Uses of sesquiterpene lactone compounds and their derivatives in drugs preparation

Information

  • Patent Grant
  • 10463644
  • Patent Number
    10,463,644
  • Date Filed
    Monday, July 15, 2013
    11 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
The present invention relates to the uses of sesquiterpene lactone compounds and their derivatives in preparing drugs. It belongs to the field of drug technology, specifically relates to the uses of the compounds of Formula (I) in preparing the drugs, especially the uses in preparing the drugs to treat rheumatoid arthritis and treat cancers through inhibiting cancer stem cells.
Description
BACKGROUND OF THE INVENTION

Technical Field


The present invention belongs to the field of drug technology, specifically relates to the uses of sesquiterpene lactone compounds as the effective components or pharmaceutical composition in preparing drugs, especially the uses in preparing the drugs to treat rheumatoid arthritis and treat cancers through inhibiting cancer stem cells.


Description of Related Art


The rheumatoid arthritis (RA) is a chronic, inflammatory and systematic autoimmune disease. In addition, the tumors greatly threat the health of human. There are approximately two million of cancer patients in China currently and 1.6 million of cases are emerging every year, which is a rather huge number. RA is a progressive and multi-joint inflammatory systemic autoimmune disease, which mainly shows inflammatory hyperplasia of synovium, mononuclear cell infiltration and neovascularization. There is no therapeutic solution and preventive measures for radical cure of these diseases yet and the main drugs prescribed clinically include non-steroidal anti-inflammatory drugs and adrenal cortical hormones, etc. However, these drugs have severe side effects to result in damages to liver and kidney as well as pulmonary fibrosis. Therefore, it is difficult for the patients to adhere to long-term medication. Thus, our purpose is to find an effective and safe medicine for the treatment.


So far, there is no report concerning the application of the compounds of Formula (I) and their pharmaceutical compositions in preparing drugs to cure rheumatoid arthritis.


The tumors greatly threat the health of human. There are approximately two million of cancer patients in China currently and 1.6 million of cases are emerging every year, which is a rather huge number. Therefore, the anti-tumor research is a very challenging field, but with great significance to the present life science. The therapeutic methods in the past focus on eradicating and killing cancer cells and the anti-tumor drugs often used clinically are mainly cytotoxic agents so far. However, these anti-cancer drugs have the demerits such as poor selectivity, strong toxic side effects and tending to result in drug resistance, so they are typical double-sided drugs and it is difficult with them to eradicate cancer and a high ratio of some cancers tend to recur. High recurrence rate of malignant tumors is always a challenge annoying the oncologists. More and more studies have demonstrated that there are a small number of tumor stem cells in the tumor cell population, which can amplify the population. They are usually at the slow cycle state with low sensitivity to chemotherapy drugs and are the origins of tumor recurrence. Thus, the discovery of tumor stem cell provides a new target for tumor treatment and the drug research against tumor stem cell provides the possibility to completely heal cancer.


So far, there is no report concerning the application of the compounds of Formula (I) and their pharmaceutical compositions in treating cancer through inhibiting cancer stem cells.


BRIEF SUMMARY OF THE INVENTION

The present invention provides the uses of the compounds of Formula (I) in preparing drugs, especially the uses in preparing the drugs to treat rheumatoid arthritis and treat cancers through inhibiting cancer stem cells.




embedded image


where: R1 and R2 form double bond together or R1 is hydrogen or deuterium, R2 is




embedded image



and the pharmaceutically acceptable salts formed by it and inorganic acid or organic acid, including the quaternary ammonium salts formed with R5Z, R3 and R4 can be the same or different selected from hydrogen, alkyl,cycloalkyl, hydroxy-substituting alkyl, alkenyl, alkynyl, aryl, alkylaryl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic, trifluoromethyl, polyfluoroalkyl, nitrile group, cyanomethyl, acyl, carbamoyl, sulfonyl, sulfonamide or aryloxyalkyl. R3, R4 and N atom form cyclic structure which is preferably 3-member to 9-member ring, where one or more positions on the ring structure can be replaced by the substituent group including hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, alkylaryl, arylalkyl, arylalkenyl, arylalkynyl or heterocyclic; Z is fluorine, chlorine, bromine, iodine, toluene-p-sulfonate group, mesylate group, benzenesulfonate group or trifluoromethanesulfonate group. R5 is alkyl, cycloalkyl, hydroxy-substituting alkyl, alkenyl, alkynyl, aryl, heterocyclic, aryl-substituting alkyl, arylalkenyl, arylalkynyl, cyano methyl, alkoxy-substituting alkyl or aryloxy substituting alkyl. Inorganic or organic acid can be hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, carbonic acid, boric acid, selenious acid, phosphomolybdic acid, phosphorous acid, sulfurous acid, citric acid, maleic acid, D-malic acid, L- malic acid, DL- malic acid, L- lactic acid, D- lactic acid, DL- lactic acid, oxalic acid, methanesulfonic acid, pentanoic acid, oleic acid, lauric acid, p-toluenesulfonic, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, phthalic acid, tartaric acid, malonic acid, succinic acid, fumaric acid, glycolic acid, a thiol acid, glycine, sarcosine, sulfonic acid, nicotinic acid, picoline acid, isonicotinic, dichloroacetic acid, benzoic acid or substituted benzoic acid. Or R2 is




embedded image



where X thereof is O or S, R6 is hydrogen, alkyl, cycloalkyl, hydroxy-substituting alkyl, alkenyl, alkynyl, aryl, alkylaryl, arylalkyl, arylalkenyl, arylalkynylp, heterocyclic, trifluoromethyl, polyfluoroalkyl, nitrile group, cyanomethyl, acyl, carbamoyl, sulfonyl, sulfonamide or aryloxyalkyl.


If there is no bond - - - between R7 and R8, R7 and R8 will form double bond together or R7 is methyl, R8 is hydroxyl or OCOR9, where R9 thereof is alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic.


If the bond - - - between R7 and R8 is single bond, R7═R8=methylene.


R10 is hydrogen or R10 and R8 form single bond.


R11 is hydrogen or R11 and R13 form single bond or epoxy bond.


If these is no bond - - - between R12 and R13, R12 and R13 will form double bond together or R12 is hydroxyl or OR14, where R14 thereof is alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, R13 is methyl.


If the bond - - - between R12 and R13 is single bond, R12═R13=methylene.


The structural formula (I) is preferably.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The uses of the above-mentioned compounds in preparing the drugs to treat rheumatoid arthritis.


The uses of the above-mentioned compounds in preparing the adjuvant drugs to treat rheumatoid arthritis.


The uses of the above-mentioned compounds in preparing the drugs to treat cancers through inhibiting cancer stem cells, where the cancers thereof are preferably acute myeloid leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, skin cancer, breast cancer, ovarian cancer, brain tumor, prostate cancer, head and neck squamous cell carcinoma, laryngeal cancer, pancreatic cancer, retinoblastoma, children hepatoblastoma, liver cancer, malignant melanoma, colorectal cancer, colon cancer, glioma, gastrointestinal tumor, nasopharyngeal carcinoma, brain glioma, gastric cancer, lung adenocarcinoma and lung cancer.


The uses of the above-mentioned compounds in preparing the adjuvant drugs to treat cancers through inhibiting cancer stem cells, where the cancers thereof are preferably acute myeloid leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia, skin cancer, breast cancer, ovarian cancer, brain tumor, prostate cancer, head and neck squamous cell carcinoma, laryngeal cancer, pancreatic cancer, retinoblastoma, children hepatoblastoma, liver cancer, malignant melanoma, colorectal cancer, colon cancer, glioma, gastrointestinal tumor, nasopharyngeal carcinoma, brain glioma, gastric cancer, lung adenocarcinoma and lung cancer.


The present invention also provides a pharmaceutical composition comprising at least one compound according to any claim of claim 1 to claim 2 as the active component and a pharmaceutically acceptable carrier or other compound(s) to treat rheumatoid arthritis.


The present invention also provides a pharmaceutical composition comprising at least one compound according to any claim of claim 1 to claim 2 as the active component and a pharmaceutically acceptable carrier or other compound(s) to treat cancer.


If the compounds according to the present invention are used as drugs, they can be directly used or in the form of pharmaceutical composition. This pharmaceutical composition comprises the compound according to the present invention with a content of 0.1-99%, preferably 0.5-90% and other pharmaceutical carrier and/or excipient which is pharmaceutically acceptable, nontoxic to human and animal and inert, or is a drug combination with other drug(s) to treat rheumatoid arthritis. The composition according to the present invention can be prepared into the form of injection, tablet or capsule, etc.


Said pharmaceutical carrier or excipient is one or more solids, semi-solids and liquid diluents, fillers and pharmaceutical adjuvants. The pharmaceutical composition according to the present invention is used in the form of dose per unit body weight. The drugs according to the present invention can be delivered in two forms as injection and oral administration, for example, the former can be intravenous and intramuscular injection and the dosage form of the latter can be tablet and capsule.







DETAILED DESCRIPTION OF THE INVENTION

In order to understand the present invention, the following embodiments are used to further describe the present invention. Nevertheless, it is not to limit the protection scope of the present invention.


Embodiment 1: Preparation Method of Compound 1-50


Preparation of Compound 1:


Dissolve the parthenolide (50 mg, 02 mmol) in 2.5 mL CH2Cl2 and add p-toluenesulfonic acid (5 mg, 0.026 mmol). Place the reaction system at room temperature and stir it overnight. Transfer the reaction solution into the saturated solution of NaHCO3 (10 mL), collect the organic phase and extract the aqueous phase with a small amount of CH2Cl2, then mix the organic phases together and dry with Na2SO4 before filtering it. Distill the organic solvent at reduced temperature with rotary evaporator, then purify it with silica gel column to get Compound 1 (45 mg, yield is 90%). 1H NMR (CDCl3, 400 MHz) δ 6.20 (d, J=3.2 Hz, 1H) 5.49 (d, J=32 Hz, 1H) 3.81 (t, J=10.4 Hz, 1H), 270 (d, J=10.4 Hz, 1H), 2.65-2.62 (m, 2H), 2.40-2.34 (m, 1H), 2.07-2.26 (m, 4H), 1.73-1.86 (m, 2H), 1.68 (s, 3H), 1.36-1.28 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ 169.8, 138.7, 131.7, 130.8, 119.5, 84.1, 80.2, 58.5, 49.5, 382, 34.8, 30.0, 25.7, 23.9, 23.6.


Common Preparation Method of Compounds 2-20:




embedded image


Under the protection by nitrogen gas and in ice-water bath, drip the acyl chloride (RCl) into the mixture of Compound 1 (24.8 mg, 0.1 mmol, DMAP (1.25 mg, 0.01 mmol) and trimethylamine (0.12 mL, 12 mmol), once the dripping ends, remove the ice-water bath and stir the system at room temperature until TLC test confirms the reaction ends. Pour the reaction mixture into ice water and extract with ethyl acetate (5 mL×3), wash the organic layer with citric acid solution (20 mL), saturated NaHCO3 (10 mL) and saturated saline solution (10 mL) in turn. Dry the organic phase with anhydrous sodium sulfate and concentrate it under reduced pressure to yield the crude product, then separate it with silica gel column chromatography to get pure product.


The yield of Compound 2 is 62.8%. 1H NMR(400 MHz, CDCl3z)δ 6.13(1H, d, J=3.1 Hz), 5.40(1H, d, J=2.8 Hz) 3.72(1H, t, J=10.2 Hz) 3.08(1H, d, J=10.1 Hz) 2.65˜2.59(1H, m) 2.41˜2.35(2H, m), 2.21˜2.13(4H, m), 2.04˜2.00(1H, m), 1.97(3H, s), 1.91˜1.83(1H, m), 1.65(3H, s), 1.48(3H, s); 13C NMR(100 MHz, CDCl3)δ 169.6, 169.3, 138.4, 130.6, 129.4, 117.8, 87.7, 82.0, 55.6, 49.1, 35.4, 33.9, 29.4, 24.9, 232, 21.5, 17.8.


The yield of Compound 3 is 70.0%, 1H NMR (400 MHz, CDCl3) δ6.20 (1H, d, J=3.1 Hz), 5.47 (1H, d, J=2.8 Hz), 3.79 (1H, t, J=10.1 Hz), 3.13 (1H, d, J=10.2 Hz), 2.71˜2.66 (1H, m), 2.49˜2.42 (2H, m), 2.38˜2.30 (2H, m), 2.28˜2.26 (4H, m), 2.11˜2.08 (1H, dd, J=13.8, 1.8 Hz), 1.97˜1.89 (1H, m), 1.72 (3H, s), 1.57 (6H, d, J=9.0 Hz); 13C NMR (100 MHz, CDCl3) δ173.8, 170.2, 139.5, 131.5, 130.4, 118.6, 88.4, 83.0, 56.6, 50.1, 36.5, 34.9, 30.4, 28.7, 25.9, 24.1, 18.8, 9.1.


The yield of Compound 4 is 30.0%, 1H NMR (400 MHz, CDCl3)δ6.22 (1H, d, J=2.7 Hz), 5.49 (1H, d, J=2.1 Hz), 3.81 (1H, t, J=10.1 Hz), 3.16 (1H, d, J=103 Hz), 2.52˜2.44 (2H, m), 236˜2.23 (6H, m), 2.13˜2.10 (1H, m), 1.99˜1.91 (1H, m), 1.74 (3H, s), 1.70˜1.68 (1H, m), 1.65 (3H, s), 1.57 (2H, s), 0.98 (3H, t, J=73 Hz); 13C NMR (100 MHz, CDCl3)δ173.2, 170.3, 139.5, 131.6, 130.5, 118.7, 88.5, 83.0, 56.8, 50.2, 37.4, 36.6, 35.0, 30.5, 25.9, 242, 18.8, 18.5, 13.6.


The yield of Compound 5 is 37.6%, 1H NMR (400 MHz, CDCl3) δ6.19 (1, d, J=3.1 Hz), 5.47 (1H, d, J=2.9 Hz), 3.78 (1H, t, J=10.1 Hz), 3.13 (1H, d, J=10.0 Hz), 2.72˜2.66 (1H, m), 2.49˜2.42 (2H, m), 2.37˜2.31 (1H, m), 2.30˜2.26 (4H, m), 2.12˜2.08 (1H, dd, J=13.7, 2.2 Hz), 1.97˜1.88 (1H, m), 1.75 (3H, s), 1.64˜1.56 (2H, m), 1.55 (3H, s), 1.40˜131 (3H, m), 0.92 (3H, t, J=73 Hz); 13C NMR (100 MHz, CDCl3) δ173.4, 1702, 139.5, 131.6, 130.4, 118.7, 88.5, 83.0, 56.8, 50.2, 36.5, 352, 34.9, 30.5, 27.1, 25.9, 24.1, 222, 18.8, 13.8.


The yield of Compound 6 is 26.8%, 1H NMR (400 MHz, CDCl3) δ6.21 (1H, d, J=3.0 Hz), 5.48 (1H, d, J=2.8 Hz), 3.81 (1H, t, J=10.1 Hz), 3.15 (1H, d, J=10.3 Hz), 2.74˜2.68 (1H, m), 2.57˜2.44 (3H, m), 2.30˜229 (3H, m), 2.14˜2.10 (1H, dd, J=13.7, 2.1 Hz), 1.98˜1.90 (1H, m), 1.74 (3H, s), 1.66 (1H, s), 1.56 (3H, s), 1.21˜1.17 (6H, m); 13C NMR (100 MHz, CDCl3) δ176.6, 170.2, 139.6, 131.5, 130.4, 118.6, 882, 83.0, 56.8, 50.1, 36.5, 35.0, 34.7, 30.5, 26.0, 24.2, 19.0, 18.9, 18.7.


The yield of Compound 7 is 47.8% 1H NMR (400 MHz, CDCl3) δ6.19 (1H, d, J=3.2 Hz), 5.46 (1H, d, J=2.9 Hz), 3.78 (1H, t, J=10.1 Hz), 3.13 (1H, d, J=10.1 Hz), 2.71˜2.66 (1H, m), 2.50˜2.42 (2H, m), 2.28˜2.26 (3H, m), 2.20˜2.07 (4H, m), 1.97˜1.89 (1H, m), 1.72˜1.69 (4H, m), 1.56 (3H, s), 0.97 (6H, d, J=5.9 Hz); 13C NMR (100 MHz, CDCl3) δ172.7, 170.2, 139.5, 131.6, 130.5, 118.7, 88.5, 83.0, 56.8, 502, 44.6, 36.6, 35.0, 30.5, 25.9, 25.8, 24.2, 22.4, 22.3, 18.8.


The yield of Compound 8 is 13.9% 1H NMR (400 MHz, CDCl3) δ6.20 (1H, d, J=2.9 Hz), 5.47 (1H, d, J=2.4 Hz), 4.07˜3.95 (2H, q, J=16.4 Hz), 3.79 (1H, t, J=10.1 Hz), 3.47 (3H, s), 3.19 (1H, d, J=10.1 Hz), 2.71˜2.66 (1H, m), 2.51˜2.44 (2H, m), 2.27 (3H, s), 2.11˜2.08 (1H, dd, J=12.5, 0.7 Hz), 2.04˜1.95 (1H, m), 1.72 (3H, s) 1.63 (1H, s), 1.58 (3H, s); 13C NMR (100 MHz, CDCl3) δ170.2, 169.7, 139.3, 131.9, 130.0, 118.9, 89.6, 82.9, 70.3, 59.3, 56.4, 50.0, 36.4, 35.0, 30.4, 25.9, 242, 18.9.


The yield of Compound 9 is 56.2%, 1H NMR (400 MHz, CDCl3) δ6.23 (1H, d, J=33 Hz), 5.50 (1H, d, J=3.1 Hz), 4.14˜4.05 (2H, m), 3.81 (1H, t, J=10.1 Hz), 3.20 (1H, d, J=10.0 Hz), 2.74˜2.68 (1H, m), 2.54˜2.47 (2H, m), 2.30˜2.29 (3H, m), 2.15˜2.11 (1H, dd, J=13.8, 2.3 Hz), 2.07˜1.97 (1H, m), 1.75 (3H, s), 1.62 (4H, s); 13C NMR (100 MHz, CDCl3) δ170.1, 166.4, 139.2, 132.1, 129.8, 119.0, 90.8, 82.8, 56.4, 50.1, 42.0, 363, 35.0, 303, 25.9, 242, 18.8.


The yield of Compound 10 is 20.7%, 1H NMR (400 MHz, CDCl3) δ6.23 (1H, d, J=3.3 Hz), 5.96 (1H, s), 5.51 (1H, d, J=3.0 Hz), 3.81 (1H, t, J=10.1 Hz), 3.21 (1H, d, J=10.1 Hz), 2.76˜2.70 (1H, m), 2.56˜2.48 (2H, m), 2.30 (3H, s), 2.15˜2.11 (1H, dd, J=13.8, 2.3 Hz), 2.07˜1.99 (1H, m), 1.75 (3H, s), 1.66 (4H, s); 13C NMR (100 MHz, CDCl3) δ169.9, 163.4, 139.2, 132.4, 129.5, 119.0, 923, 82.5, 65.2, 56.5, 50.1, 36.0, 34.9, 302, 25.9, 24.1, 18.6.


The yield of Compound 11 is 46.5% 1H NMR (400 MHz, CDCl3) δ6.22 (1H, d, J=3.3 Hz), 5.49 (1H, d, J=3.0 Hz), 3.86 (2H, s), 3.80 (1H, J=10.1 Hz), 3.18 (1H, d, J=9.9 Hz), 2.74˜2.68 (1H, m), 2.53˜2.46 (2H, m), 230˜2.29 (3H, m), 2.14˜2.10 (1H, dd, J=13.8, 2.3 Hz), 2.06˜1.94 (1H, m), 1.74 (3H, s), 1.71 (1H, s), 1.60 (3H, s); 13C NMR (100 MHz, CDCl3) δ170.1, 166.3, 139.3, 132.1, 129.9, 118.9, 90.8, 82.8, 56.5, 50.1, 36.2, 34.9, 303, 27.7, 25.9, 24.2, 18.7.


The yield of Compound 12 is 25.8% 1H NMR (400 MHz, CDCl3) δ6.22 (1H, d, J=3.2 Hz), 5.49 (1H, d, J=2.8 Hz), 3.81 (1H, t, J=102 Hz), 3.47 (2H, t, J=6.5 Hz), 3.15 (1H, d, J=10.0 Hz), 2.73˜2.68 (1H, m), 2.51˜2.44 (2H, m), 2.40˜2.32 (2H, m), 2.30 (2H, d, J=6.4 Hz), 2.14˜2.10 (1H, dd, J=13.7, 1.9 Hz), 1.99˜1.91 (3H, m), 1.83˜1.78 (2H, m), 1.74 (3H, s), 1.60 (3H, s), 1.57 (2H, s); 13C NMR (100 MHz, CDCl3) δ172.5, 170.2, 139.4, 131.7, 130.2, 118.8, 88.75, 83.0, 56.7, 50.1, 36.5, 35.0, 34.5, 33.5, 32.0, 30.5, 25.9, 24.2, 23.6, 18.8.


The yield of Compound 13 is 47.6% 1H NMR (400 MHz, CDCl3) δ6.22 (1H, d, J=3.3 Hz), 5.49 (1H, d, J=3.0 Hz), 3.81 (1H, t, J=102 Hz), 3.37˜3.33 (2H, m), 3.16 (1H, d, J=10.1 Hz), 2.74˜2.68 (1H, m), 2.51˜2.45 (2H, m), 2.41˜233 (2H, m), 2.31˜2.29 (3H, m), 2.14˜2.10 (1H, dd, J=13.7, 2.2 Hz), 2.00˜1.92 (1H, m), 1.74 (3H, s), 1.73˜1.66 (4H, m), 1.62 (1H, s), 1.57 (3H, s); 13C NMR (100 MHz, CDCl3) δ171.5, 169.2, 138.4, 130.7, 129.2, 117,7, 87.7, 82.0, 55.7, 50.1, 49.1, 35.5, 34.0, 33.9, 29.4, 272, 24.9, 23.1, 212, 17.8.


The yield of Compound 14 is 78.2%, 1H NMR (400 MHz, CDCl3) δ6.47˜6.37 (1H, dd, J=17.3, 1.3 Hz), 6.21 (1H, d, J=33 Hz), 6.13˜6.06 (1H, m), 5.80˜5.77 (1H, dd, J=10.3, 1.3 Hz), 5.48 (1H, d, J=3.1 Hz), 3.82 (1H, J=10.1 Hz), 3.15 (1H, d, J=10.1 Hz), 2.73˜2.67 (1H, m), 2.58˜2.44 (2H, m), 2.29˜2.27 (3H, m), 2.12˜2.08 (1H, dd, J=13.7, 2.3 Hz), 2.00˜1.92 (1H, m), 1.73 (3H, s), 1.59 (4H, s); 13C NMR (100 MHz, CDCl3) δ170.3, 165.5, 139.4, 131.7, 130.2, 130.1, 130.0, 118.8, 88.8, 83.0, 57.1, 50.1, 36.5, 35.0, 30.5, 25.9, 242, 18.6.


The yield of Compound 15 is 13.5%, 1H NMR (400 MHz, CDCl3) δ6.22 (1H, d, J=3.3 Hz), 5.49 (1H, d, J=3.0 Hz), 5.20 (1H, d, J=5.0 Hz), 5.16 (1H, s), 3.81 (1H, t, J=10.1 Hz), 3.16 (1H, d, J=8.8 Hz), 3.12˜3.09 (2H, m), 2.74˜2.68 (1H, m), 2.51˜2.44 (2H, m), 230˜2.28 (4H, m), 2.14˜2.10 (1H, dd, J=13.7, 2.1 Hz), 2.00˜1.92 (1H, m), 1.88˜1.86 (1H, dd, J=6.9, 1.3 Hz), 1.74 (3H, s), 1.59 (1H, s), 1.58 (3H, s); 13C NMR (100 MHz, CDCl3) δ171.0, 170.2, 139.5, 131.7, 130.7, 1303, 118.7, 118.2, 89.0, 83.0, 56.7, 50.1, 402, 36.5, 35.0, 30.5, 25.9, 24.2, 18.8.


The yield of Compound 16 is 26.6%, 1H NMR (400 MHz, CDCl3) δ6.20 (1H, d, J=3.2 Hz), 5.68 (1H, s), 5.47 (H, d, J=2.8 Hz), 3.81 (1H, t, J=10.2 Hz), 3.15 (1H, d, J=10.0 Hz), 2.73˜2.67 (1H, m), 2.57˜2.43 (2H, m), 2.28˜2.27 (3H, m), 2.15 (3H, s), 2.12˜2.08 (1H, dd, J=13.9, 2.1 Hz), 2.00˜1.92 (2H, m), 1.87 (3H, s), 1.73 (3H, s), 1.59 (3H, s); 13C NMR (100 MHz, CDCl3) δ170.3, 166.2, 155.4, 139.5, 131.5, 130.6, 118.7, 117.7, 882, 83.1, 57.0, 503, 36.8, 34.9, 30.6, 27.4, 25.9, 242, 20.1, 18.9.


The yield of Compound 17 is 23.3%, 1H NMR (400 MHz, CDCl3) δ7.76 (1H, d, J=16.0 Hz), 7.59˜7.57 (2H, m), 7.39 (3H, d, J=5.0 Hz), 6.45 (1H, d, J=16.0 Hz), 6.24 (1H, d, J=3.1 Hz), 5.51 (1H, d, J=2.7 Hz), 3.88 (1H, t, J=10.2 Hz), 3.20 (1H, d, J=10.0 Hz), 2.78˜2.73 (1H, m), 2.65˜2.61 (1H, m), 2.55˜2.48 (1H, m), 2.31 (3H, s), 2.16 (1H, d, J=13.5 Hz), 2.07˜1.98 (1H, q), 1.75 (3H, s), 1.63 (4H, s); 13C NMR (100 MHz, CDCl3) δ170.4, 166.4, 144.5, 139.5, 134.7, 131.6, 130.0, 129.9, 128.8, 128.2, 119.7, 118.8, 88.7, 83.1, 573, 50.0, 36.7, 35.0, 30.6, 26.0, 24.2, 18.6.


The yield of Compound 18 is 53.3% 1H NMR (400 MHz, CDCl3) δ 6.18 (1H, d, J=3.2 Hz), 5.87˜5.80 (1H, m), 5.46 (1H, d, J=3.0 Hz), 5.09 (1H, d, J=16.9 Hz), 5.00 (1H, d, J=9.6 Hz), 3.80˜3.74 (1H, m), 3.12 (1H, d, J=7.4 Hz), 2.68 (1H, s), 2.45˜2.40 (3H, m), 2.37 (4H, s), 2.25 (3H, s), 2.11˜2.07 (1H, m), 1,95˜1.89 (1H, m), 1.71 (3H, s), 1.54 (3H, d, J=3.8 Hz): 13C NMR (100 MHz, CDCl3) δ172.4, 170.2, 139.5, 136.9, 131.6, 1303, 118.7, 1153, 88.7, 82.9, 56.7, 50.1, 36.5, 35.0, 34.6, 30.4, 29.0, 25.9, 24.2, 18.8.


The yield of Compound 19 is 65.2%, 1H NMR (400 MHz, CDCl3) δ6.21 (1H, d, J=3.1 Hz), 5.49 (1H, d, J=2.7 Hz), 3.82 (1H, t, J=10.0 Hz), 3.15 (1H, d, J=93 Hz), 2.91˜2.82 (3H, m), 2.14˜2.10 (1H, m), 2.04˜2.01 (3H, m), 1.97˜1.87 (8H, m), 1.83˜1.75 (6H, m), 1.63 (1H, s); 13C NMR (100 MHz, CDCl3) δ172.4, 170.2, 139.4, 131.7, 130.2, 118.8, 88.8, 83.6, 83.0, 69.0, 56.7, 50.1, 36.5, 34.9, 34.1, 30.5, 25.9, 242, 23.7, 18.8, 17.8.


The yield of Compound 20 is 24.0%, 1H NMR (400 MHz, CDCl3) δ7.32˜7.18 (5H, m), 6.22 (1H, d, J=33 Hz), 5.49 (1H, d, J=3.0 Hz), 3.80 (1H, t, J=10.1 Hz), 3.12 (1H, d, J=10.1 Hz), 2.99 (2H, t, J=7.9 Hz), 2.73˜2.59 (3H, m), 2.49˜2.43 (2H, m), 230˜2.28 (3H, m), 2.14˜2.10 (1H, dd, J=13.8, 2.3 Hz), 1.96˜1.87 (1H, m), 1.74 (3H, s), 1.65 (1H, s), 1.56 (3H, s): 13C NMR (100 MHz, CDCl3) δ172.3, 170.2, 140.8, 139.5, 131.6, 130.4, 128.4, 126.0, 118.7, 88.8, 83.0, 56.7, 50.1, 36.8, 36.5, 35.0, 31.0, 30.5, 26.0, 24.2, 18.8.


Synthesis of Compound 21:




embedded image


In one dry and clean reaction flask of 10 mL, add 5-acetylenic acid and Compound 19 (200 mg, 0.584 mmol), 6-azido-1-n-hexanol (125.43 mg, 0.876 mmol), copper sulfate hydrate (145.80 mg, 0.584 mmol) and sodium ascorbate (462.78 mg, 2.336 mmol), then add the mixture solution of distilled water and tert-butyl alcohol (1:2) (3 mL) to dissolve them to homogeneous phase and then stir it for 2 hours at room temperature. Remove partial solvent with rotary evaporator and extract the remaining reaction solution mixture with ethyl acetate, then collect the organic phase and dry with anhydrous sodium sulfate and filter at reduced pressure. Dry the organic phase with rotary evaporator and separate it with silica column chromatography to get Compound 21 (120.0 mg) with a yield of 61.3%. 1H NMR (400 MHz, CDCl3) δ7.52 (1H, s), 6.20 (1H, d, J=3.3 Hz), 5.49 (1H, d, J=3.0 Hz), 4.34 (2H, t, J=7.1 Hz), 3.81 (1H, t, J=10.2 Hz), 3.63 (2H, t, J=6.4 Hz), 3.14 (1H, d, J=10.1 Hz), 2.81˜2.76 (2H, m), 2.74˜2.67 (1H, m), 2.51˜2.43 (2H, m), 239˜231 (2H, m), 2.29˜2.27 (4H, m), 2.13˜2.09 (1H, dd, J=13.8, 2.3 Hz), 2.05˜2.00 (3H, m), 1.97˜1.88 (5H, m), 1.72 (4H, s), 1.60˜1.53 (6H, m); 13C NMR (100 MHz, CDCl3) δ172.6, 170.2, 147.1, 139.4, 131.7, 130.0, 1213, 118.8, 88.6, 83.1, 622, 56.7, 50.0, 49.9, 36.4, 34.9, 34.7, 32.3, 30.4, 30.1, 26.1, 25.8, 25.1, 24.8, 24.7, 24.1, 18.8.


Preparation of Compound 22:




embedded image


Mix dimethylamine hydrochloride (1.5 g, 18 mmol) and K2CO3 (5.0 g, 36 mmol) and then add them into 100 ml CH2Cl2 to stir 15 minutes, then filter under pressure and directly add into Compound 5 (300 mg, 12 mmol) and stir for 3 h at room temperature. Remove the solvent at reduced pressure and dissolve it with a few amount of CH2Cl2, wash it three times rapidly with water and dry with Na2SO4 before filer it, then remove the CH2Cl2 at reduced pressure to obtain the crude product—dimethyl amine intermediate. Dissolve it again with a few amount of CH2Cl2 and add the dilute hydrochloric acid solution (equivalent to dimethyl amine intermediate) with stirring where the pH value of aqueous solution shall be tested during stirring and the dripping of hydrochloric acid solution shall be stopped when it becomes 4-5. Collect the aqueous phase and dry it through freezing to get Compound 22.


Dimethyl amine intermediate: 1H NMR (CDCl3, 400 MHz) δ 3.76 (t, J=10.0 Hz, 1H), 2.96 (s, 1H), 2.49-2.67 (m, 3H), 2.28-2.34 (m, 1H), 2.30-2.34 (m, 2H) 2.18 (s, 6H), 2.09 (br s, 2H), 1.96 (d, J=11.2 Hz, 1H) 1.67-1.73 (m, 2H) 1.60 (s, 3H), 1.22 (br s, 3H), 1.18 (br s, 2H); 13C NMR (CDCl3, 300 MHz) δ 177.0, 131.8, 131.3, 84.0, 80.2, 58.3, 58.1, 50.9, 46.0, 44.6,38.4, 353, 30.0, 272, 23.7, 22.8.


Compound 22: [α]D20=−42.0 (c=10, H2O); IR (KBr): 3334, 2927, 2856, 1767, 1467, 992, 967, 874, 831, 719, 669, 626, 504 cm-1; 1H NMR (D2O, 400 MHz) δ 4.14 (t, J=10.3 Hz, 1H), 3.51 (q, J=12.6 Hz, 1H), 3.40 (dd, J=13.3, 2.9 Hz, 1H), 3.18-3.04 (m, 1H), 2.96 (d, J=10.6 Hz, 6H), 2.67 (d, J=10.2 Hz, 1H), 2.37 (dd, J=16.2, 8.1 Hz, 1H), 2.27-2.05 (m, 4H), 1.87 (d, J=12.9 Hz, 1H), 1.73 (dd, J=19.5, 11.7 Hz, 2H), 1.66 (s, 3H), 1.46-131 (m, 2H), 1.26 (s, 3H) 13C NMR (CDCl3, 100 MHz) δ 178.4, 132.6, 131.4, 85.1, 80.7, 56.9, 55.6, 49.9, 45.1, 42.3, 41.5, 39.2, 34.4, 29.5, 25.9, 23.2, 21.4. HRMS calcd for C17H27NO3 [M+H]+ 294.1991, found 294.2069.


Preparation of Compound 23:




embedded image


Mix dimethylamine hydrochloride (1.5 g, 18 mmol) and K2CO3 (5.0 g, 36 mmol) and then add them into 10 ml CH2Cl2 to stir 15 minutes, then filler under pressure and directly add into Compound 5 (300 mg, 1.2 mmol) and stir for 3 h at room temperature. Remove the solvent at reduced pressure and dissolve it with a few amount of CH2Cl2, then wash it three times rapidly with water and dry with Na2SO4 before filter it. Remove the CH2Cl2 at reduced pressure to yield the crude product—dimethyl amine intermediate, then dissolve it again with a few amount of CH2Cl2 and add fumaric acid (equivalent to dimethyl amine intermediate) with stirring. Then concentrate and dry it to get Compound 23. 1H NMR (DMSO, 400 MHz) δ 6.58 (s, 2H), 3.80 (t, J=10.3 Hz, 1H), 2.64 (s, 3H), 2.49-2.53 (m, 3H), 2.26-2.27 (m, 1H), 2.23 (s, 6H), 1.96-2.10 (m, 6H), 1.60 (s, 3H), 1.57-1.59 (m, 2H), 1.23-1.25 (m, 1H), 1.15 (s, 3H); 13C NMR (CDCl3, 100 MHz) 177.8, 167.6, 1352, 133.7, 131.4, 83.4, 8031, 58.0, 57.1, 51.7, 45.2, 43.6, 41.0, 353, 302, 27.0, 242, 232.


Preparation of Compound 24:


Dissolve Compound 1 (628 mg, 12.5 mmol) in 35 ml CH2Cl2 and then add m-CPBA (680 mg, 4.0 mmol). Place and stir the reaction system at room temperature and monitor the reaction with TCL. After the raw materials disappear, pour the reaction mixture into 5% NaHCO3 (60 mL) and wash the organic phase with water (20 ml), then collect the organic phase and dry it with Na2SO4 before filer it, then dry it through rotary evaporation to get the crude product, then purity it with silica gel column to get Compound 24. 1H NMR (CDCl3, 400 MHz) δ 6.17 (d, J=32 Hz, 1H), 5.47 (d, J=2.8 Hz, 11H), 4.04 (t, J=10.8 Hz, 1H, 2.36-2.20 (m, 4H), 2.03-1.08 (m, 4H), 1.68-1.62 (m, 1H), 1.46 (s, 3H), 1.46 (d, J=12.8 Hz, 1H), 1.29 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 169.5, 137.9, 119.5, 81.7, 79.5, 69.7, 62.1, 55.3, 49.2, 37.2, 33.2, 29.3, 23.1, 23.0, 21.8.


Preparation of Compound 25:


According to the paper “Hongquan Yin, Xiulan Qi, Huiming Hua, Yuehu Pei, Study on Chemical Ingredients of Aplotaxis Auriculata, Chin J Med Chem, 2005, Vol 15, No. 4, P217-220”, it is produced through separating and purifying from aplotaxis auriculata.


Preparation of Compound 26 and Compound 30:




embedded image


Stir the methanol solution of Compound 25 (150 mg, 0.65 mmol) and sodium methoxide (20 mg, 0.37 mmol) at 30° C. for 10 hours. After TLC test is finished, pour the reaction solution into ice water, extract it with ethyl acetate four times and mix the layers of ethyl acetate, then wash it with 5% hydrochloric acid, saturated NaHCO3 aqueous solution and saturated saline solution in turn. Dry with anhydrous magnesium sulfate, then filter, concentrate and purify it with silica gel column to get the methoxylation product (136 mg, 80%).



1H-NMR (400 MHz, CDCl3) δ 5.19 (d, J=1.6 Hz, 1H) 5.03 (d, J=1.6 Hz, 1H), 4.87 (s, 1H), 4.76 (s, 1H, 3.93 (t, J=9.2 Hz, 1H), 3.70 (dd, J=4.4, 9.8 Hz, H), 3.63 (dd, J=3.2, 9.8 Hz, 1H), 3.37 (s, 3H), 2.90 (m, 1H), 2.83 (m, 1H), 2.51 (m, 2H), 2.49 (m, 1H), 2.44 (m, 1H), 2.38 (m, 1H), 2.19 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.86 (m, 1H), 1.32 (m, 1H); 13C-NMR (100 MHz, CDCl3) δ 175.7, 151.8, 149.9, 111.5, 108.8, 85.3, 68.9, 59.0, 51.7, 47.7, 46.9, 43.9, 37.7, 32.5, 32.4, 30.1.


Add Zn—Cu alloy (812 mg) and anhydrous ether (4 mL) in a dual-port bottle connected with condenser pipe and dry pipe, then add one granule of iodine and stir it until the color of iodine disappears. Add the ether solution (2 mL) of methoxylation product (262 mg, 1 mmol) and diiodomethane (0.8 mL, 10 mmol) and then reflux it for 72 hours. After TLC shows the reaction is completed, pour out the ether solution and wash the residual solid two times with ether (3 mL), mix the ether layers and wash it respectively with saturated NH4Cl aqueous solution and water (10 mL) then dry it with anhydrous sodium sulfate before filter and concentrate. Purify it with chromatography column to get the product which is white solid Compound 30 (206 mg, 71%). 1H-NMR (400 MHz, CDCl3) δ 4.20 (m, 1H), 3.65 (dd, J=3.9, 9.9 Hz, 1H), 3.59 (dd, J=3.0, 9.9 Hz, 1H), 3.34 (s, 1H), 2.30-2.40 (m, 3H), 1.92-2.07 (m, 2H), 1.15-1.70 (m, 7H), 0.85 (m, 1H), 0.70 (m, 1H), 0.50 (m, 1H), 0.40 (m, 1H), 0.16-0.36 (m, 4H); 13C-NMR (100 MHz, CDCl3) δ 176.4, 83.9, 69.2, 59.2, 51.5, 47.9, 473, 443, 36.2, 35.9, 29.0, 273, 26.7, 18.5, 12.5, 10.4, 10.0, 8.8; ESI-HRMS m/z: 291.1964 [M+H].


Dissolve Compound 30 (0.023 g, 0.080 mmol) in acetonitrile (0.52 mL), then add 4M NaOH aqueous solution (0.11 mL) and reflux 5 hours, after TLC test shows the reaction is completed, cool it to room temperature before add 10% hydrochloric acid to adjust the pH value to 3. Add ethyl acetate (20 mL) and wash twice with water (2×20 mL), then extract the aqueous phase twice with ethyl acetate(2×20 mL), mix the organic layers and dry it with anhydrous sodium sulfate, then filter and concentrate it before separate with chromatography column to get the product which is white solid 26 (0.019 g, 94%).




embedded image


Molecular formula: C17H22O2


Molecular weight: 258


Form: white amorphous powder


Spectrum data:



1H-NMR (400 MHz, CDCl3) δ 6.17 (d, J=3.2 Hz, 1H), 5.45 (d, J=3.2 Hz, 1H), 4.24 (dd, J=8.8, 10.8 Hz, 1H), 2.87 (m, 1H), 2.20 (m, 1H), 2.07 (m, 1H), 1.95 (dd, J=8.8, 10.4 Hz, 1H), 1.71 (m, 2H), 1.37-1.61 (m, 5H), 0.98 (m, 1H), 0.64 (m, 1H), 0.49 (m, 1H), 0.43 (m, 1H), 0.27-0.37 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 169.4, 139.4, 118.5, 82.5, 51.6, 47.4, 442, 34.2, 32.8, 26.4, 26.2, 25.3, 17.4, 11.1, 10.7, 10.5, 7.8; ESI-HRMS m/z: 259.1692 [M+H].


Preparation of Compound 27:




embedded image


Suspend dimethylamine hydrochloride (245 mg) in 11 mL CH2Cl2 solution, then add K2CO3 (380 mg) and stir 0.5 hour, then add Compound 26 (42 mg) and reflux 4 hours, then separate with silica gel column (petroleum ether ethyl acetate:=70:30) to get the oily Compound 27 with the yield: 78%


Molecular formula: C19H29NO2


Molecular weight: 303


Form: oily liquid


Spectrum data:



1H-NMR (400 MHz, CDCl3) δ4.19 (dd, J=9.5, 102 Hz, 1H), 2.66 (dd, J=12.8, 4.8 Hz, 1H), 2.49 (dd, J=12.8, 6.8 Hz, 1H), 2.25-2.38 (m, 2H), 2.21 (s, 6H), 1.98-2.12 (m, 2H), 1.80-1.84 (m, 1H), 1.68 (m, 1H), 1.27-1.48 (m, 5H), 1.11 (m, 1H), 1.01 (m, 1H), 0.69 (m, 1H), 0.46 (m, 1H), 0.18-137 (m, 4H), 0.11 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 181.3, 82.8, 58.0, 50.8, 46.4, 46.0, 45.0, 44.6, 35.2, 34.9, 28.2, 26.3, 25.7, 17.5, 11.5, 9.6, 92, 7.9; ESI-HRMS m/z: 304.2273 [M+H].


Synthesis Method of Compound 28:




embedded image


Dissolve Compound 27 (38 mg) in 2 mL CH2Cl2. Slowly add 0.05 M dilute hydrochloric acid with stirring until the pH value becomes 4. Separate the aqueous phase, wash once with CH2Cl2. Freeze, and dry the aqueous phase to get Compound 28 (31 mg) with a yield of 73%.


Molecular formula: C19H30NO2Cl


Molecular weight: 339


Form: White solid


Spectrum data:



1H-NMR (400 MHz, D2O) δ 4.42 (m, 1H), 331-337 (m, 1H), 3.21-3.25 (n, 1H), 2.92 (m, 1H), 2.82 (s, 3H), 2.80 (s, 3H), 2.11-2.26 (m, 2H), 1.94 (m, 1H), 1.79 (m, 11H), 1.39-1.58 (m, 5H), 1.23 (m, 1H), 1.13 (m, 1H), 0.69 (m, 1H), 0.46 (m, 1H, 0.18-1.33 (m, 4H), 0.11 (m, 2H); 13C NMR (100 MHz, D2O) 178.2, 85.8, 56.0, 51.0, 47.2, 45.9, 44.8, 42.5, 42.2, 35.7, 35.2, 27.5, 272, 26.6, 183, 12.2, 103, 9.8, 8.6; ESI-HRMS m/z: 304.2271 [M+H].


Synthesis of Compound 29:




embedded image


Add 20 mg Compound 26 into the reaction flask and dissolve it with 1 mL THF, then add 86 mg proline ethyl ester hydrochloride and 0.2 mL DBU, stir for 24 hours before purify it with chromatography column to get Compound 29 (12 mg) with a yield: 39%.


Molecular formula: C24H35NO4


Molecular weight: 401


Form: colorless oily compound


Spectrum data:



1H NMR (400 MHz, CDCl3): δ 4.10-4.22 (m, 3H) 3.31 (dd, J=8.8, 5.2 Hz, 1H), 3.05 (dd, J=13.2, 5.2 Hz, 1H), 2.91-2.96 (m, 1H), 2.86 (dd, J=132, 3.6 Hz, 1H), 2.37-2.49 (m, 3H) 2.23-2.29 (m, 1H) 1.96-2.11 (m, 3H), 1.73-1.94 (m, 3H), 1.57-1.69 (m, 3H), 1.40 -1.47 (m, 1H), 1.17-136 (m, 6H), 0.83-0.89 (m, 1H), 0.70-0.75 (m, 1H), 0.48-0.53 (m, 1H), 0.40-0.45 (m, 1H), 0.26-036 (m, 2H), 0.17-0.24 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 178.3, 174.4, 843, 66.6, 60.6, 53.9, 51.9, 51.7, 47.5, 472, 44.7, 36.6, 362, 293, 29.1, 27.6, 27.0, 24.0, 18.8, 14.5, 12.8, 10.6, 10.1, 9.1; ESI-HRMS m/z: 402.2644 [M+H].


Synthesis Method of Compound (31):




embedded image


Weigh Compound 26 (51.6 mg) and dissolve DMAP (4 mg) in 2 mL CH2Cl2, then add 66 mg thiophenol and stir 12 hours, dry it through rotary evaporation and purify it with silica column chromatography to get Compound 31(68 mg).



1H NMR (400 MHz, CDCl3) δ 7.44-7.34 (m, 2H), 7.30 (dd, J=10.3, 4.8 Hz, 2H), 7.20 (t, J=7.3 Hz, 1H), 4.24-4.14 (m, 1H), 3.47 (dd, J=13.8, 4.0 Hz, 1H), 3.11 (dd, J=13.8, 7.0 Hz, 1H), 2.52 (ddd, J=11.2, 7.0, 4.1 Hz, 1H), 2.30 (ddd, J=20.7, 10.6, 4.2 Hz, 1H), 2.21 (dd, J=18.2, 8.9 Hz, 1H), 2.13-2.03 (m, 1H), 1.96-1.86 (m, 1H), 1.73-1.63 (m, 1H), 1.61-1.47 (m, 2H), 1.43 (ddd, J=12.3, 8.5, 3.5 Hz, 1H), 1.39-1.25 (m, 3H), 0.89 (dt, J=9.8, 4.8 Hz, 1H), 0.65 (ddd, J=9.2, 5.4, 3.8 Hz, 1H), 0.42 (tt, J=13.4, 4.6 Hz, 2H), 0.36-0.30 (m, 1H), 0.29-0.21 (m, 2H), 0.18-0.08 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 177.1, 136.3, 130.0, 129.6, 127.0, 84.2, 77.92, 52.6, 48.3, 47.4, 47.1, 35.9, 35.4, 33.8, 29.7, 27.7, 27.0, 18.8, 12.8, 11.4, 9.3.


Synthesis Method of Compound (32):




embedded image


Dissolve Compound 26 (51.6 mg) and 1,8-Diazabicyclo(5.4.0)undec-7-ene (15.2 mg) in 0.5 mL acetonitrile, then add 37.3 mg benzyl mercaptane and stir 24 hours, then dry through rotary evaporation, then purify it with silica column chromatography to get Compound 32 (75 mg). 1H NMR (400 MHz, CDCl3) δ 7.30-7.23 (m, 4H), 7.22-7.17 (m, 1H), 4.13 (t, J=9.9 Hz, 1H), 3.77-3.63 (m, 2H), 2.80-2.66 (m, 2H), 2.35 (dt, J=10.5, 5.1 Hz, 1H), 2.28-2.14 (m, 2H), 1.89 (ddd, J=14.0, 10.1, 5.2 Hz, 2H), 1.67-1.49 (m, 2H), 1.48-1.38 (m, 2H), 1.38-1.30 (m, 1H), 1.30-1.17 (m, 2H), 0.83 (dt, J=9.7, 4.9 Hz, 1H), 0.63 (ddd, J=9.4, 5.4, 4.0 Hz, 1H), 0.48-0.40 (m, 1H), 0.36 (dt, J=8.9, 4.5 Hz, 1H), 0.33-0.25 (m, 1H), 0.24-0.13 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 177.4, 138.6, 129.5, 129.0, 127.6, 84.3, 52.2, 48.0, 47.7, 46.8, 38.1, 36.1, 36.0,30.7, 29.6, 27.8, 27.1, 18.9, 13.0, 11.2, 11.0, 9.3.


Synthesis Method of Compound (33):




embedded image


Dissolve Compound 26 (51.6 mg) in 1 mL methanol, then add 321 mg benzylamine and stir 24 hours, then dry it through rotary evaporation, then purify it with silica column chromatography to get the intermediate (76 mg). Dissolve it in 5 mL methanol and add 21 mg methane sulfonic acid, then stir it 10 minutes and dry with dry evaporation to get Compound 33 (97 mg).



1H NMR (400 MHz, MeOD) δ 7.47 (d, J=38.9 Hz, 5H), 4.41 (t, J=9.9 Hz, 1H), 4.27 (q, J=13.1 Hz, 2H), 3.26 (s, 1H), 2.93-2.79 (m, 1H), 2.67 (s, 3H), 2.39-2.28 (m, 1H), 2.17 (t, J=16.3 Hz, 1H), 2.04 (t, J=9.7 Hz, 1H), 1.86 (d, J=8.2 Hz, 1H), 1.60 (dd, J=17.1, 7.0 Hz, 2H), 1.45 (d, J=35.5 Hz, 3H), 1.30 (dt, J=28.7, 13.8 Hz, 3H), 0.83 (d, J=4.0 Hz, 1H), 0.62 (s, 1H), 0.48 (d, J=3.8 Hz, 1H), 0.41 (d, J=3.9 Hz, 1H), 0.30 (d, J=4.0 Hz, 2H), 0.21 (s, 2H); 13C NMR (100 MHz, MeOD) δ 178.38, 132.13, 131.14, 130.72, 130.28, 86.43, 52.59, 52.52, 48.62, 46.81, 46.39, 44.39, 39.60, 36.78, 36.68, 29.12, 28.21, 27.69, 19.31, 13.06, 11.09, 10.81, 9.44.


Synthesis Method of Compound (34):




embedded image


Dissolve Compound 26 (103 mg) in 2 mL methanol, add 366 mg aminoethanol and stir 24 hours, then purify it with silica column chromatography to get 118 g amine addition intermediate, then dissolve it in 5 mL methanol and add 35.6 mg methane sulfonic acid, then stir it 10 minutes and dry with dry evaporation to get Compound 34 (153 mg).



1H NMR (400 MHz, D2O) δ 4.60 (t, J=10.1 Hz, 1H), 3.85 (t, J=5.0 Hz, 2H), 3.41-3.31 (m, 2H), 3.29-3.18 (m, 2H), 2.97-2.84 (m, 1H), 2.78 (s, 3H), 2.33 (q, J=8.8 Hz, 2H), 2.03 (t, J=9.8 Hz, 1H), 1.96-1.86 (m, 1H), 1.67 (dd, J=11.8, 7.7 Hz, 1H), 1.59-1.37 (m, 5H), 1.35-1.23 (m, 1H), 0.83-0.74 (m, 1H), 0.55-0.38 (m, 3H), 0.38-0.25 (m, 3H), 0.24-0.19 (m, 1H):



13C NMR (100 MHz, D2O) δ 178.39, 85.67, 56.28, 50.62, 49.68, 46.96, 45.74, 45.67, 43.11, 38.58, 35.95, 35.62, 27.66, 27.22, 26.69, 18.27, 12.28, 10.14, 9.49, 8.72.


Synthesis Method of Compound (35):




embedded image


Weigh Compound 26 (103 mg) and dimethylamine hydrochloride (489 mg) to dissolve in 20 mL CH2Cl2, add 1.66 g K2CO3 and reflux 6 hours, filter it before drying it through rotary evaporation, and then purify it with silica column chromatography to get Compound 27 (110 mg). Weigh 49 mg Compound 27 to dissolve in 1 mL methanol and add 20.9 mg dichloroacetic acid before stir 10 minutes, and then dry it through rotary evaporation to get Compound 35 (69 mg).



1H NMR (400 MHz, MeOD) δ 5.91 (s, 1H), 4.41 (t, J=10.1 Hz, 1H), 3.37 (dd, J=13.3, 9.2 Hz, 1H), 3.22 (dd, J=13.3, 4.0 Hz, 1H), 2.98-2.91 (m, 1H), 2.85 (s, 6H), 2.35 (dd, J=17.4, 9.1 Hz, 1H), 2.25-2.14 (m, 1H), 2.08-2.00 (m, 1H), 1.98-1.88 (m, 1H), 1.69-1.56 (m, 2H), 1.56-1.44 (m, 3H), 1.40-1.22 (m, 2H), 0.85 (dt, J=9.6, 4.8 Hz, 1H), 0.63 (ddd, J=9.3, 5.4, 3.9 Hz, 1H), 0.52-0.46 (m, 1H), 0.45-0.39 (m, 1H), 0.35-0.29 (m, 2H), 0.21 (td, J=9.5, 5.2 Hz, 2H); 13C NMR (100 MHz, MeOD) δ 178.45, 170.46, 86.32, 70.47, 57.60, 52.72, 48.77, 47.52, 44.52, 43.69, 36.93, 36.85, 29.11, 28.36, 27.85, 19.45, 13.22, 11.23, 10.93, 9.58.


Synthesis Method of Compound (36):




embedded image


Weigh Compound 26 (50.0 mg) to dissolve it in 1 mL anhydrous methanol, add 0.27 mL piperidine and allow them to react overnight, then concentrate it before purify it with silica column chromatography to get 50 mg amine addition intermediate compound, then dissolve it in 10 mL methanol and add methane sulfonic acid in equivalent amount, then dry it through rotary evaporation to get Compound 36 (63 mg). 1H NMR (CD3OD, 400 MHz) δ 0.13-0.18 (m, 2H), 0.24-0.30 (m, 2H), 0.33-0.38 (m, 1H), 0.41-0.45 (m, 1H), 0.55-0.59 (m, 1H), 0.76-0.81 (m, 1H), 0.92 (d, J=6.5 Hz, 3H), 1.19-1.66 (m, 9H), 1.81-1.92 (m, 3H), 1.96-2.01 (m, 1H), 2.12-2.18 (m, 1H), 2.26-2.31 (m, 1H), 2.61 (s, 3H), 2.92-3.02 (m, 3H), 3.18-3.36 (m, 3H), 3.53 (t, J=13.6 Hz, 2H), 4.37 (t, J=10.1 Hz, 1H); 13C NMR (CD3OD, 100 MHz) δ 9.4, 10.8, 11.1, 13.1, 19.3, 21.4, 27.7, 28.2, 28.9, 29.5, 32.4, 32.4, 36.7, 36.8, 39.7, 43.1, 47.7, 52.4, 54.2, 55.4, 56.6, 86.0, 178.


Synthesis Method of Compound (37):




embedded image


Weigh Compound 26 (50.0 mg) to dissolve it in 1 mL anhydrous methanol, add 0.30 mL piperazine and allow them to react overnight, then concentrate it before purify it with silica column chromatography to get 51 mg amine addition intermediate compound, then dissolve it in 10 mL methanol and add fumaric acid in equivalent amount, then dry it through rotary evaporation to get Compound 37 (62 mg).



1H NMR (CD3OD, 400 MHz) δ 0.07-0.13 (m, 2H), 0.17-0.22 (m, 2H), 0.28-0.32 (m, 1H), 0.36-0.40 (m, 1H), 0.49-0.53 (m, 1H), 0.72-0.76 (m, 1H), 1.09-1.58 (m, 7H), 1.84-1.95 (m, 2H), 2.06-2.12 (m, 1H), 2.18-2.25 (m, 1H), 2.37-2.43 (m, 1H), 2.52-2.69 (m, 6H), 2.69 (s, 3H), 3.10 (brs, 3H), 3.16-3.17 (m, 1H), 4.19 (t, J=10.0 Hz, 1H), 6.56 (s, 2H)13C NMR (CD3OD, 100 MHz) δ 9.5, 11.1, 11.2, 13.0, 19.4, 27.7, 28.3, 29.7, 36.8, 36.8, 43.4, 46.4, 47.9, 48.9, 51.6, 53.1, 54.5, 57.2, 85.6, 136, 170.6, 179.9.


Synthesis Method of Compound (38):




embedded image


Dissolve Compound 26 (100 mg, 0.39 mmol) in anhydrous methanol (20 mL), then add morpholine (508 mg, 5.85 mmol) and stir overnight at room temperature. Separate and purify it through silica column chromatography to get the product (100 mg, 0.29 mmol), then dissolve the product in anhydrous methanol (5 mL), add methanesulfonic acid (27.8 mg, 0.29 mmol), then dry the methanol through rotary evaporation to get Compound 38 (127.8 mg).



1H NMR (400 MHz, D2O) δ 4.56 (t, J=10.1 Hz, 1H), 4.10 (s, 2H), 3.92 (m, J=17.5, 12.5 Hz, 2H), 3.67-3.46 (m, 3H), 3.39 (dd, J=13.8, 3.3 Hz, 1H), 3.35-3.25 (m, 2H), 3.12-3.01 (m, 1H), 2.77 (s, 3H), 2.34 (dt, J=15.8, 7.9 Hz, 2H), 2.05 (t, J=9.9 Hz, 1H), 1.93 (s, 1H), 1.76-1.44 (m, 5H), 1.43-1.33 (m, 1H), 1.34-1.22 (m, 1H), 0.88-0.74 (m, 1H), 0.65-0.52 (m, 1H), 0.52-0.18 (m, 6H); 13C NMR (100 MHz, D2O) 178.38, 85.98, 63.53, 55.30, 50.93, 48.80, 47.00, 45.84, 41.70, 38.45, 35.16, 34.68, 27.34, 26.77, 26.31, 17.94, 11.76, 9.99, 9.71, 8.11.


Synthesis Method of Compound (39):




embedded image


Dissolve Compound 26 (50 mg, 0.195 mmol) in anhydrous methanol (5 mL), then add pyrrolidine (208 mg, 2.93 mmol) and stir overnight at room temperature. Separate and purify it through silica column chromatography to get the product (52 mg, 0.16 mmol), dissolve the product in anhydrous methanol (5 mL), add methanesulfonic acid (15.2 mg, 0.16 mmol), then dry the methanol through rotary evaporation to get Compound 39 (57.2 mg).



1H NMR (400 MHz, D2O) δ 4.44 (t, J=10.0 Hz, 1H), 3.79-3.58 (m, 2H), 3.50 (dd, J=13.4, 9.5 Hz, 1H), 3.35 (dd, J=13.5, 3.6 Hz, 1H), 3.21-3.03 (m, 2H), 2.90 (dd, J=5.9, 3.2 Hz, 1H), 2.73 (s, 3H), 2.33 (d, J=8.5 Hz, 1H), 2.24-2.08 (m, 3H), 2.06-1.95 (m, 3H), 1.92 (s, 1H), 1.52 (dt, J=24.8, 8.8 Hz, 5H), 1.33-1.15 (m, 2H), 0.87-0.71 (m, 1H), 0.65-0.53 (m, 1H), 0.46-0.08 (m, 6H); 13C NMR (100 MHz, D2O) δ 178.08, 85.50, 55.92, 54.06, 52.97, 50.74, 46.95, 45.81, 43.22, 38.44, 35.58, 35.18, 27.47, 26.99, 26.50, 22.66, 22.54, 18.10, 12.03, 10.04, 9.54, 8.43.


Synthesis Method of Compound (40):




embedded image


Compound 26 (100 mg, 0.39 mmol) in anhydrous methanol (2 mL), then add N-methylethanolamine (438 mg, 5.85 mmol) and stir overnight at room temperature. Separate and purify through silica column chromatography to get the product (100 mg, 0.30 mmol), dissolve the product in CH2Cl2 (5 mL), add methanesulfonic acid (28.8 mg, 0.30 mmol), then dry the CH2Cl2 through rotary evaporation to get Compound 40 (128.8 mg).



1H NMR (400 MHz, CDCl3) δ 4.36 (t, J=9.9 Hz, 1H), 3.92 (s, 2H), 3.65-3.43 (m, 2H), 3.34 (s, 2H), 3.01 (s, 3H), 2.98-2.83 (m, 1H), 2.71 (s, J=2.8 Hz, 3H), 2.37-2.22 (m, 1H), 2.19-2.10 (m, 2H), 2.05-1.88 (m, 2H), 1.57 (m, J=29.9, 18.2 Hz, 5H), 1.31 (d, J=10.9 Hz, 1H), 1.21 (s, 1H), 0.78 (m, 1H), 0.59 (m, 1H), 0.54-0.06 (m, 6H).


Synthesis Method of Compound (41):




embedded image


Dissolve Compound 26 (50-mg, 0.195 mmol) in anhydrous methanol (2 mL), then add N-Methylbutylamine (254 mg, 2.93 mmol) and stir overnight at room temperature. Separate and purify it through silica column chromatography to get the amine addition intermediate product (50 mg, 0.14 mmol), dissolve the product in CH2Cl2 (5 mL), add methanesulfonic acid (13.9 mg, 0.14 mmol), then dry the CH2Cl2 through rotary evaporation to get Compound 41 (63.9 mg).



1H NMR (400 MHz, D2O) δ 4.60 (s, 1H), 3.59-3.07 (m, 4H), 3.06-2.96 (m, 1H), 2.90 (s, 3H), 2.77 (s, 3H), 2.32 (dd, J=18.0, 8.9 Hz, 2H), 2.07-1.97 (m, 1H), 1.94-1.81 (m, 1H), 1.76-1.62 (m, 3H), 1.61-1.51 (m, 2H), 1.48 (d, J=8.1 Hz, 1H), 1.45-1.24 (m, 5H), 0.91 (t, J=7.4 Hz, 3H), 0.83-0.76 (m, 1H), 0.57-0.49 (m, 1H), 0.45 (ddd, J=17.8, 8.7, 4.7 Hz, 2H), 0.38-0.24 (m, 3H), 0.23-0.17 (m, 1H).


Synthesis Method of Compound 42-45:




embedded image


Add trimethylsilyl azide (575 mg, 5.0 mmol) and acetic acid (300 mg, 5.0 mmol) in 50 mL round bottom flask, agitate 20 minutes at room temperature and then add Compound 26 (258 mg, 1.0 mmol) and catalytic amount of thiethylamine (20.2 mg, 0.2 mmol) in the reaction solution, heat it to 60° C. and stir it until the reaction is completed (TLC test). Pour the reaction mixture into appropriate amount ice water and extract it with ethyl acetate (50 mL×3), then wash separately with saturated NaHCO3 solution (20 mL×3) and saturated saline solution (20 mL×3) in turn, then dry it with anhydrous sodium sulfate. Filter it by suction before concentrate it to get the azidation intermediate.


Take the azidation intermediate (0.25 mmol), sodium ascorbate (10 mg, 0.05 mmol) and copper sulfate pentahydrate (12 mg, 0.05 mmol) into a reaction flask dried in advance, then vacuumize it and charge nitrogen gas before seal the mouth. Then add 5 mL solvent mixture (tert-butyl alcohol: water=1:1) and 5-hexynyl-1-ol (49 mg, 0.5 mmol) and stir it at room temperature until the raw materials are reacted completely (TCL test). Pour the reaction mixture into appropriate amount of ice water and then extract with ethyl acetate (10 mL×3), then wash it with saturated saline solution three times, then dry it with anhydrous sodium sulfate, concentrate it at reduced pressure before purify it through silica gel column chromatography to get Compound 42 (71 mg).



1H NMR (400 MHz, CDCl3) δ 7.40 (s, 1H), 4.73-4.58 (m, 2H), 4.23 (t, J=10.0 Hz, 1H), 3.65 (t, J=6.3 Hz, 2H), 2.73 (t, J=7.4 Hz, 2H), 2.63 (dt, J=11.7, 4.2 Hz, 1H), 2.21 (dd, J=18.0, 9.0 Hz, 1H), 1.96-1.89 (m, 1H), 1.88-1.80 (m, 2H), 1.79-1.69 (m, 3H), 1.59 (dt, J=16.7, 7.6 Hz, 4H), 1.52-1.44 (m, 2H), 1.38-1.29 (m, 2H), 1.27-1.19 (m, 1H), 0.81 (dd, J=9.2, 4.8 Hz, 1H), 0.65-0.54 (m, 1H), 0.47-0.40 (m, 1H), 0.40-0.35 (m, 1H), 0.34-0.27 (m, 1H), 0.23 (m, 3H) 13C NMR (CDCl3, 100 MHz) 176.1, 149.0, 122.3, 84.9, 62.4, 52.0, 48.6, 47.9, 47.5, 44.6, 36.0, 35.5, 32.4, 28.6, 27.6, 27.0, 25.9, 25.6, 18.6, 12.8, 11.1, 10.9, 9.1.


Employ the above-mentioned method to prepare Compound 43 (70 mg).



1H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.81 (d, J=7.6 Hz, 2H), 7.39 (t, J=7.4 Hz, 2H), 7.29 (dd, J=14.9, 7.7 Hz, 1H), 4.79-4.65 (m, 2H), 4.20 (t, J=9.9 Hz, 1H), 2.68 (dt, J=8.7, 4.1 Hz, 1H), 2.17 (dd, J=17.9, 8.9 Hz, 1H), 2.07-1.92 (m, 1H), 1.84 (d, J=6.1 Hz, 1H), 1.74 (t, J=9.8 Hz, 1H), 1.63-1.49 (m, 2H), 1.42 (dd, J=13.1, 7.5 Hz, 2H), 1.30 (dt, J=20.0, 9.9 Hz, 2H), 1.24-1.15 (m, 1H), 0.79 (dd, J=17.1, 12.5 Hz, 1H), 0.61-0.51 (m, 1H), 0.37 (dd, J=20.4, 4.1 Hz, 2H), 0.29-0.13 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 175.54, 148.13, 130.37, 128.88, 128.29, 125.73, 120.84, 84.53, 51.46, 48.24, 47.47, 47.20, 44.21, 35.62, 35.21, 28.27, 27.24, 26.61, 18.29, 12.51, 10.69, 10.42, 8.70.


Employ the above-mentioned method to prepare Compound 44 (63 mg).



1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 4.81-4.68 (m, 2H), 4.28 (dd, J=19.8, 9.6 Hz, 1H), 3.95 (s, 3H), 2.76-2.65 (m, 1H), 2.20 (q, J=9.1 Hz, 1H), 2.04-1.85 (m, 2H), 1.74 (t, J=9.9 Hz, 1H), 1.65 (dd, J=19.0, 10.4 Hz, 1H), 1.60-1.43 (m, 3H), 1.42-1.32 (m, 2H), 1.32-1.19 (m, 1H), 0.81 (dt, J=9.5, 4.7 Hz, 1H), 0.59 (dt, J=9.2, 4.5 Hz, 1H), 0.49-0.36 (m, 2H), 0.36-0.29 (m, 1H), 0.30-0.20 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 175.09, 160.87, 140.15, 128.87, 84.49, 52.19, 51.58, 48.00, 47.55, 47.51, 44.20, 35.51, 34.96, 28.18, 27.18, 26.54, 18.23, 12.42, 10.76, 10.53, 8.64.


Employ the above-mentioned method to prepare Compound 45 (65 mg).



1H NMR (400 MHz, CDCl3) δ 7.58 (d, J=33.3 Hz, 1H), 5.07 (d, J=4.9 Hz, 1H), 4.78-4.60 (m, 2H), 4.26 (t, J=10.0 Hz, 1H), 2.68 (dt, J=9.5, 4.4 Hz, 1H), 2.23 (dd, J=17.7, 8.7 Hz, 1H), 2.03-1.92 (m, 1H), 1.89-1.73 (m, 2H), 1.69-1.62 (m, 1H), 1.62-1.54 (m, 4H), 1.47 (t, J=12.5 Hz, 2H), 1.35 (dd, J=20.3, 10.3 Hz, 2H), 1.30-1.18 (m, 2H), 0.87-0.77 (m, 1H), 0.67-0.57 (m, 1H), 0.49-0.36 (m, 2H), 0.36-0.29 (m, 1H), 0.25 (m, 3H).


Synthesis Method of Compound (46):




embedded image


Take Compound 26 (167 mg) and deuterated dimethylamine hydrochloride (530 mg) to dissolve in 15 mL CH2Cl2, then add 1.8 g K2CO3 and reflux 24 hours, then filter it before dry it through rotary evaporation, then purify it with silica column chromatography to get the dimethylamino intermediate (150 mg), weigh 49 mg intermediate to dissolve it in 10 mL methanol and then add 18.7 mg fumaric acid to stir 10 minutes, then dry it through rotary evaporation to get Compound 46 (67 mg).



1H NMR (400 MHz, MeOD) δ 6.70 (s, 2H), 4.46 (dd, J=18.9, 8.7 Hz, 1H), 3.46 (dd, J=13.4, 6.3 Hz, 1H), 3.35-3.28 (m, 1H), 2.95 (d, J=14.0 Hz, 6H), 2.38 (dd, J=17.4, 9.1 Hz, 1H), 2.27-2.19 (m, 1H), 2.11-2.03 (m, 1H), 2.01-1.92 (m, 1H), 1.67 (ddd, J=18.7, 11.2, 5.0 Hz, 2H), 1.60-1.48 (m, 3H), 1.45-1.27 (m, 2H), 0.88 (dt, J=9.6, 4.8 Hz, 1H), 0.66 (ddd, J=9.3, 5.4, 3.8 Hz, 1H), 0.56-0.50 (m, 1H), 0.45 (dt, J=9.3, 4.7 Hz, 1H), 0.36 (dt, J=11.9, 4.7 Hz, 2H), 0.29-0.20 (m, 2H); 13C NMR (101 MHz, MeOD) δ 178.31, 171.09, 136.26, 86.31, 57.22, 52.69, 48.74, 47.41, 44.23, 36.90, 36.82, 30.84, 29.03, 28.35, 27.83, 19.43, 13.21, 11.20, 10.90, 9.56.


Synthesis Method of Compound (47):




embedded image


Dissolve parthenolide (566.2 mg, 1.99 mmol) in methanol and add p-toluenesulfonic acid (687.5 mg, 4.0 mmol). Place the reaction system at room temperature and stir it overnight. Neutralize the reaction mixture with Na2HPO4 (568 mg, 4.0 mmol), then extract it with CH2Cl2, collect the organic layer and dry it with Na2SO4, then filter it and evaporate the organic solvent at reduced pressure with rotary evaporator, purify the remaining product with silica gel column to get Compound 47. 1H NMR (CDCl3, 400 MHz) δ 6.12 (d, J=2.8 Hz, 1H), 5.44 (s, 1H), 4.13 (t, J=9.6 Hz, 1H), 3.12 (d, J=2.8 Hz, 3H), 2.79 (t, J=11.8 Hz, 2H), 2.26 (t, J=9.6 Hz, 1H), 2.11-2.08 (m, 1H), 1.98-1.62 (m, 6H), 1.52-1.45 (m, 1H), 1.31-1.37 (m, 4H), 1.09 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 169.5, 138.9, 119.8, 82.5, 80.3, 77.9, 55.3, 48.1, 46.4, 45.7, 35.3, 38.7, 25.2, 24.1, 22.5, 14.0.


Synthesis Method of Compound (48 and 49):




embedded image


Add amberlyst 15 (12.88 g) into parthenolide (1.03 g, 4.1 mmol) solution and the solution of acetone: water (95:5), place the reaction system to react at room temperature and monitor the reaction with TLC until the raw materials disappear. After the reaction is completed, remove the solvent through rotary evaporation, dissolve the remaining substances in CH2Cl2, and dry with Na2SO4. Filter the product and remove the solvent through rotary evaporation, then purify it through silica gel column to get the products 48 and 49.


Compound 48: 1H NMR (CDCl3, 400 MHz) δ 6.12 (d, J=3.2 Hz, 1H), 5.44 (d, J=3.2 Hz, 1H), 4.92 (s, 1H), 4.88 (s, 1H), 4.03-3.94 (m, 1H), 2.93 (dd, J=11.6, 8.8 Hz, 1H), 2.71-2.65 (m, 1H), 2.61-2.56 (m, 1H), 2.29 (t, J=12 Hz, 1H), 2.22-2.16 (m, 1H), 1.85-1.74 (m, 3H), 1.72-1.69 (m, 31H), 1.34-1.26 (m, 3H), 1.23 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 169.6, 147.8, 138.5, 120.5, 112.4, 83.8, 79.5, 55.4, 47.0, 43.7, 40.0, 38.9, 31.2, 25.9, 23.6.


Compound 49: 1H NMR (CDCl3, 400 MHz) δ 6.24 (d, J=3.6 Hz, 1H), 5.56 (d, J=3.2 Hz, 1H), 4.26 (s, 1H), 9.6 (s, 1H), 2.75-2.62 (m, 1H), 2.40 (dd, J=11.6, 12.4 Hz, 1H), 2.20-2.14 (m, 1H), 2.08-2.56 (m, 1H), 2.03 (t, J=12 Hz, 1H), 1.76-1.60 (m, 1H), 1.52-1.45 (m, 3H), 1.36-1.69 (m, 3H), 1.28-1.26 (m, 3H), 1.25 (s, 3H); 13C NMR (CDCl1, 400 MHz) δ 169.6, 138.4, 120.4, 82.7, 80.0, 74.7, 55.2, 49.6, 47.1, 39.3, 25.2, 24.9, 24.1, 23.4, 20.6.


Preparation of Compound 50:


Dissolve Martin's sulfurane (382 mg, 0.57 mmol) in 2 mL CH2Cl2, under the protection of Ar, slowly drip 4 mL CH2Cl2 solution of Compound 24. The reaction mixture solution changes gradually to yellow color, then stir it 24 hours, after the reactive raw materials disappear completely, remove the solvent through rotary evaporation at reduced pressure to get yellow oily substance, and then purify the crude product with silica gel column to get Compound 50. 1H NMR (CDCl3, 400 MHz) δ 6.14 (d, J=3.2 Hz, 1H), 5.57 (s, 1H), 5.41 (d, J=3.2 Hz, 1H), 4.00 (t, J=10.4 Hz, 1H), 2.93 (br.d, J=10.8 Hz, 1H), 2.77 (br.d, J=17.6 Hz, 1H), 2.27-2.12 (m, 3H), 2.03 (m, 1H), 1.9 7 (br s, 3H), 1.84 (br.d, J=14.0 Hz, 1H), 1.48 (m, 1H), 1.35 (s, 3H); 13C NMR (CDCl3, 400 MHz) δ 170.6, 140.7, 139.2, 125.0, 118.4, 83.0, 72.6, 62.8, 52.9, 51.2, 39.8, 33.6, 22.9, 21.6, 18.4.


Embodiment 2: Test of Anti-rheumatoid Arthritis Activity of Compound 1-50


In the field of anti-rheumatoid arthritis drugs, there are many literatures reporting the effects of drug ingredients on synoviocyte to secrete TNF-α, PGE2 and IL-1β and using the data from animal test to investigate the therapeutic effect of drug on RA. These studies include [1] Dahong Ju, Hlongwei Jia and Hao Wu, et al. Effects of Cervus and Cucumis Polypeptide Injection on Activity of Antibodies TNF-α, IL-6 and C II of Immune Arthritis Rat Serum Induced by C II, China Journal of Basic Medicine in Traditional Chinese Medicine, 2003, 9 (11); 17. [2] JinHua He, Qinghua Liang, Huasheng Zhang, et al. Effects of Bizhongxiao Decoction on Plasma TNF-α of Experimental Arthritis Rats, Bulletin of Hunan Medical University, 2002, 27(5): 524. [3] Qingchun Huang, Shengpeng Zhang, Qiuying Xu. Effects of Compound Danshen on Synoviocyte's Secretion and Tumor Necrosis Factor of Rat Model Induced by Type II Collagen, 2001, 5 (10): 54-55. [4] Zhigang Zheng, Cytokine and Its Test Method and Clinical Significance, Shaanxi J Med Lab Sci, 2001, 16(2): 59. [5] Jun Zhou, Suping Fang, Yun Qi, et al. Effects of Kakkonto on Inflammatory Mediator in Joint Fluid of Adjuvant Induced Arthritis Rats, 2001, 7(3): 29. [6] Ji Ma, Bingjiu Lu, Xiaoming Zhu, et al. Study on Pharmacodynamics of Tongbi Keli to Treat Rheumatoid Arthritis, 2001, 19(6): 734. [7]Jiang Zhu, Wenli Xie, Yuzhnag Jin, et al. Effects of Gardenia on Serum IL-1β and TNF-α of Rheumatoid Arthritis Rats, Chinese Traditional Patent Medicine, 2005, 27(7): 801. [8]Qingchun Huang, Shengpeng Zhang, Weiyi Huang, et al. Effects of Compound Danshen Injection on Expression of IL-1βmRNA of CIA Rat Synoviocyte, Journal of Anhui Traditional Chinese Medical College, 2002, 21(5): 39-41.


Take Compound 1-50 prepared as per the method according to the present invention and employ the method provided in Reference [3] to prepare model, group drugs and prepare culture supernatant of rat synoviocyte.


Employ the method provided in Reference [3] to investigate the effects of the test compounds on the synoviocyte to secrete TNF-α and PGE2. Employ the method provided in Reference [8] to investigate the effects of the test compounds on the synoviocyte to secrete IL-1β.


The experimental data of the test compound 1-50 at a dose of 30 mg/kg.2d as well as the normal control and NaCl group are as follows:









TABLE 1







Content of TNF-α in culture supernatant of synoviocyte (x ± s, ng/mL)










Group
TNF-α






Normal control
0.38 ± 0.027



NaCl
0.74 ± 0.098



Compound 1
0.41 ± 0.076



Compound 2
0.45 ± 0.052



Compound 3
0.55 ± 0.042



Compound 4
0.56 ± 0.064



Compound 5
0.49 ± 0.056



Compound 6
0.61 ± 0.072



Compound 7
0.56 ± 0.044



Compound 8
0.58 ± 0.053



Compound 9
0.61 ± 0.065



Compound 10
0.54 ± 0.055



Compound 11
0.49 ± 0.076



Compound 12
0.66 ± 0.043



Compound 13
0.62 ± 0.056



Compound 14
0.48 ± 0.055



Compound 15
0.54 ± 0.045



Compound 16
0.57 ± 0.073



Compound 17
0.66 ± 0.077



Compound 18
0.64 ± 0.072



Compound 19
0.62 ± 0.056



Compound 20
0.58 ± 0.045



Compound 21
0.56 ± 0.034



Compound 22
0.61 ± 0.082



Compound 23
0.63 ± 0.063



Compound 24
0.54 ± 0.057



Compound 25
0.58 ± 0.056



Compound 26
0.59 ± 0.051



Compound 27
0.54 ± 0.066



Compound 28
0.47 ± 0.056



Compound 29
0.66 ± 0.046



Compound 30
0.65 ± 0.057



Compound 31
0.62 ± 0.056



Compound 32
0.64 ± 0.044



Compound 33
0.63 ± 0.054



Compound 34
0.54 ± 0.067



Compound 35
0.57 ± 0.057



Compound 36
0.66 ± 0.045



Compound 37
0.59 ± 0.035



Compound 38
0.67 ± 0.045



Compound 39
0.52 ± 0.056



Compound 40
0.48 ± 0.078



Compound 41
0.45 ± 0.056



Compound 42
0.58 ± 0.055



Compound 43
0.55 ± 0.045



Compound 44
0.54 ± 0.071



Compound 45
0.49 ± 0.056



Compound 46
0.56 ± 0.034



Compound 47
0.64 ± 0.062



Compound 48
0.62 ± 0.054



Compound 49
0.65 ± 0.046



Compound 50
0.52 ± 0.064
















TABLE 2







Content of IL-1β in culture supernatant of synoviocyte (x ± s, ng/mL)










Group
IL-1β






Normal control
0.16 ± 0.034



NaCl
0.49 ± 0.136



Compound 1
0.26 ± 0.042



Compound 2
0.28 ± 0.045



Compound 3
0.36 ± 0.039



Compound 4
0.42 ± 0.064



Compound 5
0.38 ± 0.062



Compound 6
0.36 ± 0.054



Compound 7
0.39 ± 0.058



Compound 8
0.41 ± 0.051



Compound 9
0.45 ± 0.064



Compound 10
0.42 ± 0.069



Compound 11
0.39 ± 0.081



Compound 12
0.38 ± 0.069



Compound 13
0.37 ± 0.062



Compound 14
0.36 ± 0.054



Compound 15
0.41 ± 0.051



Compound 16
0.34 ± 0.039



Compound 17
0.37 ± 0.065



Compound 18
0.39 ± 0.029



Compound 19
0.42 ± 0.091



Compound 20
0.34 ± 0.056



Compound 21
0.36 ± 0.057



Compound 22
0.34 ± 0.038



Compound 23
0.36 ± 0.065



Compound 24
0.37 ± 0.051



Compound 25
0.39 ± 0.067



Compound 26
0.42 ± 0.052



Compound 27
0.41 ± 0.047



Compound 28
0.31 ± 0.067



Compound 29
0.34 ± 0.039



Compound 30
0.38 ± 0.049



Compound 31
0.39 ± 0.051



Compound 32
0.37 ± 0.047



Compound 33
0.41 ± 0.052



Compound 34
0.35 ± 0.059



Compound 35
0.41 ± 0.056



Compound 36
0.29 ± 0.064



Compound 37
0.31 ± 0.037



Compound 38
0.35 ± 0.062



Compound 39
0.34 ± 0.095



Compound 40
0.31 ± 0.061



Compound 41
0.41 ± 0.054



Compound 42
0.36 ± 0.059



Compound 43
0.43 ± 0.062



Compound 44
0.35 ± 0.069



Compound 45
0.38 ± 0.039



Compound 46
0.36 ± 0.067



Compound 47
0.34 ± 0.058



Compound 48
0.38 ± 0.046



Compound 49
0.39 ± 0.075



Compound 50
0.34 ± 0.061
















TABLE 3







Content of PGE2 in culture supernatant of synoviocyte (x ± s, ng/mL)










Group
IL-1β






Normal control
 8.34 ± 1.29



NaCl
 32.44 ± 10.32



Compound 1
15.24 ± 1.77



Compound 2
18.58 ± 0.98



Compound 3
26.96 ± 1.59



Compound 4
24.49 ± 2.67



Compound 5
25.67 ± 4.23



Compound 6
26.75 ± 1.69



Compound 7
22.82 ± 2.67



Compound 8
23.69 ± 1.25



Compound 9
27.92 ± 2.67



Compound 10
25.67 ± 7.12



Compound 11
26.38 ± 3.15



Compound 12
24.59 ± 2.35



Compound 13
25.61 ± 0.98



Compound 14
26.44 ± 1.26



Compound 15
24.39 ± 2.38



Compound 16
27.61 ± 4.21



Compound 17
28.95 ± 3.24



Compound 18
20.62 ± 2.47



Compound 19
26.45 ± 5.21



Compound 20
27.38 ± 1.39



Compound 21
19.59 ± 3.25



Compound 22
24.69 ± 4.19



Compound 23
21.71 ± 2.32



Compound 24
23.63 ± 1.35



Compound 25
26.48 ± 2.57



Compound 26
25.61 ± 5.41



Compound 27
24.75 ± 2.66



Compound 28
18.92 ± 1.98



Compound 29
27.64 ± 2.37



Compound 30
25.37 ± 4.21



Compound 31
24.41 ± 1.65



Compound 32
22.75 ± 4.25



Compound 33
26.64 ± 2.67



Compound 34
24.61 ± 3.24



Compound 35
21.54 ± 1.32



Compound 36
25.64 ± 2.14



Compound 37
27.94 ± 2.69



Compound 38
19.67 ± 3.14



Compound 39
28.35 ± 2.15



Compound 40
25.34 ± 3.57



Compound 41
26.63 ± 1.59



Compound 42
22.58 ± 4.21



Compound 43
24.64 ± 3.95



Compound 44
22.14 ± 2.87



Compound 45
23.26 ± 3.49



Compound 46
24.74 ± 2.64



Compound 47
27.95 ± 3.67



Compound 48
26.65 ± 2.45



Compound 49
24.25 ± 1.94



Compound 50
19.83 ± 1.78









The present invention selects the rat as the animal model for human RA and employs the method of primary culture of synoviocyte to observe the effects of Compounds 1-50 on the synoviocyte to secrete TNF-α, PGE2 and IL-1β. The result indicates that Compounds 1-50 all can obviously reduce the content of TNF-α, PGE2 and IL-1β of both large dose group and small dose group, to realize the functions of alleviating damages to bone and cartilage as well as restoring the action function of joint and realize the effect of RA treatment.


Embodiment 3: Test of Compound Activity to Inhibit Cancer Stem Cell


Take fresh or cryopreserved clinical specimen (acute myelogenous leukemia (AML, marker is CD34+/CD38+), chronic myelogenous leukemia (CML, Ph+/CD34+/CXCR4+), chronic lymphocytic leukemia (CLL,CD133+/CD19−/CD38−), skin cancer (CD34+), breast cancer (CD44+/CD24−/ESA+), ovarian cancer (CD44+/CD117+), brain tumor (CD133+) prostate cancer (CD44+/CD24−), head-neck squamous cell carcinoma (CD44+), laryngeal cancer (CD133+), pancreatic cancer (ESA+/CD44+/CD24+), retinoblastoma (ABCG2/ALDH1), Children hepatoblastoma (CD34+/THY1+/c-kit+), liver cancer (CD133+), malignant melanoma (CD133+), colorectal cancer (EpCAMhigh/CD44+), colon adenocarcinoma (CD44high), glioma (ABCG-2/BCRP1), gastrointestinal tumor (ABCG-2/BCRP1), nasopharynx cancer (ABCG2), brain glioma (Dlk-1/Pref-1), gastric cancer (CD45+), lung adenocarcinoma (Sca-1/CD45-/Pecam-/CD34+), lung cancer (CD133+CD34+CD44+)) of patient. Take the acute myelogenous leukemia as the example, conduct density gradient centrifugation with Ficoll and take out the middle mononuclear cells, re-suspend it with serum-free IMDM after centrifuged. Adjust the concentration of cells into 1×106/mL and lay 24-well plate with 1 mL in each well, and then treat 18 hours with the compound to select with corresponding concentration. Collect the cells and centrifuge them at 1500 rps for 8 minutes, re-suspend the precipitation with 100 ml, mark the antibodies related to leukemia stem cell, avoid light to incubate 30 minutes at room temperature and then centrifuge it at 1500 rps, then wash away the unbound antibody CD34+CD38+. Re-suspend it with 100 μl 1× Binding Buffer and add respectively 5 μl Annexin V-FITC and PI, then avoid light to incubate 15 minutes before add 200 μl 1× Binding Buffer, then use flow cytometry to examine the marked apoptosis within one hour.









TABLE 4







Survival rate (%) of cancer cells, cancer stem cells and


normal cells after test compound is added












10.0 μM
20.0 μM















All cells

All cells





(Stem

(Stem





cells and

cells and




Stem
ordinary
Stem
ordinary


Compound
Cells
cells
cells)
cells
cells)





Compound 1
AML
34
55
24
45



CML
55
65
26
39



CLL
44
55
32
46



Skin cancer
57
59
23
28



Breast cancer
65
69
42
55



Ovarian cancer
67
78
45
59



Brain tumor
78
88
69
72



Prostate cancer
34
46
21
26



Head and neck
60
67
37
48



squamous cell







carcinomas







Laryngeal cancer
65
75
54
64



Pancreatic cancer
54
64
36
48



Retinoblastoma
55
64
34
54



Children
46
54
29
37



hepatoblastoma







Liver cancer
55
68
36
48



Malignant melanoma
72
85
56
69



Colorectal cancer
65
78
45
67



Colon
43
56
24
39



adenocarcinoma







Glioma
77
87
66
72



Gastrointestinal
56
62
41
51



tumor







Nasopharynx cancer
25
34
17
28



Brain glioma
65
69
37
47



Gastric cancer
45
56
27
37



Lung
36
47
24
34



adenocarcinoma







Lung cancer
45
53
19
26



Normal cells
88
91
91
93


Compound 2
AML
38
54
34
46



CML
41
49
36
41



CLL
48
57
37
49



Skin cancer
36
42
29
37



Breast cancer
44
57
37
51



Ovarian cancer
37
48
35
41



Brain tumor
56
64
44
59



Prostate cancer
41
45
31
42



Head and neck
54
67
37
48



squamous cell







carcinomas







Laryngeal cancer
55
75
54
64



Pancreatic cancer
47
69
59
64



Retinoblastoma
52
62
44
49



Children
57
53
37
41



hepatoblastoma







Liver cancer
64
62
41
58



Malignant melanoma
71
75
66
69



Colorectal cancer
56
68
45
57



Colon
48
56
44
51



adenocarcinoma







Glioma
67
77
66
73



Gastrointestinal
46
52
41
47



tumor







Nasopharynx cancer
37
44
27
29



Brain glioma
62
68
47
53



Gastric cancer
41
46
37
47



Lung
64
73
54
64



adenocarcinoma







Lung cancer
41
52
34
46



Normal cells
91
92
89
91


Compound 5
AML
39
47
34
41



CML
45
55
36
42



CLL
37
52
34
44



Skin cancer
55
61
43
49



Breast cancer
55
64
43
51



Ovarian cancer
57
68
35
45



Brain tumor
77
87
66
72



Prostate cancer
56
62
41
51



Head and neck
45
54
37
48



squamous cell







carcinomas







Laryngeal cancer
65
69
37
47



Pancreatic cancer
45
56
27
37



Retinoblastoma
62
68
47
56



Children
52
56
47
51



hepatoblastoma







Liver cancer
49
57
42
52



Malignant melanoma
55
58
45
49



Colorectal cancer
65
78
45
67



Colon
43
56
24
39



adenocarcinoma







Glioma
77
87
66
72



Gastrointestinal
56
62
41
51



tumor







Nasopharynx cancer
25
34
17
28



Brain glioma
65
69
37
47



Gastric cancer
45
56
27
37



Lung
36
47
24
34



adenocarcinoma







Lung cancer
45
53
19
26



Normal cells
95
96
93
94


Compound 8
AML
34
55
24
45



CML
55
65
26
39



CLL
44
55
32
46



Skin cancer
57
59
23
28



Breast cancer
65
69
42
55



Ovarian cancer
67
78
45
59



Brain tumor
78
88
69
72



Prostate cancer
34
46
21
26



Head and neck
60
67
37
48



squamous cell







carcinomas







Laryngeal cancer
52
58
39
47



Pancreatic cancer
62
75
56
68



Retinoblastoma
62
68
45
57



Children
48
61
34
43



hepatoblastoma







Liver cancer
52
58
39
47



Malignant melanoma
62
75
56
68



Colorectal cancer
57
59
23
28



Colon
65
69
42
55



adenocarcinoma







Glioma
67
78
45
59



Gastrointestinal
78
88
69
72



tumor







Nasopharynx cancer
34
46
21
26



Brain glioma
60
67
37
48



Gastric cancer
65
75
54
64



Lung
62
68
47
56



adenocarcinoma







Lung cancer
52
56
47
51



Normal cells
95
96
89
94


Compound 11
AML
55
58
45
49



CML
65
71
49
59



CLL
45
55
34
43



Skin cancer
55
65
26
39



Breast cancer
44
55
32
46



Ovarian cancer
57
59
23
28



Brain tumor
45
69
42
55



Prostate cancer
45
67
37
56



Head and neck
65
69
47
59



squamous cell







carcinomas







Laryngeal cancer
61
72
53
62



Pancreatic cancer
47
58
37
46



Retinoblastoma
52
61
44
56



Children
45
53
39
47



hepatoblastoma







Liver cancer
52
58
39
47



Malignant melanoma
62
75
56
68



Colorectal cancer
62
68
45
57



Colon
48
61
34
43



adenocarcinoma







Glioma
67
77
56
62



Gastrointestinal
49
57
40
52



tumor







Nasopharynx cancer
45
54
34
48



Brain glioma
62
68
47
56



Gastric cancer
52
56
47
51



Lung
49
57
42
52



adenocarcinoma







Lung cancer
55
58
45
49



Normal cells
92
96
90
93


Compound 13
AML
45
55
34
43



CML
55
65
26
39



CLL
44
55
32
46



Skin cancer
57
59
23
28



Breast cancer
45
69
42
55



Ovarian cancer
67
78
45
59



Brain tumor
78
88
69
72



Prostate cancer
34
46
21
26



Head and neck
60
67
37
48



squamous cell







carcinomas







Laryngeal cancer
65
75
54
64



Pancreatic cancer
54
64
46
52



Retinoblastoma
35
44
24
44



Children
46
54
29
37



hepatoblastoma







Liver cancer
55
68
36
48



Malignant melanoma
72
85
56
69



Colorectal cancer
65
78
45
67



Colon
43
56
24
39



adenocarcinoma







Glioma
77
87
66
72



Gastrointestinal
56
62
41
51



tumor







Nasopharynx cancer
25
34
17
28



Brain glioma
65
69
37
47



Gastric cancer
41
55
37
47



Lung
57
68
44
54



adenocarcinoma







Lung cancer
62
73
45
61



Normal cells
92
95
87
93


Compound 14
AML
42
67
37
56



CML
65
69
47
59



CLL
61
72
53
62



Skin cancer
47
58
37
46



Breast cancer
52
61
44
56



Ovarian cancer
45
53
39
47



Brain tumor
55
64
43
51



Prostate cancer
57
68
35
45



Head and neck
76
87
66
72



squamous cell







carcinomas







Laryngeal cancer
56
62
41
51



Pancreatic cancer
49
57
40
52



Retinoblastoma
45
54
34
49



Children
63
68
47
56



hepatoblastoma







Liver cancer
52
56
46
51



Malignant melanoma
57
69
35
45



Colorectal cancer
62
68
45
57



Colon
48
61
34
43



adenocarcinoma







Glioma
67
77
56
63



Gastrointestinal
55
65
26
39



tumor







Nasopharynx cancer
44
54
32
46



Brain glioma
57
59
23
28



Gastric cancer
45
69
42
55



Lung
47
69
59
64



adenocarcinoma







Lung cancer
52
62
44
49



Normal cells
93
94
91
93


Compound 21
AML
66
75
47
56



CML
75
82
56
69



CLL
51
63
48
62



Skin cancer
56
64
47
57



Breast cancer
62
72
55
66



Ovarian cancer
56
64
49
57



Brain tumor
65
75
54
62



Prostate cancer
68
77
57
65



Head and neck
75
86
66
82



squamous cell







carcinomas







Laryngeal cancer
66
73
52
61



Pancreatic cancer
57
66
50
62



Retinoblastoma
56
65
47
59



Children
74
81
57
66



hepatoblastoma







Liver cancer
64
77
55
61



Malignant melanoma
59
69
45
56



Colorectal cancer
73
78
58
67



Colon
58
71
44
56



adenocarcinoma







Glioma
78
87
67
78



Gastrointestinal
64
75
46
58



tumor







Nasopharynx cancer
55
65
42
56



Brain glioma
68
79
53
68



Gastric cancer
56
67
45
55



Lung
58
67
49
64



adenocarcinoma







Lung cancer
63
74
54
68



Normal cells
94
95
92
94


Compound 23
AML
85
92
72
84



CML
87
91
71
79



CLL
86
95
74
85



Skin cancer
85
95
75
87



Breast cancer
84
89
74
86



Ovarian cancer
87
91
75
84



Brain tumor
85
89
73
85



Prostate cancer
85
92
77
89



Head and neck
84
91
78
88



squamous cell







carcinomas







Laryngeal cancer
79
88
73
82



Pancreatic cancer
87
90
77
86



Retinoblastoma
82
91
74
85



Children
85
93
79
86



hepatoblastoma







Liver cancer
82
88
79
87



Malignant melanoma
82
89
76
86



Colorectal cancer
79
88
72
81



Colon
88
91
81
89



adenocarcinoma







Glioma
87
94
76
87



Gastrointestinal
91
94
82
88



tumor







Nasopharynx cancer
85
94
74
81



Brain glioma
84
88
76
85



Gastric cancer
82
86
77
84



Lung
85
87
82
87



adenocarcinoma







Lung cancer
85
88
78
84



Normal cells
93
96
92
95


Compound 24
AML
48
59
39
48



CML
51
69
46
51



CLL
48
67
39
48



Skin cancer
46
62
39
47



Breast cancer
54
77
47
58



Ovarian cancer
57
68
45
61



Brain tumor
66
74
54
69



Prostate cancer
61
75
51
62



Head and neck
64
76
57
68



squamous cell







carcinomas







Laryngeal cancer
65
75
55
66



Pancreatic cancer
55
68
49
62



Retinoblastoma
62
82
54
69



Children
67
75
57
68



hepatoblastoma







Liver cancer
74
82
61
72



Malignant melanoma
81
88
76
86



Colorectal cancer
66
78
55
67



Colon
58
66
49
57



adenocarcinoma







Glioma
69
78
60
74



Gastrointestinal
56
72
51
62



tumor







Nasopharynx cancer
57
64
48
59



Brain glioma
52
65
42
53



Gastric cancer
51
66
39
48



Lung
68
78
55
64



adenocarcinoma







Lung cancer
61
72
54
66



Normal cells
92
93
90
92


Compound 25
AML
35
47
26
44



CML
57
64
36
49



CLL
46
57
34
45



Skin cancer
55
66
43
58



Breast cancer
66
74
52
65



Ovarian cancer
64
76
55
67



Brain tumor
72
83
66
73



Prostate cancer
44
56
31
44



Head and neck
56
67
47
58



squamous cell







carcinomas







Laryngeal cancer
64
74
53
64



Pancreatic cancer
54
64
36
48



Retinoblastoma
55
64
34
54



Children
44
53
39
47



hepatoblastoma







Liver cancer
52
65
46
54



Malignant melanoma
62
81
54
66



Colorectal cancer
62
76
55
66



Colon
42
55
35
49



adenocarcinoma







Glioma
71
83
65
74



Gastrointestinal
54
63
44
52



tumor







Nasopharynx cancer
45
54
37
48



Brain glioma
62
74
47
58



Gastric cancer
43
54
37
47



Lung
46
57
34
46



adenocarcinoma







Lung cancer
42
54
29
37



Normal cells
89
93
88
91


Compound 26
AML
86
93
73
85



CML
88
92
76
79



CLL
84
93
74
85



Skin cancer
86
94
75
87



Breast cancer
85
89
74
86



Ovarian cancer
86
91
75
84



Brain tumor
84
89
73
85



Prostate cancer
86
92
77
89



Head and neck
84
91
78
88



squamous cell







carcinomas







Laryngeal cancer
80
88
75
82



Pancreatic cancer
86
90
77
86



Retinoblastoma
82
91
74
85



Children
85
93
79
86



hepatoblastoma







Liver cancer
82
89
79
87



Malignant melanoma
82
88
76
86



Colorectal cancer
79
87
72
81



Colon
86
91
81
89



adenocarcinoma







Glioma
87
94
76
87



Gastrointestinal
87
93
82
88



tumor







Nasopharynx cancer
85
94
74
81



Brain glioma
84
88
76
85



Gastric cancer
83
88
77
84



Lung
85
91
82
87



adenocarcinoma







Lung cancer
82
88
78
84



Normal cells
94
95
93
94


Compound 27
AML
87
90
77
86



CML
87
94
76
87



CLL
87
93
82
88



Skin cancer
85
94
74
81



Breast cancer
84
88
76
85



Ovarian cancer
83
88
77
84



Brain tumor
87
94
76
87



Prostate cancer
84
91
78
88



Head and neck
81
87
75
83



squamous cell







carcinomas







Laryngeal cancer
85
92
77
89



Pancreatic cancer
86
93
78
92



Retinoblastoma
85
94
80
86



Children
82
88
79
87



hepatoblastoma







Liver cancer
86
90
77
86



Malignant melanoma
82
91
74
85



Colorectal cancer
85
93
79
86



Colon
82
89
78
87



adenocarcinoma







Glioma
80
88
75
82



Gastrointestinal
86
90
77
86



tumor







Nasopharynx cancer
82
91
74
85



Brain glioma
84
91
78
88



Gastric cancer
81
87
75
83



Lung
82
89
76
86



adenocarcinoma







Lung cancer
79
88
72
81



Normal cells
88
91
81
89


Compound 28
AML
87
94
76
87



CML
85
92
77
89



CLL
82
91
73
87



Skin cancer
84
91
78
88



Breast cancer
81
87
75
83



Ovarian cancer
85
88
79
85



Brain tumor
82
91
73
87



Prostate cancer
84
91
78
88



Head and neck
81
87
75
83



squamous cell







carcinomas







Laryngeal cancer
85
92
77
89



Pancreatic cancer
86
93
78
92



Retinoblastoma
84
90
80
85



Children
85
92
77
89



hepatoblastoma







Liver cancer
82
91
73
87



Malignant melanoma
84
91
78
88



Colorectal cancer
81
87
75
83



Colon
82
88
74
85



adenocarcinoma







Glioma
85
93
79
86



Gastrointestinal
82
88
76
89



tumor







Nasopharynx cancer
85
92
77
89



Brain glioma
82
89
76
86



Gastric cancer
79
88
72
81



Lung
88
91
81
89



adenocarcinoma







Lung cancer
87
94
76
87



Normal cells
94
96
92
95


Compound 29
AML
84
91
78
88



CML
81
87
75
83



CLL
85
88
79
85



Skin cancer
82
91
73
87



Breast cancer
79
88
72
81



Ovarian cancer
88
91
81
89



Brain tumor
87
94
76
87



Prostate cancer
85
93
79
86



Head and neck
82
88
74
85



squamous cell







carcinomas







Laryngeal cancer
85
93
79
86



Pancreatic cancer
82
88
76
89



Retinoblastoma
85
92
77
89



Children
85
92
77
89



hepatoblastoma







Liver cancer
85
92
77
89



Malignant melanoma
82
91
73
87



Colorectal cancer
84
91
78
88



Colon
81
87
75
83



adenocarcinoma







Glioma
84
91
78
88



Gastrointestinal
81
87
75
83



tumor







Nasopharynx cancer
85
88
79
85



Brain glioma
82
89
76
86



Gastric cancer
79
88
72
81



Lung
88
91
81
89



adenocarcinoma







Lung cancer
87
94
76
87



Normal cells
93
96
92
95


Compound 35
AML
82
91
73
87



CML
84
91
78
88



CLL
81
87
75
83



Skin cancer
85
92
77
89



Breast cancer
86
93
78
92



Ovarian cancer
84
91
78
88



Brain tumor
81
87
75
83



Prostate cancer
85
88
79
85



Head and neck
82
91
73
87



squamous cell







carcinomas







Laryngeal cancer
82
89
76
86



Pancreatic cancer
79
88
72
81



Retinoblastoma
88
91
81
89



Children
87
94
76
87



hepatoblastoma







Liver cancer
84
89
74
86



Malignant melanoma
87
91
75
84



Colorectal cancer
82
91
73
87



Colon
84
91
78
88



adenocarcinoma







Glioma
81
87
75
83



Gastrointestinal
85
92
77
89



tumor







Nasopharynx cancer
86
93
78
92



Brain glioma
84
92
78
87



Gastric cancer
85
92
77
89



Lung
82
91
73
87



adenocarcinoma







Lung cancer
84
91
78
88



Normal cells
91
95
90
94


Compound 46
AML
82
88
74
85



CML
85
93
79
86



CLL
82
88
76
89



Skin cancer
85
92
77
89



Breast cancer
82
89
76
86



Ovarian cancer
79
88
72
81



Brain tumor
88
91
81
89



Prostate cancer
87
94
76
87



Head and neck
84
91
78
88



squamous cell







carcinomas







Laryngeal cancer
81
87
75
83



Pancreatic cancer
85
88
79
85



Retinoblastoma
82
91
73
87



Children
84
91
78
88



hepatoblastoma







Liver cancer
81
87
75
83



Malignant melanoma
85
92
77
89



Colorectal cancer
86
93
78
92



Colon
84
89
74
86



adenocarcinoma







Glioma
87
91
75
84



Gastrointestinal
82
89
76
86



tumor







Nasopharynx cancer
79
88
72
81



Brain glioma
88
91
81
89



Gastric cancer
87
94
76
87



Lung
85
93
79
86



adenocarcinoma







Lung cancer
82
88
76
89



Normal cells
94
95
92
94


Compound 47
AML
79
88
73
82



CML
85
92
77
89



CLL
82
91
73
87



Skin cancer
84
91
78
88



Breast cancer
82
91
73
87



Ovarian cancer
84
91
78
88



Brain tumor
81
87
75
83



Prostate cancer
85
92
77
89



Head and neck
86
93
78
92



squamous cell







carcinomas







Laryngeal cancer
85
93
79
86



Pancreatic cancer
84
91
78
88



Retinoblastoma
81
87
75
83



Children
85
88
79
85



hepatoblastoma







Liver cancer
82
91
73
87



Malignant melanoma
82
89
76
86



Colorectal cancer
79
88
72
81



Colon
88
91
81
89



adenocarcinoma







Glioma
87
94
76
87



Gastrointestinal
78
89
74
81



tumor







Nasopharynx cancer
82
88
74
85



Brain glioma
85
93
79
86



Gastric cancer
82
88
76
89



Lung
85
92
77
89



adenocarcinoma







Lung cancer
85
93
79
86



Normal cells
93
95
92
94


Compound 48
AML
47
59
38
48



CML
51
69
46
51



CLL
46
67
38
48



Skin cancer
46
62
39
47



Breast cancer
54
76
47
58



Ovarian cancer
56
68
45
61



Brain tumor
66
78
53
69



Prostate cancer
62
75
51
62



Head and neck
64
73
58
68



squamous cell







carcinomas







Laryngeal cancer
63
76
55
66



Pancreatic cancer
55
68
49
62



Retinoblastoma
62
82
54
69



Children
68
75
56
68



hepatoblastoma







Liver cancer
74
82
61
73



Malignant melanoma
82
88
76
86



Colorectal cancer
66
79
55
67



Colon
58
66
49
56



adenocarcinoma







Glioma
69
78
60
74



Gastrointestinal
57
73
52
62



tumor







Nasopharynx cancer
57
64
48
59



Brain glioma
52
66
43
54



Gastric cancer
51
66
39
48



Lung
67
77
55
64



adenocarcinoma







Lung cancer
61
72
54
67



Normal cells
91
92
89
91


Compound 49
AML
85
92
77
89



CML
87
90
76
86



CLL
82
91
74
85



Skin cancer
85
93
79
86



Breast cancer
82
89
79
87



Ovarian cancer
86
93
76
88



Brain tumor
83
88
79
87



Prostate cancer
85
92
77
89



Head and neck
82
91
73
87



squamous cell







carcinomas







Laryngeal cancer
84
91
78
88



Pancreatic cancer
81
87
75
83



Retinoblastoma
85
92
77
89



Children
86
93
78
92



hepatoblastoma







Liver cancer
85
93
79
86



Malignant melanoma
82
88
79
87



Colorectal cancer
82
88
74
85



Colon
85
93
79
86



adenocarcinoma







Glioma
82
88
76
89



Gastrointestinal
85
92
77
89



tumor







Nasopharynx cancer
84
93
77
86



Brain glioma
83
88
79
87



Gastric cancer
85
92
77
89



Lung
84
91
78
88



adenocarcinoma







Lung cancer
79
88
73
82



Normal cells
94
96
92
95


Compound 50
AML
45
57
36
47



CML
57
64
46
58



CLL
47
58
36
47



Skin cancer
57
66
43
58



Breast cancer
64
75
52
65



Ovarian cancer
62
77
55
67



Brain tumor
62
72
54
63



Prostate cancer
54
66
41
54



Head and neck
56
67
47
58



squamous cell







carcinomas







Laryngeal cancer
64
75
53
64



Pancreatic cancer
53
64
43
49



Retinoblastoma
54
65
44
53



Children
42
55
34
47



hepatoblastoma







Liver cancer
53
66
46
54



Malignant melanoma
64
82
54
66



Colorectal cancer
64
76
55
66



Colon
43
55
35
49



adenocarcinoma







Glioma
62
74
45
56



Gastrointestinal
55
64
44
53



tumor







Nasopharynx cancer
44
54
37
48



Brain glioma
63
74
47
58



Gastric cancer
45
54
37
48



Lung
46
57
36
47



adenocarcinoma







Lung cancer
43
54
33
47



Normal cells
90
92
89
91









Embodiment 4: Injection


Respectively dissolve Compounds 1-50 prepared in Embodiment 1 with a few amount of DMSO and then add water for injection as normal, filter precisely, charge and seal before sterilize them to prepare into injection.


Embodiment 5: Tablet


Add excipient with a ratio of 5:1 by weight between Compounds 1-50 prepared in Embodiment 1 and excipient. Pellitize and tablet it to make tablet.


Embodiment 6: Capsule


Add excipient with a ratio of 5:1 by weight between Compounds 1-50 prepared in Embodiment 1 and excipient. Pellitize and tablet it to make capsule.


The compounds, uses and methods according to the present invention have been described in the specific embodiments as above. Those skilled in the art can refer to the contents of the present invention to appropriately modify the factors such as raw materials or process conditions to realize other corresponding purposes. Nevertheless, no related changes shall break away from the contents of the present invention and all the similar substitutions and changes are obvious to those skilled in the art and shall be deemed within the scope of the present invention.

Claims
  • 1. A method of treating rheumatoid arthritis in a patient comprising administering a therapeutically effective amount of compound of formula I
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2013/079344 7/15/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2015/006893 1/22/2015 WO A
Foreign Referenced Citations (2)
Number Date Country
102731454 Oct 2012 CN
WO20111311103 Oct 2011 WO
Non-Patent Literature Citations (5)
Entry
CN102731454 Machine English translation.
Saklani et al. Phytomedicine (2012), vol. 19, pp. 988-997.
Machine translation WO20111311103.
Javab et al. (Arthritis (2012) vol. 2012, pp. 1-7 (Year: 2012).
GenesCards PTGS2 [online] Retrieved on Jun. 6, 2018, [Retrieved from the internet], <url: https://www.genecards.org/cgi-bin/carddisp.pl?gene=PTGS2 (Year: 2009).
Related Publications (1)
Number Date Country
20160367525 A1 Dec 2016 US