 | Sep 2001 | WO |
2001068646 | Sep 2001 | WO |
200177110 | Oct 2001 | WO |
2001072290 | Oct 2001 | WO |
200196301 | Dec 2001 | WO |
200197808 | Dec 2001 | WO |
200202560 | Jan 2002 | WO |
200214271 | Feb 2002 | WO |
200224698 | Mar 2002 | WO |
2002053516 | Jul 2002 | WO |
2002068420 | Sep 2002 | WO |
2003000241 | Jan 2003 | WO |
2003000250 | Jan 2003 | WO |
2003002531 | Jan 2003 | WO |
2003002553 | Jan 2003 | WO |
2003004496 | Jan 2003 | WO |
2003006425 | Jan 2003 | WO |
2003024965 | Mar 2003 | WO |
2003033686 | Apr 2003 | WO |
2003034944 | May 2003 | WO |
2003035177 | May 2003 | WO |
2003037327 | May 2003 | WO |
2003053929 | Jul 2003 | WO |
2003055881 | Jul 2003 | WO |
2003057200 | Jul 2003 | WO |
2003057245 | Jul 2003 | WO |
2003059327 | Jul 2003 | WO |
2003061688 | Jul 2003 | WO |
2003064454 | Aug 2003 | WO |
2003074500 | Sep 2003 | WO |
2003088900 | Oct 2003 | WO |
2003094909 | Nov 2003 | WO |
2003099279 | Dec 2003 | WO |
2003099836 | Dec 2003 | WO |
2003104229 | Dec 2003 | WO |
2003106428 | Dec 2003 | WO |
2004002924 | Jan 2004 | WO |
2004011416 | Feb 2004 | WO |
2004016587 | Feb 2004 | WO |
2000003735 | Mar 2004 | WO |
2004018467 | Mar 2004 | WO |
2004018468 | Mar 2004 | WO |
2004018469 | Mar 2004 | WO |
2004028524 | Apr 2004 | WO |
2004033455 | Apr 2004 | WO |
2004035575 | Apr 2004 | WO |
2004037169 | May 2004 | WO |
2004041820 | May 2004 | WO |
2004043940 | May 2004 | WO |
2004046148 | Jun 2004 | WO |
2004048379 | Jun 2004 | WO |
2004050658 | Jun 2004 | WO |
2004052362 | Jun 2004 | WO |
2004058233 | Jul 2004 | WO |
2004062689 | Jul 2004 | WO |
2004065380 | Aug 2004 | WO |
2004074246 | Sep 2004 | WO |
2004081006 | Sep 2004 | WO |
2004082402 | Sep 2004 | WO |
2004096806 | Nov 2004 | WO |
2004096811 | Nov 2004 | WO |
2004018468 | Dec 2004 | WO |
2004106279 | Dec 2004 | WO |
2004108730 | Dec 2004 | WO |
2004111051 | Dec 2004 | WO |
2005000846 | Jan 2005 | WO |
2005000848 | Jan 2005 | WO |
2005007137 | Jan 2005 | WO |
2005007647 | Jan 2005 | WO |
2005007658 | Jan 2005 | WO |
2005012288 | Feb 2005 | WO |
2005016365 | Feb 2005 | WO |
2005023179 | Mar 2005 | WO |
2005049022 | Jun 2005 | WO |
2005051950 | Jun 2005 | WO |
2005058901 | Jun 2005 | WO |
2005061489 | Jul 2005 | WO |
2005063750 | Jul 2005 | WO |
2005075410 | Aug 2005 | WO |
2005082906 | Sep 2005 | WO |
2005085246 | Sep 2005 | WO |
2005092870 | Oct 2005 | WO |
2005092877 | Oct 2005 | WO |
2005095343 | Oct 2005 | WO |
2005095381 | Oct 2005 | WO |
2005097798 | Oct 2005 | WO |
2005107730 | Nov 2005 | WO |
2005116000 | Dec 2005 | WO |
2005116014 | Dec 2005 | WO |
2005117861 | Dec 2005 | WO |
2005117948 | Dec 2005 | WO |
2006005613 | Jan 2006 | WO |
2006027204 | Mar 2006 | WO |
2006029577 | Mar 2006 | WO |
2006029769 | Mar 2006 | WO |
2006036664 | Apr 2006 | WO |
2006040625 | Apr 2006 | WO |
2006041976 | Apr 2006 | WO |
2006047248 | May 2006 | WO |
2006048209 | May 2006 | WO |
2006048427 | May 2006 | WO |
2006068163 | Jun 2006 | WO |
2006071078 | Jul 2006 | WO |
2006076231 | Jul 2006 | WO |
2006078593 | Jul 2006 | WO |
2006083491 | Aug 2006 | WO |
2006116157 | Nov 2006 | WO |
2006129785 | Dec 2006 | WO |
2006135693 | Dec 2006 | WO |
2006137085 | Dec 2006 | WO |
2007007173 | Jan 2007 | WO |
2007014886 | Feb 2007 | WO |
2007014895 | Feb 2007 | WO |
2007017423 | Feb 2007 | WO |
07035665 | Mar 2007 | WO |
2007033350 | Mar 2007 | WO |
2007035355 | Mar 2007 | WO |
2007035665 | Mar 2007 | WO |
2007038979 | Apr 2007 | WO |
2007041053 | Apr 2007 | WO |
2007050485 | May 2007 | WO |
2007071738 | Jun 2007 | WO |
2007072083 | Jun 2007 | WO |
2007078726 | Jul 2007 | WO |
2007093610 | Aug 2007 | WO |
2007099345 | Sep 2007 | WO |
2007120702 | Oct 2007 | WO |
2007120936 | Oct 2007 | WO |
2007128721 | Nov 2007 | WO |
2007128724 | Nov 2007 | WO |
2007128761 | Nov 2007 | WO |
2007135196 | Nov 2007 | WO |
2007136151 | Nov 2007 | WO |
2007137107 | Nov 2007 | WO |
2007147185 | Dec 2007 | WO |
2007148185 | Dec 2007 | WO |
2007149797 | Dec 2007 | WO |
2003057245 | Jan 2008 | WO |
2008005569 | Jan 2008 | WO |
2008005576 | Jan 2008 | WO |
2008017670 | Feb 2008 | WO |
2008017670 | Feb 2008 | WO |
2008022267 | Feb 2008 | WO |
2008055870 | May 2008 | WO |
2008055940 | May 2008 | WO |
2008070692 | Jun 2008 | WO |
2008077639 | Jul 2008 | WO |
2008081205 | Jul 2008 | WO |
2008083238 | Jul 2008 | WO |
2008087198 | Jul 2008 | WO |
2008093878 | Aug 2008 | WO |
2008093882 | Aug 2008 | WO |
2008097180 | Aug 2008 | WO |
2008113000 | Sep 2008 | WO |
2008130998 | Oct 2008 | WO |
2008131149 | Oct 2008 | WO |
2008137435 | Nov 2008 | WO |
2009011451 | Jan 2009 | WO |
2009022007 | Feb 2009 | WO |
2009022008 | Feb 2009 | WO |
2009022009 | Feb 2009 | WO |
2009022010 | Feb 2009 | WO |
2009024542 | Feb 2009 | WO |
2009063072 | May 2009 | WO |
2009091082 | Jul 2009 | WO |
2009099734 | Aug 2009 | WO |
2009111200 | Sep 2009 | WO |
2009112691 | Sep 2009 | WO |
2009121945 | Oct 2009 | WO |
2009123992 | Oct 2009 | WO |
199967278 | Dec 2009 | WO |
2009147125 | Dec 2009 | WO |
201092124 | Feb 2010 | WO |
2010015664 | Feb 2010 | WO |
2010018217 | Feb 2010 | WO |
2010029089 | Mar 2010 | WO |
2010043688 | Apr 2010 | WO |
2010045656 | Apr 2010 | WO |
2010072776 | Jul 2010 | WO |
2010079197 | Jul 2010 | WO |
2010086411 | Aug 2010 | WO |
2010092125 | Aug 2010 | WO |
2010092163 | Aug 2010 | WO |
2010096384 | Aug 2010 | WO |
2010106457 | Sep 2010 | WO |
2010126908 | Nov 2010 | WO |
2010140111 | Dec 2010 | WO |
2010147768 | Dec 2010 | WO |
2011011541 | Jan 2011 | WO |
2011039337 | Apr 2011 | WO |
2011039367 | Apr 2011 | WO |
2011064352 | Jun 2011 | WO |
2011109333 | Sep 2011 | WO |
2011113947 | Sep 2011 | WO |
2011138380 | Nov 2011 | WO |
2011138421 | Nov 2011 | WO |
2011154496 | Dec 2011 | WO |
2011161161 | Dec 2011 | WO |
2011163206 | Dec 2011 | WO |
2012031124 | Mar 2012 | WO |
2012039420 | Mar 2012 | WO |
2012065993 | May 2012 | WO |
2012088682 | Jul 2012 | WO |
2012089127 | Jul 2012 | WO |
2012106303 | Aug 2012 | WO |
2012120040 | Sep 2012 | WO |
2003061688 | Apr 2013 | WO |
2013098372 | Jul 2013 | WO |
2013103629 | Jul 2013 | WO |
2013131967 | Sep 2013 | WO |
2013171167 | Nov 2013 | WO |
2013174768 | Nov 2013 | WO |
2013179307 | Dec 2013 | WO |
2014029848 | Feb 2014 | WO |
2014140284 | Sep 2014 | WO |
2014170383 | Oct 2014 | WO |
2020016232 | Jan 2020 | WO |
Entry |
---|
Bundgaard, H. “Design of prodrugs: Bioreversible derivatives for various functional groups and chemical entities”. Royal Danish School of Pharmacy, 1985, p. 1-92. |
Busso et al., “Circulating CD26 is Negatively Associated with Inflammation in Human and Experimental Arthritis,” Am. J. Path., vol. 166, No. 2, Feb. 2005, pp. 433-442. |
Byrn, Stephen R. “Solid-State Chemistry of Drugs.” Academic Press, 1982, pp. 1-27. |
Caira, M.R., “Crystalline polymorphism of organic compounds” Topics in Current Chemistry, Springer, Berlin, vol. 198, 1998, p. 163-208. |
Campbell, R. Keith “Rationale for Dipeptidyl Peptidase 4 Inhibitors: A New Class of Oral Agents for the Treatment of Type 2 Diabetes Mellitus.” The Annals of Pharmacotherapy, Jan. 2007, vol. 41, pp. 51-60. |
Canadian Diabetes Association, “Pharmacologic Management of Type 2 Diabetes.” Canadian Journal of Diabetes, 2003, vol. 27, Suppl. 2, pp. S37-S42. |
Canadian Pharmacists Association, Compendium of Pharmaceuticals and Specialties, “Zestril” 2004, pp. 2289-2293. |
Cao, C. et al., “The clinical application of linagliptin in Asians.” Therapeutics and Clinical Risk Management, 2015, vol. 11, pp. 1409-1419. |
Castello, R. et al., “Discoloration of Tablets Containing Amines and Lactose.” Journal of Pharmaceutical Sciences, 1962, vol. 51, No. 2, pp. 106-108. |
Chan, J.C. et al., “Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency.” 2008, Diabetes, Obesity and Metabolism, vol. 10, pp. 545-555. |
Charbonnel, B. et al., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Added to Ongoing Metformin Therapy in Patients With Type 2 Diabetes Inadequately Controlled With Metformin Alone.” Diabetes Care, 2006, vol. 29, No. 12, pp. 2638-2643. |
Chaykovska, L. et al., “Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy.” www.plosone.org, 2011, vol. 6, No. 11, p. e27861. |
ChemGaroo, “Leaving Group.” 1999, Retrieved online: http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vluorganik/substitution/sn _ 2/sn 2. vlu/Page/vsc/en/ch/12/oc/substitution/sn _ 2/abgangsgrupen/abgangsgruppe. vscml.html. |
Chemical Abstract. EP412358,1991:185517, Findeisen. |
Chemical Abstract: FR2707641, 1995:543545, Dodey. |
Chemical Abstract: No. 211513-37-0—Dalcetrapib. “Propanethioic acid, 2-methyl-,S-(2-[[[1-(2-ethylbutyl)cyclohexyl}carbonyl}amino}pheyl}ester”. Formula: C23 H35 N O2 S. American Chemical Society. Sep. 20, 1998. |
Chemical Abstract: No. 875446-37-0—Anacetrapib. “2-Oxazolidinone, 5-[3,5-bis(trifluoromethyl)phenyl]-3[[4′fluoro-2′-methoxy-5′-(1-methylethyl)-4-(trifluoromethyl)[1,1′-biphenyl]-2-yl]methyl]-4-methyl-,(4S,5R)-” Formula: C30 H25 F10 N O3. American Chemical Society, Feb. 28, 2006. |
Chemical Abstracts Accession No. 106:95577 Romanenko et al., “Synthesis and Biological Activity of 3-Methyl, 7- or 8-alkyl-7,8dialkyl, heterocyclic, and cyclohexylaminoxanthines,” Zaporozh. Med. Institute (1986). |
Chemical Abstracts Accession No. 1987:95577: Abstract of Romanenko et al., “Synthesis and biological activity of 3-methyl, 7- or 8-alkyl, 7,8-dialkyl, heterocyclic, and cyclohexylaminoxanthines,” Zapoeozh, USSR, Farmatsevtichnii Zhurnal, 1986, (Kiev), vol. 5, 1986, pp. 41-44. |
Chemical Abstracts Service, Database Accession No. No. RN 668270-12-01, 2004, “1H-Purine-2,6-dione, 8-[(3R)-3-amino-1-piperidinyl]-7-(2-butyn-1-yl)-3,7-dihydro-3-methyl-1-[(4-methyl-2-quinazolinyl)methyl]”. |
Chemistry Review: Tradjenta, “NDA 201280, CMC Director Review Tradjenta (Linagliptin) Tablets.” Center for Drug Evaluation and Research, Aug. 9, 2010, Retrieved from the internet on Nov. 1, 2013, http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/201280Orig1s000ChemR.pdf. |
Cheon, et al., Biochemical Pharmacology, “Inhibition of dipeptidyl IV by novel inhibitors with pyrazolidine scaffold”, 2005, vol. 70, p. 22-29. |
Chiasson, J.-L. et al., “The Synergistic Effect of Miglitol Plus Metformin Combination Therapy in the Treatment of Type 2 Diabetes.” Diabetes Care, 2001, vol. 24, No. 6, pp. 989-994. |
Chisari, A. et al. “Sulphinyl, Sulphonyl, and Sulphonium Groups as Leaving Groups in Aromatic Nucleophilic Substitutions.” Journal of the Chemical Society, Perkin Transactions II, 1982, pp. 957-959. |
Chowhan, Z.T. et al., Drug-Excipient Interaction Resulting from Powder Mixing IV: Role of Lubricants and Their Effect on In Vitro Dissolution, Journal of Pharmaceutical Sciences, 1986, vol. 75, No. 6, pp. 542-545. |
Clinical Trial NCT00622284 (published online at clinicaltrials.gov on Feb. 22, 2008). |
Clinical Trial Protocol, “A Randomised, Double-blind, Placebo-controlled, Five Parallel Groups Study Investigating the Efficacy and Safety of BI 1356 BS.” Boehringer Ingelheim Pharmaceuticals, last updated on Jun. 24, 2014. |
Clinical Trial, NCT00622284, clinicaltrials.gov, updated Feb. 22, 2008. |
Clinical Trials NCT00601250, clinicaltrials.gov, Jan. 25, 2008. |
Clinical Trials, No. NCT00309608, “Efficacy and Safety of BI 1356 BS in Combination with Metformin in Patients With type2 Diabetes” 2009, pp. 1-3. |
Clinical Trials, No. NCT00622284, “Efficacy and Safety of BI 1356 in combination with metformin in patients with type 2 diabetes” 2012, pp. 1-5. |
Clinical Trials. “View of NCT00601250 on Jan. 25, 2008: Efficacy and Safety of BI 1356 vs Placebo added to Metformin Background Therapy in Patients with Type 2 Diabetes” Clinical Trials. Gov Archive, [Online] Jan. 25, 2008 URL:http://clinicaltrials.gov/archive/NCTO0601250/2008_01_25 [retrieved on Feb. 27, 2009]. |
Clinical Trials. NCTO0622284. “Efficacy and safety of BI 1356 in combination with metformin in patients with type 2 diabetes” ClinicalTrials.gov (Online) No. NCT00622284, Feb. 13, 2008, p. 1-5, URL:http://clinicaltrial.gov/ct2/show/. |
Clinical Trials. View of NCT00730275 updated on Aug. 7, 2008. “A study to assess the pharmacokinetics, safety and tolerability of Sitagliptin in adolescents”. http://clinicaltrials.gov/archive/NCT00730275/2008_08_07. |
Clinical Trials: NCT00954447, View on Jun. 14, 2010. “Efficacy and Safety of Linagliptin in Combination with Insulin in Patients with Type 2 Diabetes”. <http://clinicaltrials.gov/archive/NCT00954447/2010_06_14>. |
Clinical Trials: NCT00103857, “A Multicenter, Randomized, Double-Blind Factorial Study of the Co-Administration of MK0431 and Metformin in Patients With Type 2 Diabetes Mellitus Who Have Inadequate Glycemic Control” last updated on Apr. 27, 2015. |
Clinical Trials: NCT00309608, “Efficacy and Safety of BI 1356 BS (Linagliptin) in Combination With Metformin in Patients With type2 Diabetes” Boehringer Ingelheim Pharmaceuticals, last updated on Jun. 24, 2014. |
Clinical Trials: NCT00309608, “Efficacy and Safety of BI 1356 BS (Linagliptin) in Combination With Metformin in Patients With type2 Diabetes” Boehringer Ingelheim Pharmaceuticals, last updated: Dec. 11, 2013. |
Clinical Trials: NCT00309608. Efficacy and safety of BI 1356 in combination with metformin in patients with type2 diabetes. Boehringer Ingelheim Pharmaceuticals, Jan. 27, 2009. Clinical Trials.gov . http://clinicaltrials.gov/archive/NCT00309608/2009_01_27. |
Clinical Trials: NCT00602472. “BI 1356 in combination withe metformin and a sulphonylurea in Type 2 Diabetes”. DrugLib.com, Nov. 3, 2008. http://www.druglib.com/trial/08/NCT00309608.html. |
Clinical Trials: NCT00622284. Efficacy and Safety of BI 1356 in Combination with Metformin in Patients with Type 2 Diabetes. Boehringer Ingelheim Pharmaceuticals, Aug. 2008. http://clinicaltrials.gov/archive/NCT00622284/2010_01_13. |
Clinical Trials: NCT00798161. “Safety and efficacy of Bi 1356 Plus Metformin in Type 2 Diabetes, Factorial Design”. Clinical Trials.gov archive. A Service of the U.S> National Institutes of Health. Nov. 24, 2008, p. 1-3. http://clinicaltrials.gov/archive/NCT00798161/2008_11_24. |
Colorcon, “Lactose Replacement with Starch 1500 in a Direct Compression Formula.” 2005, pp. 1-4. |
Colorcon, “Reducing Coated Tablet Defects from Laboratory through Production Scale: Performance of Hypromellose or Polyvinyl Alcohol-Based Aqueous Film Coating Systems.” Opadry II, 2009, pp. 1-7. |
Combs, D. W. et al., “Phosphoryl Chloride Induced Ring Contraction of 11,4-Benzodiazepinones to Chloromethylquinazolines”. J. Heterocyclic Chemistry, BD. 23, 1986, p. 1263-1264. |
Conarello, S.L. et al., “Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance”. PNAS, May 27, 2003, vol. 100, No. 11, p. 6825-6830. |
Conarello, S.L. et al; “Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance,” PNAS 2003; 100:6825-6830; originally published online May 14, 2003; information current as of Dec. 2006. www pnas.org/cgi/content/full/100/11/6825. |
Cotton, M.L. et al., “L-649,923—The selection of an appropriate salt form and preparation of a stable oral formulation.” International Journal of Pharmaceutics, 1994, vol. 109, Issue 3, pp. 237-249. |
Craddy, P. et al., “Comparative Effectiveness of Dipeptidylpeptidase-4 Inhibitors in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison.” Diabetes Therapy, 2014, vol. 5, No. 1, pp. 1-41. |
Crowe, E. et al., “Early identification and management of chronic kidney disease: summary of NICE guidance.” British Medical Journal, 2008, vol. 337, pp. 812-815. |
March, J. “Advanced Organic Chemistry: Reactions, Mechanisms, and Structure”. Fourth Edition, 1992, pp. 652-653. |
Mathieu, C. et al., “Antihyperglycaemic therapy in elderly patients with type 2 diabetes: potential tole of incretin mimetics and DPP-4 inhibitors.” International Journal of Clinical Practice, 2007, vol. 61, Suppl. 154, pp. 29-37. |
Matsumiya, Teruhiko, et al., “Therapeutic Drugs for Clinicians” Diagnosis and Treatment (2008) vol. 96, No. 2 pp. 389-390. |
Mayo Clinic Staff: “Nonalchoholic fatty liver disease: Prevention” [retrieved on Nov. 30, 2012]. retrieved from the Internet: ,URL: http://www.mayoclinic.com/health/nonalcoholic-fatty-liver-disease/DS00577DSECTION=prevention>. |
McNay, David E.G. et al., “High fat diet causes rebound weight gain.” Molecular Metabolism, 2013, vol. 2, pp. 103-108. |
Medline Plus, “Obesity” 2013, Retrieved from internet on Aug. 22, 2013, http://www.nlm.nih.gov/medlineplus/obesity.html. |
Meece, J. “When Oral Agents Fail: Optimizing Insulin Therapy in the Older Adult”. Consultant Pharmacist, The Society, Arlington, VA US. vol. 24, No. Suppl B, Jun. 1, 2009, p. 11-17. |
Mendes, F.D, et al. “Recent advances in the treatment of non-alcoholic fatty liver disease”. Expert Opinion on Investigational Drugs, vol. 14, No. 1, Jan. 1, 2005, p. 29-35. |
Merck Manual of Diagnosis and Therapy: “Obesity.” 1999, 17th Edition, Chapter 5, pp. 58-62. |
Merck: “Initial Therapy with Janumet (sitagliptin/metformin) provided significantly greater blood sugar lowering compared to metformin alone in patients with type 2 diabetes”. Webwire.com, Jun. 8, 2009, p. 1-4. http://www.webwire.com/ViewPressRel.asp?ald=96695. |
Mikhail, Nasser, “Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of type 2 diabetes.” Expert Opinion on Investigational Drugs, 2008, vol. 17, No. 6, pp. 845-853. |
MIMS Jan. 2009, “Sitagliptin.” pp. 152-153. |
Moritoh, Y. et al., “Combination treatment with alogliptin and voglibose increases active GLP-1 circulation, prevents the development of diabetes and preserves pancreatic beta-cells in prediabetic db/db mice.” Diabetes, Obesity and Metabolism, 2010, vol. 12, pp. 224-233. |
Nabors, Lyn O'Brien “Alternative Sweeteners.” Marcel Dekker, Inc., 2001, pp. 235, 339-340. |
Naik, R. et al., “Latent Autoimmune Diabetes in Adults.” The Journal of Clinical Endocrinology and Metabolism, 2009, vol. 94, No. 12, pp. 4635-4644. |
Nar, Herbert “Analysis of Binding Kinetics and Thermodynamics of DPP-4 Inhibitors and their Relationship to Structure.” 2nd NovAliX Conference: Biophysics in drug discovery, Strasbourg, France, Jun. 9-12, 2015. |
Nathan, D. et al., “Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy.” Diabetes Care, Aug. 2006, vol. 29, No. 8, pp. 1963-1972. |
National Program for Care Guidelines, “Type 2 Diabetes mellitus.” 2002, First Edition, pp. 1-50. |
Nauck, M. A. et al., “Efficacy and Safety of Adding the Dipeptidyl Peptidase-4 Inhibitor Alogliptin to Metformin Therapy in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy: A Multicentre, Randomised, Double-Blind, Placebo-Cotrolled Study.” Clinical Practice, 2008, vol. 63, No. 1, pp. 46-55. |
Nauck, M. A. et al., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, Compared with the Sulfonylurea, Glipizide, in Patients with Type 2 Diabetes Inaduately Controlled on Metformin alone: A Randomized, Double-Blind, Non-Inferiority Trial.” Diabetes Obesity and Metabolism, 2007, vol. 9, No. 2, pp. 194-205. |
Nielsen, L., “Incretin Mimetics and DPP-IV Inhibitors for the Treatment of Type 2 Diabetes.” Drug Discovery Today, 2005, vol. 10, No. 10, pp. 703-710. |
Nihon Ijinpo, Japan Medicinal Journal, 2001, No. 4032, p. 137. |
Novartis AG, Investor Relations Release, “Galvus, a new oral treatment for type 2 diabetes, receives positive opinion recommending European Union approval” Securities and Exchange Commission, Form 6-K, 2007, pp. 1-4. |
O'Farrell, et al., “Pharmacokinetic and Pharmacodynamic Assessments of the Dipeptidyl Peptidase-4 Inhibitor PHX1149: Double-Blind, Placebo-controlled, Single-and Multiple-Dose Studies in Healthy Subjects”. Clinical Therapeutics, Excerpta Medica, Princeton, NJ, vol. 29, No. 8, 2007, p. 1692-1705. |
Office Action for U.S. Appl. No. 10/695,597 dated May 2, 2008. |
Oz, Helieh S., “Methionine Deficiency and Hepatic Injury in a Dietary Steatohepatitis Model.” Digestive Diseases and Sciences, 2008, vol. 53, No. 3, pp. 767-776. |
Patani George A. et al.: “Bioisoterism : A Rational Approach in Drug Design”, Chemical Reviews, 1996, vol. 96, No. 8, pp. 3147-3176. |
Pearson, E. R. et al., “Variation in TCF7L2 Influences Therapeutic Response to Sulfonylureas.” Diabetes, 2007, vol. 56, pp. 2178-2182. |
Pei, Z.: “From the bench to the bedside: Dipeptidyl peptidase IV inhibitors, a new class of oral antihyperglycemic agents” Current Opinion in Drug Discovery and Development, Current Drugs, London, GB vol. 11, No. 4, Jul. 1, 2008 pp. 512-532. |
Pietruck, F. et al., “Rosiglitazone is a safe and effective treatment option of new-onset diabetes mellitus after renal transplantation.” Transplant International, 2005, vol. 18, pp. 483-486. |
Pilgaard, K. et al., “The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men.” Diabetologia, 2009, vol. 52, pp. 1298-1307. |
Plummer, C.J.G. et al., “The Effect of Melting Point Distributions on DSC Melting Peaks.” Polymer Bulletin, 1996, vol. 36, pp. 355-360. |
Pospisilik, et al; Dipeptidyl Peptidase IV Inhibitor Treatment Stimulates ?-Cell Survival and Islet Neogenesis in Streptozotocin-Induced Diabetic Rats; Diabetes, vol. 52, Mar. 2003 pp. 741-750. |
Poudel, Resham R., “Latent autoimmune diabetes of adults: From oral hypoglycemic agents to early insulin.” Indian Journal of Endocrinology and Metabolism, 2012, vol. 16, Supplement 1, pp. S41-S46. |
Pratley, R. et al., “Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes.” Current Medical Research and Opinion, 2007, vol. 23, No. 4, pp. 919-931. |
Prescribing Information, Package insert for Leprinton tablets 100mg, Manufacturer: Tatsumi Kagaku Co., Ltd., Mar. 2003, pp. 1-3. |
Priimenko, B. A., et al; Synthesis and Pharmacological Activity of Derivates of 6,8-Dimethyl Imidazo(1,2-f) Xanthine-(Russ.); Khimiko-Farmatsevticheskii zhurnal (1984) vol. 18, No. 12 pp. 1456-1461. |
Radermecker, Regis et al., “Lipodystrophy Reactions to Insulin.” American Journal of Clinical Dermatology, 2007, vol. 8, pp. 21-28. |
Rask-Madsen, C. et al., “Podocytes lose their footing.” Nature, 2010, vol. 468, pp. 42-44. |
Rhee et al.: “Nitrogen-15-Labeled Deoxynucleosides. 3. Synthesis of [3-15N]-2′-Deoxyadenosine” J. Am. Chem. Soc. 1990, 112, 8174-8175. |
Rosenbloom, et al., “Type 2 Diabetes mellitus in the child and adolescent”, Pediatric Diabetes, 2008, p. 512-526. |
Rosenstock, et al., “Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component montherapy in patients with type 2 diabetes”. Diabetes, Obesity and Metabolism, Mar. 2007, vol. 9, No. 2, p. 175-185. |
Rosenstock, et al., Sitagliptin Study 019 Groups, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin, Clinical Therapeutics, 2006, vol. 28, Issue 10, p. 1556-1568. |
Rosenstock, J. et al., “Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA1c without causing weight gain or increased hypoglycaemia”. Diabetes, Obesity and Metabolishm, Dec. 2009, vol. 11. No. 12, p. 1145-1152. |
Rosenstock, J. et al., “Triple Therapy in Type 2 Diabetes.” Diabetes Care, 2006, vol. 29, No. 3, pp. 554-559. |
Rowe, R. et al., Handbook of Pharmaceutical Excipients, Fifth Edition, Pharmaceutical Press, 2006, pp. 389-395, 449-453, and 731-733. |
Rowe, R. et al., Handbook of Pharmaceutical Excipients, Fourth Edition, Pharmaceutical Press and American Pharmaceutical Association, 2003, pp. 323-332., 373-377, 609-611. |
Russell-Jones, D. et al., “Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial.” Diabetologia, 2009, vol. 52, pp. 2046-2055. |
Salomon, J., et al; Ultraviolet and g-Ray-Induced Reactions of Nucleic Acid Constituents. Reactions of Purines with Amines; Photochemistry and Photobiology (1974) vol. 19 pp. 21-27. |
Sarafidis, P. et al., “Cardiometabolic Syndrome and Chronic Kidney Disease: What is the link?” JCMS 2006, 1: p. 58-65. |
International Search Report for PCT/EP2010/064691 dated Jan. 20, 2011. |
International Search Report for PCT/EP2013/060309 dated Aug. 9, 2013. |
International Search Report for PCT/EP2013/070979 dated Nov. 26, 2013. |
International Search Report for PCT/EP2014/060160 dated Nov. 8, 2014. |
Inukai, T., “Treatment of Diabetes in Patients for Whom Metformin Treatment is Not Appropriate.” Modern Physician, 2008, vol. 28, No. 2, pp. 163-165. |
Inzucchi, Silvio E., “Oral Antihyperglycemic Therapy for Type 2 Diabetes.” The Journal of the American Medical Association, 2002, vol. 287, No. 3, pp. 360-372. |
Isomaa, B. et al., “Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome.” Diabetes Care, 2001, vol. 24, No. 4, pp. 683-689. |
Iwamoto, Yasuhiko, “Insulin Glargine.” Nippon Rinsho, 2002, vol. 60, Suppl. 9, pp. 503-515. |
Janumet Prescribing Information, revised Jan. 2008. |
Januvia Medication Guide, 2010. |
Januvia Prescribing Information and Product Label, 2006. |
Januvia, 25mg, 50mg, 100 mg, Summary of Product Characteristics, 2015, www.medicines.org.uk/EMC <http://www.medicines.org.uk/EMC>. |
Johansen, O. E. et al., “Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme.” Cardiovascular Diabetology, Biomed Central, 2012, vol. 11, No. 3, pp. 1-10. |
Johansen, O.E. et al., “b-cell Function in Latnet Autoimmune Diabetes in Adults (LADA) Treated with Linagliptin Versus Glimepiride: Exploratory Results from a Two Year Double-Blind, Randomized, Controlled Study.” www.abstractsonline.com, Jun. 10, 2012, XP-002708003. |
John Hopkins Children's Center, “Liver Disorders and Diseases.” Retrieved online May 26, 2014 <http://www.hopkinschildrens.org/non-alcoholic-fatty-liver-disease.aspx>. |
Jones, R.M. et al., “GPR119 agonists for the treatment of type 2 diabetes”. Expert Opinion on Therapeutic Patents 2009 Informa Healthcare for GBR LNKSD—DOI: 10.1517/13543770903153878, vol. 19, No. 10, Oct. 2009, p. 1339-1359. |
Kanada, S. et al., “Safety, tolerability, pharmacokenetics and pharmacodynamics of multiple doses of BI 1356 (proposed tradename ONDERO), a dipeptidyl peptidase 4 inhibitor, in Japanese patients with type 2 diabetes” Diabetes, vol. 57, No. Suppl. 1, Jun. 2008, p. A158-A159 and 68th Annual Meeting of the American Diabetes Association: San Francisco, CA, Jun. 6-10, 2008. |
Kelly. T., “Fibroblast activation protein-cx and dipeptidyl peptidase IV (CD26)P: Cell-surface proteases that activate cell signaling and are potential targets for cancern therapy”. Drug Resistence Update 8, 2005, vol. 8. No. 1-2, pp. 51-58. |
Kendall, D. M. et al., “Incretin Mimetics and Dipeptidyl Peptidase-IV Inhibitors: A Review of Emerging Therapies for Type 2 Diabetes.” Diabetes Technology & Therapeutics, 2006, vol. 8, No. 3, pp. 385-398. |
Kharkevich, D. A., “Educational Literature” Pharmacology (1987) Third Edition, Meditsina Press, Moscow pp. 47-48. |
Kibbe, A., Editor. Handbook of Pharmaceutical Excipients, Third Edition, Copovidon—pp. 196-197, Date of Revision: Dec. 16, 2008. Mannitol—pp. 424-425, Date of Revision: Feb. 19, 2009, Published in 2009. |
Kidney Disease (Nephropathy), Retrieved online May 13, 2013. www.diabetes.org/living-with-diabetes/complications/kidney-disease-nephropathy.html <http://www.diabetes.org/living-with-diabetes/complications/kidney-disease-nephropathy.html>. |
Kim, D. et al., “(2R)-4-Oxo-4-(3-(Trifluoremethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV inhibitor for the Treatment of Type 2 Diabetes.” Journal Med. Chem, 2005, 48, p. 141-151. |
Kim, Kwang-Rok et al., “KR-62436, 6-[2-[2-(5-cyano4,5-dihydropyrazol-1-yl)-2-oxoethylamino}ethylamino} nicotinonitrile, is a novel dipeptidyl peptidase-IV (DDP-IV inhibitor with anti-hyperglycemic activity” European Journal of Pharmacology 518, 2005, p. 63-70. |
Kiraly, K. et al., “The dipeptidyl peptidase IV (CD26, EC 3.4.14.5) inhibitor vildagliptin is a potent antihyperalgesic in rats by promoting endomorphin-2 generation in the spinal cord.” European Journal of Pharmacology, 2011, vol. 650, pp. 195-199. |
Kirpichnikov, D. et al., “Metformin: An Update.” Annals of Internal Medicine, 2002, vol. 137, No. 1, pp. 25-33. |
Kishore, Preeti MD., “Complications of Diabetes Mellitus.” Merck Manual Consumer Version, 2016, pp. 1-7. |
Klein, T. et al., “Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis.” Medical Molecular Morphology, 2014, vol. 47, pp. 137-149. |
Knorr, M. et al., “Comparison of Direct and Indirect Antioxidant Effects of Linagliptin (BI 1356, Ondero) with other Gliptins—Evidence for Anti-Inflammatory Properties of Linagliptin”. Free Radical Biology and medicine, Elsevier Science, U.S. vol. 49, Oct. 23, 2010, p. S197. |
Knowler, W.C. et al., “Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin.” The New England Journal of Medicine, 2002, vol. 346, No. 6, pp. 393-403. |
Komori, Kiyoshi., “Treatment of Diabetes in Patients for Whom Metforming Treatment is Not Appropriate” Modern Physician (2008) vol. 28, No. 2 pp. 163-165. |
Konstantinou, D. M. et al., “Pathophysiology-based novel pharmacotherapy for heart failure with preserved ejection fraction.” Pharmacology & Therapeutics, 2013, vol. 140, No. 2, pp. 156-166. |
Korom, S. et al; Inhibition of CD26/dipeptidyl peptidase IV activity in vivo prolongs cardiac allograft survival in rat recipients1,2, Transplantation, May 27, 1997, vol. 63, No. 10, pp. 1495-1500. |
Kroller-Schön, S. et al., “Glucose-independent Improvement of Vascular Dysfunction in Experimental Sepsis by Dipeptidyl Peptidase-4 Inhibition.” Cardiovascular Research, 2012, vol. 96, No. 1, pp. 140-149. |
Kumar, V. et al., “Maillard Reaction and Drug Stability.” Maillard Reactions in Chemistry, Food, and Health, 1994, No. 151, pp. 20-27. |
Kuno, Y. et al., “Effect of the type of lubricant on the characteristics of orally disintegrating tablets manufactured using the phase transition of sugar alcohol.” European Journal of Pharmaceutics and Biopharmaceutics, 2008, vol. 69, pp. 986-992. |
Lachman, L. et al., “The Theory and Practice of Industrial Pharmacy.” Varghese Publishing House, Third Edition, 1987, pp. 190-194. |
Lakatos, P. L. et al., “Elevated Serum Dipeptidyl IV (CD26, EC 3.4.14.5) Activity in Experimental Liver Cirrhosis.” European Journal of Clinical Investigation, 2000, vol. 30, No. 9, pp. 793-797. |
Lakatos, P. L. et al., “Elevated serum dipeptidyl peptidase IV (CD26, EC 3.4.14.5) activity in patients with primary biliary cirrhosis.” Journal of Hepatol, 1999, vol. 30, p. 740. |
Lambier, A.M. et al., Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences, 2003, 40(3), p. 209-294. |
Lee Jones, K. et al., “Effect of Metformin in Pediatric Patients With Type 2 Diabetes.” Diabetes Care, 2002, vol. 25, No. 1, pp. 89-94. |
Leibovitz, E. et al., “Sitagliptin pretreatment in diabetes patients presenting with acute coronary syndrome: results from the Acute Coronary Syndrome Israeli Survey (ACSIS).” Cardiovascular Diabetology, 2013, vol. 12, No. 1, pp. 1-7. |
Levien,T.L. et al, “New drugs in development for the treatment of diabetes”, Diabetes Spectrum, American Diabetes Association, US, vol. 22, No. 2, Jan. 1, 2009, pp. 92-106. |
Lieberman, H. et al., “Pharmaceutical Dosage Forms.” Marcel Dekker, Inc., 1980, vol. 1, p. 38. |
Lim, S. et al., “Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats.” Plos One, 2012, vol. 7, No. 4, pp. 1-11. |
Linagliptin Monograph, Published by VACO PBM-SHG US Veteran's Administration, 2011, pp. 1-17. |
Lindsay, J.R. et al., “Inhibition of dipeptidyl peptidase IV activity by oral metformin in Type 2 diabetes.” Diabetic Medicine, 2005, vol. 22, pp. 654-657. |
Lovshin, J.A. et al., “Incretin-based therapies for type 2 diabetes mellitus.” Nature Reviews Endocrinology, 2009, vol. 5, pp. 262-269. |
Lu, “High prevlaence of albuminuria in population based patients diagnosed with type 2 diabetes in the Shanghai downtown”, Diabestes Research and Clinical Practice (2007) 184-192. |
Lyssenko, V. et al., “Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.” The Journal of Clinical Investigation, 2007, vol. 117, No. 8, pp. 2155-2163. |
Sathananthan, A., et al., “Personalized pharmacotherapy for type 2 diabetes mellitus”. Personalized Medicine 2009 Future Medicine Ltd, vol. 6, No. 4, Jul. 2009, p. 417-422. |
Sauer, R, et al. “Water-soluble phosphate prodrugs of 1-Propargyl-7-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists”. Journal Med. Chem., vol. 43, Issue 3, Jan. 2000, p. 440-448. |
Schillinger, M. et al., “Restenosis after percutaneous angioplasty: the role of vascular inflammation.” Vascular Health and Risk Management, 2005, vol. 1, No. 1, pp. 73-78. |
Schmidt, D. et al., “Fibromatosis of Infancy and Childhood Histology, Ultrastructure and Clinicopathologic Correlation.” Zeitschrift für Kinderchirurgie, 1985, vol. 40, No. 1, pp. 40-46. |
Schnapp, G. et al., “Analysis of Binding Kinetics and Thermodynamics of DPP-4 Inhibitors and their Relationship to Structure.” 23rd PSDI, Protein Structure Determination in Industry, Tegernsee, Germany, Nov. 8-10, 2015. |
Schnapp, G. et al., “Analysis of binding kinetics and thermodynamics of DPPIV Inhibitors and their relationship to structure.” International Workshop: The aspect of time in drug design, Schloss Rauischholzhausen, Marburg, Germany, Mar. 24-27, 2014. |
Schnapp, G. et al., “Comparative Enzyme Kinetic Analysis of the Launched DPP-4 Inhibitors.” American Diabetes Association 74th Scientific Sessions, Poster 1048-P, 2014. |
Schnapp, G. et al., “Comparative Enzyme Kinetic Analysis of the Launched DPP-4 Inhibitors.” American Diabetes Association, Abstract 1048-P, 2014. |
Schurmann, C. et al., “The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Attenuates Inflammation and Accelerates Epithelialization in Wounds of Diabetic ob/ob Mice.” The Journal of Pharmacology and Experimental Therapeutics, 2012, vol. 342, No. 1, pp. 71-80. |
Schwartz, M. S. et al., “Type 2 Diabetes Mellitus in Childhood: Obesity and Insulin Resistance”. JAOA Review Article, vol. 108, No. 9, Sep. 2008, p. 518. |
Scientific Discussion, EMEA, Pramipexole, 2005, pp. 1-10. |
Scientific Discussion: “Eucreas. Scientific discussion”. Online Oct. 2007, p. 1-27, URL:http://www.emea.europa.eu/humandocs/PDFs/EPAR/eucreas/H-807-en6.pdf. see point 2. quality aspects pp. 2-4. (EMEA). |
Sedo, A. et al; “Dipeptidyl peptidase IV activity and/or structure homologs: Contributing factors in the pathogenesis of rheumatoid arthritis?” Arthritis Research & Therapy 2005, vol. 7, pp. 253-269. |
Shanks, N. et al., Are animal models predictive for humans?, PEHM, Philosophy, Ethics, and Humanaities in Medicine, 4(2), 2009, 1-20. |
Sharkovska, Y., et al., “DPP-4 Inhibition with Linagliptin Delays the Progression of Diabetic Nephropathy in db/db Mice.” 48th EASD Annual Meeting, Berlin, Abstract 35, Oct. 2012. |
Sheperd, Todd M. et al., “Efective management of obesity.” The Journal of Family Practice, 2003, vol. 52, No. 1, pp. 34-42. |
Shintani, Maki, et al., “Insulin Resistance and Genes” Circulatory Sciences (1997) vol. 17, No. 12 pp. 1186-1188. |
Shu, L. et al., “Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function.” Human Molecular Genetics, 2009, vol. 18, No. 13, pp. 2388-2399. |
Shu, L. et al., “Transcription Factor 7-Like 2 Regulates B-Cell Survival and Function in Human Pancreatic Islets.” Diabetes, 2008, vol. 57, pp. 645-653. |
Silverman, G. et al., “Handbook of Grignard Reagents.” 1996, Retrieved online: <http://books.google.com/books?id=82CaxfY-uNkC&printsec=frontcover&dq—intitle:Handbook+intitle:of+intitle:Grignard+intitle:Reagents&hl=en&sa=X&ei=g06GU5SdOKngsATphYCgCg&ved=0CDYQ6AEwAA#v=onepage&q&f=false>. |
Singhal, D. et al., “Drug polymorphism and dosage form design: a practical perspective.” Advanced Drug Delivery Reviews, 2004, vol. 56, pp. 335-347. |
Sortino, M.A. et al., “Linagliptin: a thorough characterization beyond its clinical efficacy.” Frontiers in Endocrinology, 2013, vol. 4, Article 16, pp. 1-9. |
St. John Providence Health Center, “Preventing Obesity in Children and Teens.” Retrieved from internet on Aug. 22, 2013, http://www.stjohnprovidence.org/Health I nfoLib/swarticle.aspx?type=85&id= P07863. |
Stahl, P.H., “Handbook of Pharmaceutical Salts” C.G. Wermuth, Wiley-VCH, 2002, pp. 1-374. |
Standl, E. et al., “Diabetes and the Heart.” Diabetes Guidelines (DDG), 2002, pp. 1-25. |
Sulkin, T.V. et al., “Contraindications to Metformin Therapy in Patients With NIDDM.” Diabetes Care, 1997, vol. 20, No. 6, pp. 925-928. |
Sune Negre, J. M. “New Galenic Contributions to Administration Forms”. Continued Training for Hospital Pharmacists 3.2., (Publication date unavailable), Retrieved from internet on Feb. 23, 2011, http://www.ub.es/legmh/capitols/sunyenegre.pdf. |
Suzuki, Y. et al., “Carbon-Carbon Bond Cleavage of a-Hydroxybenzylheteroarenes Catalyzed by Cyanide Ion: Retro-Benzoin Condensation Affords Ketones and Heteroarenes and Benzyl Migration Affords Benzylheteroarenes and Arenecarbaldehydes.” Chemical Pharmaceutical Bulletin, 1998, vol. 46(2), pp. 199-206. |
Tadayyon, M. et al., “Insulin sensitisation in the treatment of Type 2 diabetes.” Expert Opinion Investigative Drugs, 2003, vol. 12, No. 3, pp. 307-324. |
Takai, S. et al., “Significance of Vascular Dipeptidyl Peptidase-4 Inhibition on Vascular Protection in Zucker Diabetic Fatty Rats.” Journal of Pharmacological Sciences, 2014, vol. 125, pp. 386-393. |
Takeda Press Release: “Voglibose (BASEN) for the prevention of type 2 diabetes mellitus: A Randomized, Double-blind Trial in Japanese Subjects with Impaired Glucose Tolerance.” 2008, Retrieved online Jul. 6, 2015. https://www.takeda.com/news/2008/20080526_3621.html. |
Tamm, E, et al., “Double-blind study comparing the immunogenicity of a licensed DTwPHib-CRM197 conjugate vaccine (Quattvaxem TM) with three investigational, liquid formulations using lower doses of Hib-CRM197 conjugate”. Science Direct, Vaccine, Feb. 2005, vol. 23, No. 14, p. 1715-1719. |
Tanaka, S.. et al; “Suppression of Arthritis by the Inhibitors of Dipeptidyl Peptidase IV,” In. J. Immunopharmac., vol. 19, No. 1, pp. 15-24, 1997. |
Targher, G. et al., “Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients.” Diabetes Care, 2007, vol. 30, No. 5, pp. 1212-1218. |
Taskinen, M.-R. et al., “Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study.” Diabetes, Obesity and Metabolism, 2011, vol. 13, pp. 65-74. |
Third Party Observation for application No. EP20070728655, May 13, 2013. |
Thomas, L. et al., “BI 1356, a novel and selective xanthine beased DPP-IV inhibitor, exhibits a superior profile when compared to sitagliptin and vildagliptin.” Diabetologia, 2007, vol. 50, No. Suppl. 1, p. S363. |
Thomas, L., “Chronic treatment with the Dipeptidyl Peptidase-4 Inhibitor BI 1356[9R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione] Increases Basal Glucagon-Like Peptide-1 and Improves Glycemic Control in Diabetic Rodent Models” The Journal of Pharmacology and Experimental Therapeutics, Feb. 2009, vol. 328, No. 2, pp. 556-563. |
Thomas, Leo et al: “(R)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a Novel Xanthine-Based Dipeptidyl Peptidase 4 Inhibitor . . . ” Journal of Pharmacology and Experimental Therapeutics, 2008, vol. 325, No. 1, pp. 177. |
Thornber, C.W., “Isosterism and Molecular Modification in Drug Design.” Chemical Society Reviews, 1979, pp. 563-580. |
Tounyoubyou, “Symposium-19: Future Perspectives on Incretion Therapy in Diabetes.” 2008, vol. 51, Suppl. 1, p. S-71, S19-2. |
Tradjenta, Highlights of Prescribing Information (revised Sep. 2012). |
Tribulova, N. et al. “Chronic Disturbances in NO Production Results in Histochemical and Subcellular Alterations of the Rat Heart.” Physiol. Res., 2000, vol. 49, No. 1, pp. 77-88. |
Tsujihata, et al., “TAK-875, an orally available G protein-Coupled receptor 40/Free fatty acid receptor 1 Agonist, Enhances Glucose Dependent Insulin Secretion and improves both Postprandial and Fasting hyperglycemic in type 2 Diabetic rats”, J. Pharm Exp. 2011, vol. 339, No. 1, p. 228-237. |
Tsuprykov, O. et al., Linagliptin is as Efficacious as Telmisartan in Preventing Renal Disease Progression in Rats with 5/6 Nephrectomy, 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 2013. |
Turner, R.C. et al., “Glycemic Control With Diet, Sulfonylurea, Metformin, or Insulin in Patients With Type 2 Diabetes Mellitus Progressive Requirement for Multiple Therapies (UKPDS 49)” The Journal of the American Medical Association, 1999, vol. 281, No. 21, pp. 2005-2012. |
U.S. Appl. No. 15/235,575, filed Aug. 12, 2016, Inventor: Klaus Dugi. |
Uhlig-Laske, B. et al., “Linagliptin, a Potent and Selective DPP-4 Inhibitior, is Safe and Efficacious in Patients with Inadequately Controlled Type 2 Diabetes Despite Metformin Therapy”. 535-P Clinical Therapeutics/New Technology—Pharmacologic Treatment of Diabetes or Its Complications, Posters, vol. 58, Jun. 5, 2009, p. A143. |
United Healthcare, “Diabetes.” Retrieved from internet on Aug. 22, 2013, http://www.uhc.com/source4women/health_topics/diabetesirelatedinformation/dOf0417b073bf11OVgnVCM1000002f1Ob1Oa _. htm. |
Van Heek, M. et al., “Ezetimibe, a Potent Cholesterol Absorption Inhibitor, Normalizes Combined Dyslipidemia in Obese Hyperinsulinemic Hamsters.” Diabetes, 2001, vol. 50, pp. 1330-1335. |
Rabinovitch, Thyophylline protects against diabetes in BB rats, Diabetologica, vol. 33, 1990. |
International Search Report for PCT/EP2019/069131 dated Oct. 8, 2019. |
Gallwitz, Safety and Efficacy of linagliptin type 2 diabetes patients, Therapeutic advances in Endocrinology, vol. 4, 2013. |
Lehrke, Safety and Efficacy of linagliptin in patients with Type 2 diabetes, Journal of Diabetes, vol. 30, 2016. |
Clinical Trials.gov, for BI1356 for Patients in Combination wtih Metormin in Patients with Type 2 Diabetes.2014. |
Gross, Diabetic Neuropathy,Diabetes Care, vol. 28, 2005. |
Scheen, Lina plus metformin, Expert opinion on Drug metabolism & Toxicology, 2013. |
McGill, Long term Efficacy and Safety of Linaglip in patients with Type 2 diabetes, Clinical Care, vol. 35, 2013. |
Bell,Diabetes Care, The frequent, forgotten, and and often fatal complication of diabetes, vol. 26, 2003. |
Cygankiewicz, Andrzej et al., Investigations into the Piperazine Derivatives of Dimethylxanthine:, Acta Polon. Pharm. [Papers of Polish Pharmacology], XXXOV, No. 5, pp. 607-612, 1977. |
Dave, K.G. et al., “Reaction of Nitriles under Acidic Conditions, Part I. A General Method of Synthesis of Condensed Pyrimidines”, J. Heterocyclic Chemistry, BD, 17, 1, ISSN 0022-152X,Nov. 1980, p. 1497-1500. |
Dave, Rutesh H. “Overview of pharmaceutical excipients used in tablets and capsules.” Drug Topics, Oct. 24, 2008. |
Deacon, Carolyn F., et al., “Linagliptin, a xanthine based dipeptyl peptidase-4 inhibitor with an unusual profile for the treatment of type 2 diabetes” Expert Opinion Investig. Drugs 2010, 19 (1) p. 133-140. |
Deacon, C.F. et al; “Dipeptidyl peptidase IV inhabitation as an approach to the treatment and prevention of type 2 diabetes: a historical perspective;” Biochemical and Biophysical Research Communications (BBRC) 294 (2002) 1-4. |
Deacon, C.F., et al. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opinion on Investigational Drugs, Sep. 2004, vol. 13, No. 9, p. 1091-1102. |
Deacon, Carolyn F., “Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for Type 2 diabetes.” Expert Opinion on Investigational Drugs, 2007, vol. 16, No. 4, pp. 533-545. |
Definition of “prevent”, e-dictionary, Aug. 15, 2013, http://dictionary.reference.com/browse/prevent. |
DeMeester, I. et al.; “CD26, let it cut or cut it down”, Review: Immunology Today; Aug. 1999, vol. 20, No. 8 pp. 367-375. |
Demuth, H-U. et al., “Type 2 diabetes—Therapy with dipeptidyl peptidase IV inhibitors”. Biochimica et Biophysica Acta, vol. 1751(1), 2005, p. 33-44. |
Diabetes Frontier, 2007, vol. 18, No. 2, p. 145-148. |
Diabetes Health Center, “Diabetic Retinopathy—Prevention.” Retrieved online Mar. 22, 2011. www.diabetes.webmd.com/tc/diabetic-retinopathy-prevention <http://www.diabetes.webmd.com/tc/diabetic-retinopathy-prevention?print=true>. |
Diabetesincontrol.com “EASD: Eucreas, a Combination of Galvus and Metformin, Recommended for Approval.” Diabetes In Control.com, Sep. 25, 2007, Retrieved from internet on Nov. 30, 2012, http:/ /www.diabetesincontrol.com/articles/53-diabetes-news/5145. |
Diabetic Neuropathy, Retrieved online Mar. 6, 2012. www.mayoclinic.com/health/diabetic-neuropathy/DS01045/METHOD=print&DSE <http://www.mayoclinic.com/health/diabetic-neuropathy/DS01045/METHOD=print&DSE>. |
Dittberner, S. et al., “Determination of the absolute bioavailability of BI 1356, a substance with non-linear pharmacokinetics, using a population pharmacokinetic modeling approach.” Abstracts of the Annual Meeting of the Population Approach Group in Europe, 2007. |
Drucker, Daniel J., “Dipeptidyl Peptidase-4 Inhibition and the Treatment of Type 2 Diabetes.” Diabetes Care, 2007, vol. 30, No. 6, pp. 1335-1343. |
Drucker, et al.., The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368: 1696-705. |
Dugi, K. et al., “Safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 1356, a novel DPP-IV inhibitor with a wide therapeutic window.” Diabetic Medicine, 2006, vol. 23, Suppl. 4, p. 300. |
Dugi, K.A. et al., “BI 1356, a novel xanthine-based DPP-IV inhibitor, exhibits high potency with a wide therapeutic window and significantly reduces postprandial glucose excursions after an oGTT”. Diabetologia, vol. 50, No. Suppl 1, Sep. 2007, p. S367, and 43rd Annual Meeting of the European Association for the Study of Diabetes; Amsterdam, Netherlands, Sep. 18-21, 2007. |
Dunitz, J. et al., “Disappearing Polymorphs.” Acc. Chem. Res. 1995, vol. 28, No. 4, pp. 193-200. |
Eckhardt Matthias et al: 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-yny 1-3-methyl-1-(4-methyl-quina zolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes: Journal of Medicinal Chemistry, American Chemical Society. Washington.; US, vol. 50, No. 26, Dec. 1, 2007, p. 6450-6453. |
Eckhardt, M. et al., “3,5-dihydro-imidazo[4,5-d]pyridazin-4-ones: a class of potent DPP-4 inhibitors” Bioorganic & Medicinal Chemistry Letters, Pergamon, Elsevier Science, GB, vol. 18, No. 11, Jun. 1, 2008, pp. 3158-3162, XP022711188. |
Edosada, C. Y. et al. “Selective Inhibition of Fibroblast Activation Protein Protease Based on Dipeptide Substrate Specificity.” The Journal of Biological Chemistry, 2006, vol. 281, No. 11, pp. 7437-7444. |
Elrishi M A et al: “The dipeptidyl-peptidase-4 (D::-4) inhibitors: A new class of oral therapy for patients with type 2 diabetes mellitus” Practical Diabetes International Chichester, vol. 24, No. 9, Nov. 1, 2007 pp. 474-482. |
EMEA Guidelines on Eucreas®, 2007, pp. 1-27. |
EMEA Guidelines on Galvus®, 2007, pp. 1-34. |
EMEA: European Medicines Agency, “Galvus (vildagliptin)” Retrieved online on Jan. 21, 2016. |
EMEA: European Medicines Agency, ICH Topic E4, “Dose Response Information to Support Drug Registration.” 1994, pp. 1-10. |
EU Clinical Trial Register, “A multicenter, international, rendomized, parallel group, double-blind, placebo-controlled, cardiovascular safety and renal microvascular outcome study with linagliptin, 5 mg once daily in patients with type 2 diabetes mellitus at high vascular risk.” Aug. 19, 2015. |
Eucreas Scientific Discussion, 2007, p. 1-27, www.emea.europa.eu/humandocs/PD/Fs/EPAR/eucreas/H-807-en6.pdf, Anonymous. |
European Search Report for EP 08 15 9141 dated Apr. 6, 2009 (European counterpart of U.S. Appl. No. 12/143,128). |
Eyjolfsson, Reynir “Lisinopril-Lactose Incompatibility.” Drug Development and Industrial Pharmacy, 1998, vol. 24, No. 8, pp. 797-798. |
Fantus, George, “Metformin's contraindications: needed for now.” Canadian Medical Association Journal, 2005, vol. 173, No. 5, pp. 505-507. |
Feng, J. et al., “Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV.” Journal of Medicinal Chemistry, 2007, vol. 50, No. 10, pp. 2297-2300. |
Ferreira, L. et al., “Effects of Sitagliptin Treatment on Dysmetabolism, Inflammation, and Oxidative Stress in an Animal Model of Type 2 Diabetes (ZDF Rat).” Mediators of Inflammation, 2010, vol. 2010, pp. 1-11. |
Ferry, Robert Jr., “Diabetes Causes.” eMedicine Health, MedicineNet.com, 2013, Retrieved from internet on Aug. 22, 2013,<http://www onhealth.com/diabetes_health/page3.htm#diabetes_causes>. |
Flatt, P.R. et al., “Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes.” Frontiers in Bioscience, 2008, vol. 13, pp. 3648-3660. |
Florez, J. et al. “TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program.” The New England Journal of Medicine, 2006, vol. 355, No. 3, pp. 241-250. |
Forst, T. et al., “The Novel, Potent, and Selective DPP-4 Inhibitor BI 1356 Significantly Lowers HbA1c after only 4 weeks of Treatment in Patients with Type 2 Diabetes.” Diabetes, Jun. 2007, Poster No. 0594P. |
Forst, T. et al., “The oral DPP-4 inhibitor linagliptin significantly lowers HbA1c after 4 weeks of treatment in patients with type 2 diabetes mellitus.” Diabetes, Obesity and Metabolism, 2011, vol. 13, pp. 542-550. |
Fukushima et al., Drug for Treating Type II Diabetes (6), “action-mechanism of DPP-IV inhibitor and the availability thereof” Mebio, 2009, vol. 26, No. 8, p. 50-58. |
Gall, “Prevalence of micro-and macroalbuminuria, arterial hypertension, retinopathy and large vessel disease in European type 2 (non-insulin dependent) diabetic patients”, Diabetologia (1991) 655-661. |
Gallwitz, B. “Sitagliptin with Metformin: Profile of a Combination for the Treatment of Type 2 Diabetes”. Drugs of Today, Oct. 2007, 43(10), p. 681-689. |
Gallwitz, B. et al., “2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial.” Lancet, 2012, vol. 380, pp. 475-483. |
Gallwitz, B. et al., “Saxagliptin, a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes”. IDRUGS, vol. 11, No. 12, Dec. 2008, p. 906-917. |
Gallwitz, B. et al., DPP IV inhibitors for the Treatment of Type 2 Diabetes; Diabetes Frontier (2007) vol. 18, No. 6 pp. 636-642. |
Gallwitz, B., “Safety and efficacy of linagliptin in type 2 diabetes patients with common renal and cardiovascular risk factors.” Therapeutic Advances in Endocrinology and Metabolism, 2013, vol. 4, No. 3, pp. 95-105. |
Galvus (Vildagliptin) Scientific Discussion, EMEA, 2007, pp. 1-34. |
Garber, A. J. et al., “Effects of Vildagliptin on Glucose Control in Patients with Type 2 Diabetes Inadequately Controlled with a Sulphonylurea”. Diabetes, Obesity and Metabolism (2008) vol. 10 pp. 1047-1055. |
Garber, A.J. et al., “Simultaneous glyburide/metformin therapy is superior to component monotherapy as an initial pharmacological treatment for type 2 diabetes.” Diabetes, Obesity and Metabolism, 2002, vol. 4, pp. 201-208. |
Abdoh, Amlodipine Besylate-Excipients Interaction in Solid Dosage Form, Phamra Dev. and Strategy, 2018. |
Bruni, Drug Excipient Compatibility Studiesm J. of Thermal Analysis, 2018. |
Crowley, Drug-Excipient interactions, Pharma Tech Europe, vol. 13, 2001. |
Macdonald, No fraud, no conspiracy, no error, Pharmatechnologist, 2017. |
Hanrinwon, Pharmaceutical Subcommittee, Pharmaceutics, p. 284-288, 1995. |
Nathan, Managment of Hyperglycemia in Type 2 Diabetes, Diabetes Care, vol. 31, 2008. |
Eckhardt, 8-)3-(R)-Aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3.7-dihyfropurine-2.6-dione (BI 1356), a highly potent, Selective, long-acting and Orally Bioavailable DPP-4 Inhibitor, J. Med Chem. vol. 50, 2007. |
Forst, The novel, potent, and selective DPP-4 inhibitor, ADA Poster, 2007. |
Heise, Pharmacokinetics, pharmacodynamics, and tolerablity of mutiple does of linagliptin, Diabetes, Obesity and Metabolism, vol. 11, 2009. |
Schafer, Impaired glucagen like peptide 1 induced insulin secretions in carriers of transcription, Diabetologica, vol. 50, 2007. |
Hu, Research and Application, Biomedical Info in Translational Research, 2008. |
Pearson, Variation in TCF7L2Influences Therapeutic Response to Sulfonylreas, Diabetes, vol. 56, 2007. |
Florez, Genetic Susteptibility to Type 2 Diabetes, J. of Diabetes, vol. 3, 2009. |
Levien, New Drugs in Development for the Treatment of Diabetes, Diabetes Spectrum, vol. 22, 2009. |
Graefe-Mody, Evaluation of the Potential for steady state phamracokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin, Current Medical Research and Opinion, vol. 25, 2009. |
Encyclopedia of Pharma Technology, Swarbrick, 3rd Ed., vol. 1, Absorption of Solid Surfaces, 2007. |
Ahren, Emerging Dipeptyl peptidase-4 inhibitors for the treatment of diabetes, Expert Opinion on Emerging Drugs, vol. 13, 2008. |
Ohlden, New data from Boehringer INgelheim's Ongoing Linagliptin Trial Programme Shows Promising Safety and Efficacy results, Newswire, 2020. |
Lovshin, Incretin based therapies for type 2 diabetes mellitus, Nature, vol. 5, 2009. |
Clinical Trials, NCT006002472, BI 1356 In combination with Metformin submitted Feb. 27, 2014. |
Wu, Primacy of the 3b Approach to Control risk factors for Cardiovascular dissease in type 2 diabetes patient,s Diabetes Mellitus and Cardio Disease, People's Military Press, 2005. |
Diabetes and Foot Ulcers, www.diabetes.co.uk/diabetes-comolications/diabetic-foot-ulcers.html, 2018. |
Nationale Versorgungs-Leitlinie, Diabetes Mellitus, 2004. |
Deutsche Evidenzbasierte Diabetes-Leitlinien, Diabetes and Herz, 2002. |
Menielly, Diabetes in Elderly adults, J. of Gerontolgy, vol. 56A, 2001. |
Herrington, Metformin, Effective ans safe in renal Disease? Int. Urol. Nephrol. vol. 40, 2008. |
Bruni, Drug Excipient compatibility, Journal of Thermal Analysis and Calorimetry, vol. 68, 2002. |
Kibbe, Handbook of Pharmaceutical Excipients, 3rd Edition, 2009, p. 104-107. |
Abdoh, Amlodipine besylate excipients interaction in solid dosage form, Pharmaceutical Development and Technology, vol. 9, 2004. |
Crowley, Drug-Excipients Interactions, Pharmaceutical Technology Europe, vol. 13, 2001. |
Wade, Organic Chem, 6th Edition, 2006, p. 918, 943-956. |
News Article, https:/www.in-phamratechnologist.com-Article-France-and-maerck-say-reformulated-Euthyrox-is-safe.)—Sep. 17, 2017. |
Hu, Diabetes Mellitus and Heart Disease, People's Military Press, 2005. |
Fadini, The oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients with Type 2 Diabetes, Diabetes Care, vol. 33, 2010. |
Cade, Diabetes Related Microvascular Diseases in the Physical Therapy Setting, Journal of the American Physical Therapy Assoc., 2008. |
Makino, Decreased CirculatingCD-34 cells, Diabetic Medicine, 2009. |
Pink Sheet Daily, Boehringer/Lilly's Linagliptin Approved, 2011. |
Ahren, Dipeptidyl Peptidase-4 Inhibitors, Diabetes Care, vol. 30, 2007. |
Deacon, Linagliptin, a xanthing based dipeptidyl peptidase 4 inhibitor, Informa Healthcare, vol. 19, 2010. |
Fowler, Microvascular and Macrovascular Complications of Diabetes, Diabetes Foundation, vol. 26, 2008. |
Brosius, Mouse Models of Diabetic Neuropathy, JASN, vol. 20, 2009. |
Kern, Linagliptin Improves Insulin Sensitivity, PLOSONE, vol. 7. 2012. |
Kosugi, eNOS KNockout Mice with advanced diabetic neuropathy have less benefir from Renin-Angiostatin Blockade than from Aldosterone Receptor Antagonists, Amer. J. of Pathology, vol. 176, 2010. |
Schmeider, Telmisartan in incipient and overt renal disease, J. Nephrol, vol. 24, 2011. |
Stedman's Medical Doctionary, 27th edition, Def. of nephropathy, 1999. |
Clarivate Analytics on STN: Confirmation of the public accessibility of Schmeider before May 31, 2011. |
Anonymous, New England Journal of Medicine, The effect of intensive treatment of diabetes on the development and progession of long term complicationsin insulin dependent mellitus, vol. 329, 1993. |
Hanrimwon, Pharmaceutics Subcommitee, 2000, p. 321-322. |
Eckhardt, 8-(3-(R)-Aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BO1356), Journal of Medicinal Chem., vol. 50, 2007, p. 6450-5453. |
Heizmann, Xanthines as a scaffold for molecular diversity, Molecular Diversity, vol. 2, 1996. |
Slotta, On Biguanides, Chem. Institute at the Univ. of Wroclaw, vol. 62, 1929. |
Laugesen, Latent Autoimmune diabetes of the adult: current knowledge and uncertainty, vol. 10, 2015., Diabetic medicine. |
Johansen, Diabetes Care, C-peptide Levels in latent Automimmune Diabetes in Adults treated with Linagliptin vs. Glimepiride, vol. 37, 2014. |
Drucker, Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line, Proc. Natl. Acad. Sci, vol. 84, a97. |
Mojsov, Insulintropin: Glucagin like peptide: Lab of Molecular Endocrinology, vol. 79, 1987, p. 616-619. |
Holst,Role on incretin hormones in the regulation of insulin, Am j. Physiol Endocrinol Metab., 2004. |
Matsuyama, Glucagen like peptide: a ptotent glucagonostatic hormone, Diabetes Research, 1988, p. 281-288. |
Wettergren, Truncated GLP-1, Inhibits Pancreatic and Gastric Functions in Man, 1993, p. 665-673. |
Li, Glucagen like Peptide 1 Receptor Signaling Modulates b cell apoptosis, Journal of Biological Chem, 2003. |
Drug Data Report, 1994, Source, Smith Kline Beechman, Treatments for Septic Shock, p. 459. |
Horie, Biomedcentral, Design, statistical analsysis and sample size calculation of a phase IIb/III study of linagliptin vs. voglibose and placebo, 2009. |
International Search report for PCT/EP2019/069126, dated Oct. 2, 2019. |
Press, Synthesis of 5,6 Dimethoxyquinazolin-2(1-H) ones, J. Heterocyclic Chwm, 1986. |
Adams, Pub Pharmafile, 2011, Boehringer-lilly launch diabetes drug tradjenta in US. |
Excerpt from Orange Book of Product Tradjenta, Feb. 5, 2011. |
Roy, Pharmaceutical Impurities, PharmSciTech, 2002. |
Publication Boehringer Ingelheim and Lilly's New type 2 Diabetes Treatment tradjenta, 2015, p. 1-7. |
Donelly, Vascular Complications of Diabetes, MBJ, vol. 320, 2000. |
Smithies, The Jackson Lab, Mouse Strain Datasheet, 2019, p. 1-2. |
American Diabetes Assoc., Diagnosis and Classification of Diabetes Mellitus, vol. 29, 2006. |
Deshpande, American Physical Therapy Assoc., Epidemiology of Diabetes related complications, 2008, vol. 88. |
Falanga, Lancet, Wound healing and impairment in the diabetic foot, vol. 366, 2005. |
Who drug information, International nonproprietary Names for Pharmaceutical Substances, vol. 23, 2009. |
Thielitz, Inhibitors of Dipeptidyl Peptidase IV and aminopeptidase N target Major Pathogenetic steps in Acne initiation, Journal of inventigative Dermatology, 2007. |
Rai, Effect of Glycemic Control on apoptosis in diabetic wounds, Journal of Wound care, vol. 14, 2005. |
Mcintosh, Dipeptidyl Synthase IV inhibitors, Regulatory Peptides, vol. 128, 2005. |
Kaji, Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats, J. Gastro, 2012. |
Gorrell, Fibroblast Activation Protein, Handbook of Proteolytic Enzymes, 3rd ed., 2013. |
Mclennan, Molecular aspects of wound healing in diabetes, Dept. of Endocrinology, Univ of Sydney, vol. 14, 2006. |
Pradham, Wound-healing abnormalities in Diabetes, Dept. of surgertm Harvard, Touch Briefings, 2007. |
FDA Drug Safety Communication, FDA revises warnings regarding diabetes medicine metformin in certain patients with reduced kidney function, Apr. 8, 2016. |
Groop, Diabetologica, 2012, vol. 55. |
Basi, Diabetes Care, vol. 31, 2008. |
Donnelly, BMJ, Vascular complications of diabetes, 2000. |
Kendall, Emerging Treatments in Diabetes Care, Effects of Exenatide on Glycemic Control over 30 weeks in Patients with Type 2 Diabetes, vol. 28, 2005. |
Sampanis, Hippokratia, Management of Hyperglcemia in patients with diabetes mellitus and chronic renal failure, vol. 12, p. 22-27, 2008. |
Hasanato, Diagnostic Efficacy of random albumin creatinine ration, Saudi Med, J., 2016, vol. 37. |
Forst, The oral DPP 4 inhibitor linagliptin significantly lowers HbA1c after 4 weeks of treatment in patients with diabetes, Diabetes Obes Metab, vol. 13, 2011. |
Ahren, Vascular Health and Risk Management, Novel combination treatment of type 2 diabetes DPP-4 inhibition plus metformin, 2008, p. 383-394. |
Fuchs, Journal of Pharmacy and Pharmacology, Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans, 2009. |
Linagliptin, Pub Chem, Clinical Trial Search of Japan, https;//pubchem.ncbi.nlm.nih.gov/compound/10096344 dated Jun. 25, 2020. |
Ristic, Diabetes, Obesity and Metabolism, Improved Glycemic Control with dipeptidyl peptidase-4 inhibition in patients in patients with type 2 diabetes, 2005. |
Aschner, Emerging Treatments and Technologies, Effect of the Dipepttidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy on Glycemic Control in Patients with Type 2 Diabetes, vol. 29, 2006. |
Levien, Diabetes Spectrum, New Drugs in Development for the Treatment of Diabetes, vol. 22, 2009. |
Mikhail, Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials, expert Opinion on Investigational Drigs, 2008. |
Huettner, Diabetes, Novel and Selective Xanthine, Jun. 2007 Supplement vol. 56. |
Heizmann, Xanthines as scaffold for molecular diversity, Molecular doversity, vol. 2, 1996, p. 171-174. |
Rabinovitch, Theophylline protects against diabetes in BB rats, Diabetologica, 1990. |
De galan, Theophylline Improves Hypoglycemia Unawareness, Diabetes, vol. 51, 2002. |
Mark, A novel and Selective Xanthine Based Competitive DPP-IV Inhibitor, Diabetes, vol. 56, 2007. |
Garber, A.J. et al., “Update: Vildaglitin for the treatment of Type 2 diabetes” Expert Opinion on Investigational Drugs, 200801GB, vol. 17, No. 1, Jan. 2008, p. 105-113. |
Garcia-Soria, et al., “The dipeptidyl peptidase-4 inhibitor PHX1149 improves blood glucose control in patents with type 2 diabetes mellitus”. Diabetes, Obesity and Metabolism, Apr. 2008, vol. 10, No. 4, p. 293-300. |
Geka, 2001, vol. 67, No. 11, p. 1295-1299. |
Gennaro, Alfonso R. Remington Farmacia, 2003, Spanish copy: p. 828, English copy: pp. 711-712, Preformulation, Chapter 38. |
Gennaro, Alfonso R., Remington Farmacia, 19th Edition, Spanish copy, 1995, p. 2470. |
Gennaro, Alfonso, R; Remington: The Science and Practice of Pharmacy: Oral Solid Dosage Forms; Mack Publishing Company, Philadelphia, PA (1995) vol. II, 19th Edition, Ch. 92 pp. 1615-1649. |
Gennaro, Alfonso; Remington: The Science and Practice of Pharmacy, Twentieth Edition, 2000, Chapter 45, pp. 860-869. |
Giron, D.; Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates; Thermochimica Acta (1995) vol. 248 pp. 1-59. |
GLUCOPHAGE® Prescribing Information, 2001. |
Glucotrol XL (glipizide), package insert, Pfizer, Apr. 1, 2002. |
Goldstein, L.A., et al., “Molecular cloning of seprase: a serine integral membrane protease from human melanoma.” Biochimica et Biophysica Acta, vol. 1361, 1997, No. 1, pp. 11-19. |
Gomez-Perez, et al, “Insulin Therapy:current alternatives”, Arch. Med.Res. 36: p. 258-272 (2005). |
Goodarzi, M.O. et al., “Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents.” Diabetes, Obesity and Metabolism, 2005, vol. 7, pp. 654-665. |
Graefe-Mody et al., “The novel DPP-4 inhibitor BI 1356 (proposed tradename ONDERO) and Metformin can be Safely Co-administered Without Dose Adjustment.” Poster No. 553-P ADA Jun. 6-10, 2008, San Francisco http://professional.diabetes.org/content/posters/2008/p553-p.pdf. |
Graefe-Mody, et al; Evaluation of the Potential for Steady-State Pharmacokinetic and Phamacodynamic Interactions Between the DPP-4 Inhibitor Linagliptin and Metformin in Healthy Subjects; Currents Medical Research and Opinion (2009) vol. 25, No. 8 pp. 1963-1972. |
Graefe-Mody, U. et al., “Effect of Renal Impairment on the Pharmacokinetics of the Dipeptidyl Peptidase-4 Inhibitor Linagliptin.” Diabetes, Obseity and Metabolism, 2011, pp. 939-946. |
Greene, T.W, et al., “Protection for the Amino Group”. Protective Groups in Organic Synthesis, 3rd edition, 1999, p. 494-653. |
Greischel, et al., Drug Metabolism and Deposition, “The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Exhibits Time-and Dpse-Dependent Localization in Kidney, Liver, and Intestine after Intravenous Dosing: Results from High Resolution Autoradiography in Rats”, 2010, vol. 38, No. 9, p. 1443-1448. |
Groop, P.-H. et al., “Effects of the DPP-4 Inhibitor Linagliptin on Albuminuria in Patients with Type 2 Diabetes and Diabetic Nephropathy.” 48th EASD Annual Meeting, Berlin, Abstract 36, Oct. 2012. |
Guglielmi, C. et al., “Latent autoimmune diabetes in the adults (LADA) in Asia: from pathogenesis and epidemiology to therapy.” Diabetes/Metabolism Research and Reviews, 2012, vol. 28, Supplement 2, pp. 40-46. |
Gupta, V. et al., “Choosing a Gliptin.” Indian Journal of Endocrinology and Metabolism, 2011, vol. 15, No. 4, pp. 298-308. |
Gwaltney, S. “Medicinal Chemistry Approaches to the Inhibition of Dipeptidyl Peptidase IV”, Current Topics in Medicinal Chemistry, 2008, 8, p. 1545-1552. |
Gwaltney, S.L. II et al., “Inhibitors of Dipeptidyl Peptidase 4.” Annual Reports In Medicinal Chemistry, 2005, vol. 40, pp. 149-165. |
Hainer, Vojtech MD, PHD “Comparative Efficiency and Safety of Pharmacological Approaches to the Management of Obesity.” Diabetes Care, 2011, vol. 34, Suppl. 2, pp. S349-S354. |
Halimi, “Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet”, Vascular Health and Risk Management, 2008 481-92. |
Halimi, S. et al., “Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet.” Vascular Health and Risk Management, 2008, vol. 4, No. 3, pp. 481-492. |
Haluzik, M. et al., “Renal Effects of DPP-4 Inhibitors: A Focus on Microalbuminuria.” International Journal of Endocrinology, 2013, vol. 35, No. 6, pp. 1-7. |
Hammouda, Y. et al., “Lactose-induced Discoloration of Amino Drugs in Solid Dosage Form.” Die Pharmazie, 1971, vol. 26, p. 181. |
Hansen, H. et al., “Co-Administration of the DPP-4 Inhibitor Linagliptin and Native GLP-1 Induce Body Weight Loss and Appetite Suppression.” 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 21, 2013. |
Hashida, Mitsuru, “Strategies for designing and developing oral administration formulations.” Yakuji-Jiho, Inc., 1995, pp. 50-51 and 89. |
Hayashi, Michio., “Recipe for Oral Hypoglycemic Agents to Pathological Condition” Pharmacy (2006) vol. 57, No. 9 pp. 2735-2739. |
He, Y. L. et al., “Bioequivalence of Vildagliptin/Metformin Combination Tablets and Coadministration of Vildagliptin and Metformin as Free Combination in Healthy Subjects”. J. Clinical Pharmacology, 2007, vol. 47, No. 9, Abstracts of the 36th Annual Meeting of the American College of Clinical Pharmacology, San Francisco, CA, Abstract 116, p. 1210. |
He, Y.L. et al., “The influence of hepatic impariment on the pharmacokinetics f the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin” European Journal of Clinical Pharmacology, vol. 63, No. 7, May 8, 2007, p. 677-686. |
He, Y.L. et al., “The Influence of Renal Impairment on the Pharmacokinetics of Vildagliptin.” Clinical Pharmacology & Therapeutics, 2007, vol. 81, Suppl. 1, Abstract No. PIII-86. |
Headland, K. et al., “The Effect of Combination Linagliptin and Voglibose on Glucose Control and Body Weight.” 73rd Annual Meeting Science Session, ADA, Chicago, Jun. 21, 2013. |
Heihachiro, A. et al., “Synthesis of Prolyl Endopeptidase Inhibitors and Evaluation of Their Structure-Activity Relationships: In Vitro Inhibition of Prolyl Endopeptidase from Canine Brain.” 1993, Chemical and Pharmaceutical Bulletin, vol. 41, pp. 1583-1588. |
Heise, et al., Diabetes, Obesity and Metabolism, “Pharmacokinetics, pharmacokinetics and tolerability of mutilple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients”, 2009, vol. 11, No. 8, p. 786-794. |
Heise, T. et al., “Treatment with BI 1356, a Novel and Potent DPP-IV Inhibitor, Significantly Reduces Glucose Excursions after an oGTT in Patients with Type 2 Diabetes.” A Journal of the American Diabetes Association, Jun. 2007, vol. 56, Supplement 1, Poster No. 0588P. |
Herman, G. A. et al., “Dipeptidyl Peptidase-4 Inhibitors for the Treatment of Type 2 Diabetes: Focus on Sitagliptin.” Clinical Pharmacology and Therapeutics, 2007, vol. 81, No. 5, pp. 761-767. |
Herman, Gary et al. “Co-Administration of MK-0431 and Metformin in Patients with Type 2 Diabetes Does Not Alter the Pharmacokinetics of MK-0431 or Metformin” (2005) Journal of American Diabetes Association vol. 54, Supplement 1, 3 pgs. |
Hermann, Robert, et al; Lack of Association of PAX4 Gene with Type 1 Diabetes in the Hungarian Populations; Diabetes (2005) vol. 54 pp. 2816-2819. |
Hermansen, K., “Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Glimepiride Alone or on Glimepiride and Metformin”. Diabetes, Obesity and Metabolism (2007) vol. 9, No. 5 pp. 733-745. |
Hilfiker, R. et al., “Relevance of Solid-state Properties for Pharmaceutical Products.” Polymorphism in the Pharmaceutical Industry, 2006, Chapter 1, pp. 1-19. |
Hinke, S.A. et al., “Metformin Effects on Dipeptidylpeptidase IV Degradation of Glucagon-like Peptide-1.” Biochemical and Biophysical Research Communications, 2002, vol. 291, No. 5, pp. 1302-1308. |
Hinke, S.A. et al., “On Combination Therapy of Diabetes With Metformin and Dipeptidyl Peptidase IV Inhibitors.” Diabetes Care, 2002, vol. 25, No. 8, pp. 1490-1492. |
Hinnen, D. et al., “Incretin Mimetics and DPP-IV Inhibitors: New Paradigms for the Treatment of Type 2 Diabetes.” Journal Of The American Board Of Family Medicine, 2006, vol. 19, No. 6, pp. 612-620. |
Hocher, B. et al., “Renal and Cardiac Effects of DPP-4 Inhibitors—from Preclinical Development to Clinical Research.” Kidney & Blood Pressue Research, 2012, vol. 36, No. 1, pp. 65-84. |
Hocher, B. et al., “The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats.” International Journal of Cardiology, 2013, vol. 167, pp. 87-93. |
Holman, et al., “Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes”, N. England Journal Medicine, p. 1716-1730, 2007. |
Horsford, E. N. “On the source of free hydrochloric acid in the gastric juice.” Proceedings of the Royal Society of London, Published in 1868-1869, vol. 17, pp. 391-395. |
“Betahistine diHCL CF 16 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Apr. 13, 1988, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,57626>. |
“Betahistine diHCL CF 8 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Apr. 13, 1988, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,56227>. |
“Sifrol 0,088 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Oct. 14, 1997, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,70120>. |
“Sifrol 0,18 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Oct. 14, 1997, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,PO_LANG,P3_RVG1:H,EN,70121>. |
“Sifrol 0,35 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Nov. 16, 1999, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,70673>. |
“Sifrol 0,70 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Oct. 14, 1997, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,70122>. |
“Sifrol 1,1 mg, tabletten,” Dutch Medicines Evaluation Board, Dated Oct. 14, 1997, Retrieved online from: <http://db.cbg-meb.nl/ords/f?p=111:3:0:SEARCH:NO::P0_DOMAIN,P0_LANG,P3_RVG1:H,EN,70124>. |
Abstract for AU 2003280680, Jun. 18, 2004. |
Abstract for AU 2009224546, Sep. 17, 2009. |
Abstract in English for DE10109021, 2002. |
Abstract in English for DE19705233, Aug. 13, 1998. |
Abstract in English for DE2205815, 1972. |
Abstract in English for EP0023032, 1981. |
Abstract in English for JP 2002/348279, Dec. 4, 2002. |
Abstract in English for JP 2003/286287, Oct. 10, 2003. |
Abstract in English for KR20070111099, Nov. 11, 2007. |
Actos Prescribing Information, 1999, pp. 1-26. |
Adebowale, K.O. et al., “Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing.” Food Hydrocolloids, 2009, vol. 23, No. 7, pp. 1947-1957. |
Ahren, B. et al., “Twelve- and 52-Week Efficacy of the Dipeptidyl Peptidase IV Inhibitor LAF237 in Metformin-Treated Patients With Type 2 Diabetes.” Diabetes Care, 2004, vol. 27, No. 12, pp. 2874-2880. |
Ahren, Bo “Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin.” Vascular Health and Risk Management, 2008, vol. 4, No. 2, pp. 383-394. |
Ahren, Bo, et al; Improved Meal-Related b-Cell Function and Insulin Sensitivity by the Dipeptidyl Peptidase-IV Inhibitor Vildagliptin in Metformin-Treated Patients with Type 2 Diabetes Over 1 Year; Diabetes Care (2005) vol. 28, No. 8 pp. 1936-1940. |
Ahren, Bo; “DPP-4 inhibitors”, Best practice and research in clinical endocrinology and metabolism—New therapies for diabetes 200712 GB LNKD-DOI:10.1016/J. Beem.2007.07.005, vol. 21, No. 4, Dec. 2007, pp. 517-533. |
Al-Masri, I.M. et al., “Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine.” Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, vol. 24, No. 5, pp. 1061-1066. |
Alter, M. et al., “DPP-4 Inhibition on Top of Angiotensin Receptor Bockade Offers a New Therapeutic Approach for Diabetic Nephropathy.” Kidney and Blood Pressue Research, 2012, vol. 36, No. 1, pp. 119-130. |
American Association of Clinical Endocrinologists, “Medical Guidelines for Clinical Practice for the Management of Diabetes Mellitus.” Endocrine Practice, 2007, col. 13, Suppl. 1, pp. 1-68. |
American Diabetes Association, “Standards of Medical Care in Diabetes—2008.” Diabetes Care, Jan. 2008, vol. 31, Supplement 1, pp. S12-S54. |
Anstee, Quentin M. et al. “Mouse models in non-alcholic fatty liver disease and steatohepatitis research” (2006) International Journal of Expermental Pathology, vol. 87, pp. 1-16. |
Augeri, D.J. “Discovery and Preclinical Profile of Saxagliptin (GMB-477118): A Highly Potent, Long-Acting, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes”. Journal Med. Chem, 2005, vol. 48, No. 15, p. 5025-5037. |
Augusti, D.V. et al., “Quantitative determination of the enantiomeric composition of thalidomide solutions by electrospray ionizatio tandem mass spectrometry” Chem Comm, 2002, p. 2242-2243. |
Augustyns, K. et al., The Unique Properties of Dipeptidyl-peptidase IV (DPP IV/CD 26) and the Therapeutic Potential of DPP-IV Inhibitors, Current Medicinal Chemistry, vol. 6, No. 4, 1999, pp. 311-327. |
Aulinger, B.A. et al., “Ex-4 and the DPP-IV Inhibitor Vildagliptin have Additive Effects to Suppress Food Intake in Rodents”. Abstract No. 1545-P, 2008. |
Aulton, Michael E., Pharmaceutics: The Science of Dosage Form Design, Second Edition, 2002, pp. 441-448. |
Baetta, R. et al., “Pharmacology of Dipeptidyl Peptidase-4 Inhibitors.” Drugs, 2011, vol. 71, No. 11, pp. 1441-1467. |
Balaban, Y.H.et al., “Dipeptidyl peptidase IV (DDP IV) in NASH patients” Annals of Hepatology, vol. 6, No. 4, Oct. 1, 2007, pp. 242-250, abstract. |
Balbach, S. et al., “Pharmaceutical evaluation of early development candidates the 100 mg-approach.” International Journal of Pharmaceutics, 2004, vol. 275, pp. 1-12. |
Balkan, B. et al., “Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obses Zucker rates”. Diabetologia, 1999, 42, p. 1324-1331. |
Banker, Gilbert S., “Prodrugs.” Modern Pharmaceutics Third Edition, Marcel Dekker, Inc., 1996, p. 596. |
Bastin, R.J. et al., “Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities”. Organic Process Research and Development, 2000, vol. 4, p. 427-435. |
Beauglehole, Anthony R., “N3-Substituted Xanthines as Irreversible Adenosine Receptor Antagonists.” Ph.D. Thesis, Deakin University, Australia, 2000, pp. 1-168. |
Beljean-Leymarie et al., Hydrazines et hydrazones hétérocycliques. IV. Synthèses de dérivés de l'hydrazine dans la série des imidazo[4,5-d]pyridazinones-4, Can J. Chem., vol. 61, No. 11, 1983, pp. 2563-2566. |
Berge, S. et al., “Pharmaceutical Salts.” Journal of Pharmaceutical Sciences, 1977, vol. 66, No. 1, pp. 1-19. |
Bernstein, Joel “Polymorphism in Molecular Crystals.” Oxford University Press, 2002, p. 9. |
Blech, S. et al., “The Metabolism and Disposition of the Oral Dipeptidyl Peptidase-4 Inhibitor, Linagliptin, in Humans”, Drug Metabolism and Disposition, 2010, vol. 38, No. 4, p. 667-678. |
Bollag, R.J. et al; “Osteoblast-Derived Cells Express Functional Glucose-Dependent Insulinotropic Peptide Receptors,” Endocrinology, vol. 141, No. 3, 2000, pp. 1228-1235. |
Borloo, M. et al. “Dipeptidyl Peptidase IV: Development, Design, Synthesis and Biological Evaluation of Inhibitors.” 1994, Universitaire Installing Antwerpen, vol. 56, pp. 57-88. |
Bosi, E. et al., “Effects of Vildagliptin on Glucose Control Over 24 Weeks in Patients With Type 2 Diabetes Inadequately Controlled With Metformin.” Diabetes Care, 2007, vol. 30, No. 4, pp. 890-895. |
Boulton, D.W. et al., “Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Once-Daily Oral Doses of Saxagliptin for 2 Weeks in Type 2 Diabetic and Healthy Subjects.” Diabetes, 2007, Supplement 1, vol. 56, pp. A161. |
Brazg, R. et al: “Effect of adding sitagliptin, a dipeptidyll peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes.” Diabetes, Obesity and Metabolism, Mar. 2007, vol. 9, No. 2, Mar. 2007 pp. 186-193. |
Brazg, Ronald, et al; Effect of Adding MK-0431 to On-Going Metforming Therapy in Type 2 Diabetic Patients Who Have Inadequate Glycemic Control on Metformin; Diabetes ADA (2005) vol. 54, Suppl. 1 p. A3. |
Brittain, H.G., “Methods for the Characterization of Polymorphs: X-Ray Powder Diffraction,” Polymorphism in Pharmaceutical Solids, 1999, p. 235-238. |
Van Veen, Compaction of Powder blends, University Medical Center, 2003. |
MacDonald, No Fraud, no conspiracy, no error, France and Merck say reformulated Euthyrox is safe, Pharmatechnolgist, 2017. |
Nachaegari, Coprocessed Excipients for Solid Dosage Forms, Pharmaceutical technology, 2004. |
Gohel, A review of coprocessed Directly compressible excipients, J. Pharm Pharmaceutical Sci, 2005. |
Cotton, The Selection of an appropriate salt form and preparation of a stable oral formulation, International Journal of Pharmaceutics, 1994, p. 237-249. |
Ahmed, Materials Formulation of Low Dose Medicines, Americal Pharma review, vol. 3, 2000. |
Wikipedia, Polyvinylpyrrolidone, https:en.wikipedia.org/wiki/access date May 15, 2018. |
Westerhuis, Optimisation of the composition and production of mannitol cellulose tablets International Journal of Pharmaceutics, 1996, p. 143, 151-162. |
Portincasa, Current Pharmacological Treatment of Nonalcoholic Fatty Liver, Current Medicinal Chem, 2006, p. 2889-2900. |
Del Prato, Diabetes, Obesity and Metabolism, Effect of linagliptin monotherapy on glycemic control and markers of b-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial, 2011, p. 258-267. |
Gallwitz, Iinagliptin—A novel Dipeptidyl Peptidase Inhibitor for Type 2 Diabetes Therapy, Clinical Medicine Indights: Endocrinology and Diabetes, 2012, vol. 5, p. 1-11. |
Lakey, Technical Aspects of islet preparation and transplantation, Burridge Medical Researach Institute, 2003. |
Mikhail, Investigating Drugs, Incretin Mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of Type 2 diabetes, vol. 17, 2008, p. 845-853. |
Cefalu, Animal Models of Type 2 Diabetes: Clinical Presentation and Pathophysiological Relevance to the Human Condition, ILAR Journal, vol. 47, No. 3, 2006. |
Crowe, Early Guidelines and Identification Management of Chronic Kidney Disease, 2008, summary of NICE guidance, vol. 337, p. 812-815. |
Zaman, Comparison Between Effect of Vildagliptin and Linagliptin on Glycaemic control, renal function, liver funstion and lipid profile in patients of T2DM Inadequately controlled with combo of Metformin and Glimepiride, Journal of Dental and Medical Sciences, vol. 16, Issue 9, 2017. p. 27-31. |
Connelly, Dipeptyl peptidase-4 inhibition improves left ventricular function in chronic kidney disease, Clinical and Investigative Medicine, vol. 37, p. 172-185, 2014. |
Scheen, Clinical Pharmacokinetics of metformin, Clinical Pharmacokinetics, vol. 30, No. 5, 1996, p. 359-371. |
Zhang, Classification and Treatment Prinicples of Diabetes, Beijing Medical Univ and China Union Medical Univ. Joint Publishing House. 1st ed., 1998, p. 939. |
Diabetes and Foot ulcers, www.diabetes.co.uk/diabetes-complications/diabetic-foot-ulcers.html, 2018. |
Aronow, Congestive Heart Failure, Treatment of Heart Failure in Older Persons with Coexisting Conditions, vol. 9, No. 3, 2003, p. 142-147. |
Tiwari, Linagliptin, A dipeptyl peptidase-4 inhibitor for the treatment of type 2 diabetes, Current Opinion in Ivestigational Drugs, vol. 10, 2009, p. 1091-1104. |
Isomaa, Chronic Comlications in patients with slowly progressing atutoimmune type 1 diabetes, Diabetes Care, vol. 22, 1999, p. 1347-1353. |
Seijin-byou, The Journal of Adult Diseases, 2008, vol. 38, p. 438-444., abstract attached. |
Fuguchi, Therapeutic Effects and Adverse Reactions to Oral Hypoglycemic Agents, Journal of the Nippon Hospital Pharmacists Assoc, 1976, vol. 1, p. 226-229, abstract only. |
Colorcon (retrieved from website http://www.colorcon.com/products-formulation/all-products/film-coatings/immediate-release/opadry, published2015). |
Bergmann, Decrease of serum dipeptidylpeptidase activity in severs sepsis patients, Clinica Chimica Acta 2002., p. 123-126. |
Gallwitz, Safety and Efficacy of linagliptin in type 2 diabetes patients with common renal and cardiovascular risk factors, vol. 4,2013. |
Groop, Effects of The DPP-4inhibitor linagliptin on albuminuria in patients with type 2 diabetes, www.abstractsonline.com, 2013. |
Cooper, Kidney Disease End Points in a Pooled Analysis of individual Patient-Level Data from a large Clinical Trials Program of the Dipeptyl Peptidase 4 Inhibitor Linagliptin in Type 2 Diabetes, vol. 66, American Journal of Kidney Diseases, 2015. |
Hocher, Renal and Cardiac Effects of DPP4 in inhibitors from preclinical development to clinical research, Kidney and Blood Pressure Research, vol. 36, 2012, p. 65-84. |
Von Eynatten, Efficacy and safety of linagliptin in type 2 diabetes subjects at high risk for renal and cardiovascular disease. vol. 12, 2013. |
Seijin-byou, abstract, The Journal of Adult Diseases, 2008. , vol. 38. |
Clinical Journal of Chinese Medicine, vol. 3, 2008, p. 360-364. |
Clinical Trials.gov, Efficacy and Safety of Lingliptin in Elderly Patients with Type 2 Diabetes, Mar. 10, 2010, NCT01084005. |
Barrara, Granulation, Handbook of Powder Technology, vol. 11, 2015. |
Piatti, Long term Oral L-Arginine-Administration Improves Peripheral and Hepatic Insulin Sensitivity, Emerging Treatments and Technology, Diabestes Care, vol. 24, 2011. |
Clinical Trials.gov, NCT00622284, Efficacy and Safety of BI 1356 in Combination with Metformin in Patients with Type 2 Diabetes, 2013. |
Kleeman, Pharmaceutical Substances, Synthesesm Patents, Applications, p. 1196-1997, 1999. |
Rowe, Handbook of Pharmaceutical Excipients, Fifth Ed., Calcium Bicarbonate, 2006. |
Clinical Trials.gov, Efficacy and Safety of BI 1356 in Combination with Metformin in Patients with Type 2 Diabetes, NCT00309608, 2006. |
Clinical Trials.gov, 52-week add-on to metformin comparison of saxagliptin and sulphonurea, NCT00575588, 2007. |
Walsh, Pharmaceutical Biotechnology,Ovewview of Protein structure, 2007. |
Katdare, Excipient Development for Pharmaceutical Biotechnology and Drug Delivery Systems, Ten of the most common Neutralizers Used, 2006. |
Remington , The Science of Pharmacy, 22nd Ed., Pharmacuetical Dosage Forms, 2013. |
Lide, CRC Handbook of Chem and Physics, Disassociation Constants of Organic Acids and Bases, 2002, 82nd Ed. |
Stahl, Handbook of Pharmaceutical Salts, Properties, Selection and Use, 2002. |
Janumet dosing instructions, Highlights of Prescribing information, 2008. |
Ennis, Handbook of Pharmaceutical Granulation Technology, Theory of Granulation, 2010. |
Houben-Weyl, Oxygen Compounds, Methods of Organic Chemistry, 1929. |
Vichayanrat, A. et al., “Efficacy and safety of voglibose in comparison with acarbose in type 2 diabetic patients.” Diabetes Research and Clinical Practice, 2002, vol. 55, pp. 99-103. |
Vickers, 71st Scientific Session of the American Diabetes Association, “The DPP-4 inhibitor linagliptin is weight neutral in the DIO rat but inhibits the weight gain of DIO animals withdrawn from exenatide”, vol. 60, Jul. 2011. |
Villhauer, E.B., “1-[[3-Hydroxy-1-adamantyl)amino]acetyl]-1-cyano-(S)-pyrrolidine: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties” Journal Med. Chem, 2003, 46, p. 2774-2789. |
Villhauer, E.B., et al., “1-{2-{5-Cyanopyridin-2-yl)amino}-ethylamino}acetyl-1-1(S)-pyrrolidine-carbonitrile: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties”. Journal of Medical Chemistry, 2002, vol. 45, No. 12, p. 2362-2365. |
Vincent, S.H. et al., “Metabolism And Excretion of the Dipeptidyl Peptidase 4 Inhibitor [14C]Sitagliptin in Humans.” Drug Metabolism And Disposition, 2007, vol. 35, No. 4, pp. 533-538. |
Wang, Y. et al., “BI-1356. Dipeptidyl-Peptidase IV Inhibitor, Antidiabetic Agent.” Drugs of the Future, 2008, vol. 33, No. 6, pp. 473-477. |
Weber, Ann E., “Dipeptidyl Peptidase IV Inhibitors for the Treatment of Diabetes.” Journal of Medicinal Chemistry, 2004, vol. 47, pp. 4135-4141. |
WebMD, Autoimmune Diseases: What Are They? Who Gets Them? “What Are Autoimmune Disorders?” 2015, pp. 1-3. Retrieved online Jul. 9, 2015. http://www.webmd.com/a-to-z-guides/autoimmune-diseases. |
Wertheimer, et al., “Drug Delivery Systems improve pharmaceutical profile and faciliate medication adherence”, Adv. Therapy 22: p. 559-577 (2005). |
White, John R. Jr., “Dipeptidyl Peptidase-IV Inhibitors: Phamacological Profile and Clinical Use”. Clinical Diabetes, Apr. 2008, vol. 26, No. 2, pp. 53-57. |
Wikipedia, “Linagliptin” Sep. 12, 2015. <https://en.wikipedia.org/w/index.php?title=Linagliptin&oldid=333469979>. |
Wikipedia, Annulation. Jun. 23, 2008, http://en.wikipedia.org/wiki/Annelation. |
Williams-Herman, D. et al., “Efficacy and safety of initial combination therapy with sitagliptin and metformin in patients with type 2 diabetes: a 54-week study”. Current Medical Research and Opinion, Informa Healthcare, GB, vol. 25, No. 3, Jan. 2009, p. 569-583. |
Wirth, D. et al., “Maillard Reaction of Lactose and Fluoxetine Hydrochloride, a Secondary Amine.” Journal of Pharmaceutical Sciences, 1998, vol. 87, No. 1, pp. 31-39. |
Witteles, R. M. et al., “Dipeptidyl Peptidase 4 Inhibition Increases Myocardial Glucose Uptake in Nonischemic Cardiomyopathy.” Journal of Cardiac Failure, 2012, vol. 18, No. 10, pp. 804-809. |
Wolff, M.E.: “Burger's Medicinal Chemistry and Drug Discovery” Fifth Edition, vol. 1: Principles and Practice, pp. 975-977, 1994, John Wiley & Sons, Inc. |
World Health Organization (WHO). “Addendum 1 to “The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances”” Online Jun. 19, 2007, pp. 1-3, retrieved from URL: http://www.who.int/medicindedocs/index/assoc/s1414e/s1414e.pdf. |
X-Ray Diffraction. The United States Pharmacopeia, 2002, USP 25 NF20, p. 2088-2089. |
Yale, Jean-Francois, “Oral Antihyperglycemic Agents and Renal Disease: New Agents, New Concepts.” Journal of the American Society of Nephrology, 2005, vol. 16, Suppl. 1, pp. S7-S10. |
Yamagishi, S. et al., “Pleiotropic Effects of Glucagon-like Peptide-1 (GLP-1)-Based Therapies on Vascular Complications in Diabetes.” Current Pharmaceutical Design, 2012, vol. 17, pp. 4379-4385. |
Yap, W.S. et al., “Review of management of type 2 diabetes mellitus.” Journal of Clinical Pharmacy and Therapeutics, 1998, vol. 23, pp. 457-465. |
Yasuda, et al. “E3024 3-but-2-ynyl-5-methyl-2-piperazin-1-y1-3,5-dihydro-4H-imidazol [ 4,5-d]pyridazin-4-one tosylate, is a move, selective and competitive dipeptidyl peptidase-IV inhibitor”. European Journal of Pharmacology, vol. 548, No. 1-3, Oct. 24, 2006, p. 181-187. Abstract. |
Yasuda, N. et al., “Metformin Causes Reduction of Food Intake and Body Weight Gain and Improvement of Glucose Intolerance in Combination with Dipeptidyl Peptidase IV Inhibitor in Zucker fa/fa Rats.” The Journal of Pharmacology and Experimental Therapeutics, 2004, vol. 310, No. 2, pp. 614-619. |
Yokoyama< “Prevalence of albumineria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes clinical data Management study(JDDM15)” Nephrol Dial Transplant (2009) 24: 1212-1219 Advance Access Pub 2008. |
Yoshikawa, Seiji et al.: Chemical Abstract of Japanese Patent No. WO 2003/104229 Preparation of purinone derivatives as dipeptidylpeptidase IV (DPP-IV) inhibitors, 2003. |
Yoshioka, S. et al., “Stability of Drugs and Dosage Forms.” Kluwer Academic Publishers, 2002, pp. 30-33. |
Youssef, S. et al., “Purines XIV. Reactivity of 8-Promo-3,9-dimethylxanthine Towards Some Nucleophilic Reagents.” Journal of Heterocyclic Chemistry, 1998, vol. 35, pp. 949-954. |
Zander, M. et al., “Additive Glucose-Lowering Effects of Glucagon-Like Peptide-1 and Metformin in Type 2 Diabetes.” Diabetes Care, 2001, vol. 24, No. 4, pp. 720-725. |
Zeeuw, D. et al., “Albuminuria, a Therapeutic Target for Cardiovascular Protection in Type 2 Diabetic Patients With Nephropathy.” Circulation, 2004, vol. 110, No. 8, pp. 921-927. |
Zejc, Alfred, et al; “Badania Nad Piperazynowymi Pochodnymi Dwumetyloksantyn” Acta Polon Pharm, XXXV (1976) Nr. 4 pp. 417-421. |
Zerilli, T. et al., “Sitagliptin Phosphate: A DPP-4 Inhibitor for the Treatment of Type 2 Diabetes Mellitus.” Clinical Therapeutics, 2007, vol. 29, No. 12, pp. 2614-2634. |
Zhimei, Xiao et al., “Study progression of oral drugs for treatment of type II diabetes.” Drug Evaluation, 2004, vol. 1, No. 2, pp. 138-143. |
Zhong, Qing et al; “Glucose-dependent insulinotropic peptide stimulates proliferation and TGF-? release from MG-63 cells,” Peptides 24 (2003) 611-616. |
Zhu, G. et al., “Stabilization of Proteins Encapsulated in Cylindrical Poly(lactide-co-glycolide) Implants: Mechanism of Stabilization by Basic Additives” Pharmaceutical Research, 2000, vol. 17, No. 3, pp. 351-357. |
Zimdahl, H. et al., “Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin.” Diabetologia, 2014, vol. 57, pp. 1869-1875. |
Zimmer et al; Synthesis of 8-Substituted Xanthines and their Oxidative Skeleton Rearrangement to 1-Oxo-2,4,7,9-tetraazaspiro[4,5]dec-2-ene-6,8,10-triones; Euripean Journal Organic Chemistry (1999) vol. 9 pp. 2419-2428. |
Jibiinkoka-Tenbo, Vision of Otorhinolaryngology, How to use anti-microbial drug in a patient with impairment of renal function, vol. 44, No. 3, 2001, p. 217-220. |
Rinsho-Yakuri, Jpn. J. Clin. Pharmacol. Ther. Pharmacokinetics: excretion, 30(3) 1999. |
Fiorucci, et al. Trends in Molecular Medicine, Targeting farnesoid X receptor for liver and metabolic disorders, 13(7), 2007, p. 298-309. |
Morhenn, “Keratinacyte proliferation n wound healing and skin diseases”, Immunology Today, vol. 9, Issue 4, 1988, p. 104. |
Boehringer Ingelheim Pharmceuticals, Inc. v. HEC Pharm Co., Ltd., et al., No. 15-cv-5982, United States District Court for the District of New Jersey, Dec. 8, 2016. |
Karaliede et al., Diabetes Care, Endothelial Factors and Diabetic Nephropathy, 2011, 34, Suppl 2, p. 291-296. |
Hansen, European Journal of Pharmacology, “The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat”, 2014, p. 254-263. |
Ferreira, Triple Combination therapy with sitagliptin, metformin and rosiglitazone improves glycaemic control in patiens with type 2 diabetes, Diabetologixa, 2008, Suppl 1. |
Byrn, Pharmaceutical Solids, A Strategic Approach to Regulatory Considerations, Pharmaceutical Research, 1995, vol. 12. |
Morhenn (2), Keratinocyte proliferation in wound healing and skin diseases, Immunology Today, vol. 9, 1994. |
Diabetes, Type 1 Diabetes-Associated Autoantibodies, 2009, vol. 52, Issue 8, p. 675-677. |
Merck manual, 18th Edition, published Apr. 25, 2007, p. 594-598, Japanese Edition. |
Scientific Discussion on Sifrol, EMEA, 2005, p. 1-9. |
Scientific Discussion for Sifrol, European Public Assessment Reports, 2005, p. 1. |
Hu, Y. et al., “Synthesis and Structure-activity Relationship of N-alkyl Gly-boro-Pro Inhibitors of DPP4, FAP, and DPP7.” Bioorganic & Medicinal Chemistry Letters 15, 2005, pp. 4239-4242. |
Huettner Silks et al: “BI 1356, a novel and selective xanthine based DPP-IV inhibitor, demonstrates good safety and tolerability with a wide therapeutic window” Diabetes< American Diabetes Association, US, vol. 56, No. Suppl 1, Jun. 1, 2007, p. A156. |
Hull, R. et al., “Nephrotic syndrome in adults.” British Medical Journal, 2008, vol. 336, pp. 1185-1190. |
Hunziker, D. et al, “Inhibitors of DPP IV-recent advances and structural views”, Current Topics in Medicinal Chemistry, 2005, vol. 5 issue 16, pp. 1623-1637. |
Huttner, S. et al., “Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Single Oral Doses of BI 1356, an Inhibitor of Dipeptidyl Peptidase 4, in Healthy Male Volunteers.” Journal of Clinical Pharmacology, 2008, vol. 48, No. 10, pp. 1171-1178. |
International Search Report—European Search Report for PCT/EP2003/09127 dated Mar. 1, 2011. |
International Search Report and Written Opinion for PCT/EP2006/064657 dated Nov. 2, 2006. |
International Search Report and Written Opinion for PCT/EP2007/054201 dated Aug. 29, 2007. |
International Search Report and Written Opinion for PCT/EP2007/054270 dated Aug. 14, 2007. |
International Search Report and Written Opinion for PCT/EP2008/060740 dated Mar. 30, 2009. |
International Search Report and Written Opinion for PCT/EP2009/053978 dated Sep. 29, 2009. |
International Search Report and Written Opinion for PCT/EP2009/056722 dated Aug. 13, 2009. |
International Search Report and Written Opinion for PCT/EP2009/060521 dated Mar. 9, 2010. |
International Search Report and Written Opinion for PCT/EP2009/063511 dated Feb. 26, 2010. |
International Search Report and Written Opinion for PCT/EP2009/067772 dated Apr. 14, 2010. |
International Search Report and Written Opinion for PCT/EP2010/050103 dated Mar. 22, 2010. |
International Search Report and Written Opinion for PCT/EP2010/051093 dated Jul. 14, 2010. |
International Search Report and Written Opinion for PCT/EP2010/051817 dated Jun. 8, 2010. |
International Search Report and Written Opinion for PCT/EP2010/064691 dated Apr. 6, 2011. |
International Search Report and Written Opinion for PCT/EP2010068349 dated Feb. 4, 2011. |
International Search Report and Written Opinion for PCT/EP2011/054169 dated Aug. 4, 2011. |
International Search Report and Written Opinion for PCT/EP2011/057163 dated Jun. 27, 2011. |
International Search Report and Written Opinion for PCT/EP2011/057256 dated Jul. 22, 2011. |
International Search Report and Written Opinion for PCT/EP2011/060449 dated Sep. 27, 2011. |
International Search Report and Written Opinion for PCT/EP2011/070156 dated Jan. 17, 2012. |
International Search Report and Written Opinion for PCT/EP2012/053910 dated May 14, 2012. |
International Search Report and Written Opinion for PCT/EP2012/063852 dated Sep. 6, 2012. |
International Search Report and Written Opinion for PCT/EP2012/077024 dated Feb. 19, 2013. |
International Search Report and Written Opinion for PCT/EP2013/054524 dated Apr. 24, 2013. |
International Search Report and Written Opinion for PCT/EP2013/059828 dated Aug. 6, 2013. |
International Search Report and Written Opinion for PCT/EP2013/059831 dated Aug. 9, 2013. |
International Search Report and Written Opinion for PCT/EP2013/060311 dated Aug. 9, 2013. |
International Search Report and Written Opinion for PCT/EP2013/060312 dated Sep. 4, 2013. |
International Search Report and Written Opinion for PCT/EP2013/070978 dated Oct. 31, 2013. |
International Search Report and Written Opinion for PCT/EP2014/055113 dated May 16, 2014. |
International Search Report and Written Opinion for PCT/EP2014/062398 dated Aug. 20, 2014. |
International Search Report and Written Opinion for PCT/EP2015/054114 dated May 12, 2015. |
International Search Report and Written Opinion for PCT/EP2015/074030 dated Feb. 4, 2016. |
International Search Report and Written Opinon for PCT/EP2007/054204 dated Aug. 3, 2007. |
International Search Report for PCT/EP03/12821 dated Mar. 30, 2004. |
International Search Report for PCT/EP03/13648 dated Apr. 5, 2004. |
International Search Report for PCT/EP2002/01820 dated May 7, 2002. |
International Search Report for PCT/EP2003/12821 dated Mar. 30, 2004. |
International Search Report for PCT/EP2003/13648 dated Apr. 5, 2004. |
International Search Report for PCT/EP2005/001427 dated May 23, 2005. |
International Search Report for PCT/EP2005/055711 dated Mar. 29, 2006. |
International Search Report for PCT/EP2007/054204 dated Mar. 8, 2007. |
International Search Report for PCT/EP2007/058181 dated Nov. 28, 2007. |
International Search Report for PCT/EP2008/060738 dated Nov. 5, 2008. |
International Search Report for PCT/EP2009/060170 dated Oct. 28, 2009. |
Forst, ADA, Novel, Potent, Selective, DPP-4 inhibitor BI 1356 Significantly lowers HbA1c after only 4 weeks of treatment, 2007. |
Haak, Comibination of Linaglptin and metformin, Clinical Med insights, 2015. |
International Search Report for PCT/EP2019/EP069131 dated Jan. 28, 2021. |
Isoda, Certificate of experimental Results, Analytical Research Development, 2021. |
Luo, Shanghai Scientific and Technical Lit Publishing House, Theory and Practice of Modern Physical Pharmacy, vol. 4, 2005, p. 294. |
Okruhlicova, Cell Research, Ultrastructure and Histchemistry of rat capilary endothelial cells in response to diabetes, vol. 15, 2005. |
Owens, Efficacy and Safety of Iinagliptin in person with type 2 diabetes, Diabetic Meds, vol. 28, 2021. |
Peticao, Diagnosis and Classification of Diabetes Mellitus, Diabetes Care, vol. 37, 2014. |
Sung, Study on the preparation of tablets by direct compression method, Kisti, 2006. |
Winzell, Diabetes, The High Fat diet fed Mouse, vol. 53, 2004. |
Wufele, Combination of Insulin and Metformin in Treatment, Clinical Care, vol. 25, 2002. |
Number | Date | Country | |
---|---|---|---|
20200222411 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15372702 | Dec 2016 | US |
Child | 16103096 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16103096 | Aug 2018 | US |
Child | 16829610 | US | |
Parent | 14853328 | Sep 2015 | US |
Child | 15372702 | US | |
Parent | 14161007 | Jan 2014 | US |
Child | 14853328 | US | |
Parent | 12946193 | Nov 2010 | US |
Child | 14161007 | US | |
Parent | 11744703 | May 2007 | US |
Child | 12946193 | US |