Using 3G/4G baseband signals for tuning beamformers in hybrid MIMO RDN systems

Information

  • Patent Grant
  • 8971452
  • Patent Number
    8,971,452
  • Date Filed
    Tuesday, May 7, 2013
    11 years ago
  • Date Issued
    Tuesday, March 3, 2015
    9 years ago
Abstract
A hybrid MIMO RDN 3G/4G receiving system which include M antennas for N MIMO branches, wherein M>N is provided herein. Each branch has a beamformer so that each of the beamformers includes at least one combiner configured to combine signals coming from the antennas coupled to a respective beamformer into a combined signal. The system further includes a control module configured to tune at least one beamformer based on metrics derived by the baseband module. More specifically, the tuning of the beamformers is carried out, at least partially, using 3G/4G metrics that are generated but not usually reported in 3G/4G air protocols, wherein these metrics are extracted by the control module.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.


BACKGROUND OF THE INVENTION

Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.


The term “MIMO” as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance. MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity.


The term “beamforming” sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity.


The term “beamformer” as used herein refers to RF circuitry that implements beamforming and usually includes a combiner and may further include switches, controllable phase shifters, and in some cases amplifiers and/or attenuators.


The term “Receiving Radio Distribution Network” or “Rx RDN” or simply “RDN” as used herein is defined as a group of beamformers as set forth above.


The term “hybrid MIMO RDN” as used herein is defined as a MIMO system that employ two or more antennas per channel (N is the number of channels and M is the total number of antennas and M>N). This architecture employs a beamformer for each channel so that two or more antennas are combined for each radio circuit that is connected to each one of the channels.


The magnitudes of received signals and noise (including interference noise), as well as the signals' phases, at each receiving antenna are required to perform RF combining via either channel estimation or blind tuning algorithm. Therefore, demodulation of the received signals is required to drive the beamforming process.


BRIEF SUMMARY OF EMBODIMENTS OF THE INVENTION

The present invention, in embodiments thereof, collects the measurements on the related parameters from the baseband and sends them to the RDN controller for adjusting the phases and amplitudes of the received signals in order to achieve the highest possible gain.


Embodiments of the present invention include a hybrid MIMO RDN 3G or 4G receiving system which includes M antennas for N MIMO branches, wherein M>N. Each branch may have a beamformer so that each of the beamformers includes at least one combiner used to combine signals coming from the antennas coupled to that beamformer. The system further includes a control module configured to tune the at least one beamformer based on metrics derived by the baseband module. More specifically, the tuning of the beamformers is carried out, at least partially, using 3G or 4G metrics depending on the application that are generated but not usually reported in 3G/4G air protocols. These metrics are extracted by the control module. These and other aspects and advantages of the present invention are set forth in the detailed descriptions which follow.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections. In the accompanying drawings:



FIG. 1 is a high level block diagram illustrating a system according to the prior art;



FIG. 2 is a block diagram illustrating an aspect of a system according to some embodiments of the present invention;



FIG. 3 is a block diagram illustrating an aspect according to the prior art; and



FIG. 4 is a block diagram illustrating another aspect of a system according to some embodiments of the present invention.





The drawings together with the following detailed description make the embodiments of the invention apparent to those skilled in the art. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION


With specific references now to the drawings in detail, it is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


Before explaining the embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


In 3G/4G standards such as LTE, HSPA/UMTS, CDMA2000/HRPD, and EVDO, demodulation processes performed by the baseband module produce various quality indicators such as reference signals, pilots, signal strength indicators, and SINR that may be also used for selecting weights for tuning RDN.


Where blind tuning algorithms are used, relevant quality indicators are readily available from explicit baseband indicators such as: CQI, RSSI, and SINR. These indicators represent overall receiver performance metrics


Where channel estimation based tuning methods are used, and where baseband processors merge individual contributions of different components into combined ones, there is a need—according to embodiments of the present invention—to gain access to the various individual contributors in order to properly tune the RDN.


Long Term Evolution (LTE) 4G


One case of such merged contributions is the LTE Reference Signal, where multiple receiving inputs are aggregated. That diminishes the usefulness of this signal to tune the beamformers. It should be noted that this case is part of the 3GPP LTE Standard. The original reference signal derived from each receiving port is needed.


Additionally, the phases of reference signals are measured but not reported by the UE baseband. Therefore, in order to tune the beamformers, individual phase reports must be available to the RDN control module.


Following are various implementations used for deriving from the DSP module some of the data that may be used for tuning the beamformers, where such data is sometimes being generated by legacy DSP modules but is not reported.



FIG. 1 is a high level block diagram illustrating a standard MIMO system according to the prior art. Base station 104 transmits via N antennas 110-1 to 110-N a plurality of channel transmissions each with a respective pilot RS1 and its data DATA1 to RSN and data DATAN. Receiver baseband module 140 is fed by radio circuits 130-1 to 130-N each fed by its corresponding antenna 120-1 to 120-N. In baseband module 140, each received signal in the time domain is passed through FFT and spatial separator modules 190-1 to 190-N which compute both amplitude and phase of the received RS1-1 to RSN-N. Only the strongest power among RS1-1 to RSN-N is selected and output by the selector 150. Phases of channels are not reported although they can be made available. Processing of data signals in the baseband module 140 is not shown in the figure.



FIG. 2 is a block diagram illustrating a system according to some embodiments of the present invention. A system of hybrid MIMO RDN architecture is described herein. The base station transmits via N antennas a plurality of channel transmissions with a respective pilot RS1 and its data DATA1 to RSN and data DATAN. A receiver baseband module 240 is fed by radio circuits 230-1 to 230-N each fed by its corresponding beamformer 222-1 to 222-N which in turn is fed by a plurality of antennas 220-1-1:220-1-K1 to 220-N-1:220-N-KN. In baseband module 240, each received signal in the time domain is passed through FFT and spatial separator modules 290-1 to 290-N. FFT outputs including both phases and amplitudes of all RSs are then fed into control module 260 which uses this information to tune beamformers 222-1 to 222-N with control signals 270-1 to 270-N. The derivation of RS1-1:RSN-1 to RS1-N:RSN-N enables the tuning of the beamformers in the aforementioned hybrid architecture.


In LTE, RSRP represents the received signal power (or amplitude) at the received antenna port. If receiver diversity is in use by the UE, the reported value must not be lower than the corresponding RSRP of any of the individual diversity branches. The 3G/4G Standards require RSRP reports that are essentially the largest signal level of each diversity branch (receiver), then according to this invention, proposed BF scheme (RDN controller) will need to have baseband to output RSRP on per UE MIMO receiver basis.


For some transmission modes, LTE's RDN tuning that are based on blind algorithms would benefit from the use of quality indicators such as Reference Signal Received Quality (RSRQ). The RSRQ as defined by the 3GPP standard does not contain individual metrics for each receiver input. RSRQ is defined as:

RSRQ=n*RSRP/RSSI=S/(S+N)


Reference Signal Received Quality (RSRQ) is defined as the ratio n×RSRP/(E-UTRA carrier RSSI), where n is the number of resource blocks of the E-UTRA carrier RSSI measurement bandwidth. The measurements in the numerator and denominator must be made over the same set of resource blocks.


E-UTRA Carrier Received Signal Strength Indicator (RSSI) comprises the linear average of the total received power (in Watt) observed only in OFDM symbols containing reference symbols for primary antenna port, in the measurement bandwidth, over n number of resource blocks by the UE receiver from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc. If higher-layer signaling indicates certain sub-frames for performing RSRQ measurements, then RSSI is measured over all OFDM symbols in the indicated sub-frames.


Reference signal received power (RSRP), is defined as the linear average over the power contributions (in Watt) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.


The number of Resource Blocks under measurement is denoted as n; S=n*RSRP, the total referred received power; where S is the desired signal. Solving for noise N is expressed below:

N=S*(1−RSRQ)/RSRQ=n*RSRP*(1−RSRQ)/RSRQ


Referring to the phase of the referred received RF signal, there is no Standardized report from UE to cover the phase of the referred received RF signal. This invention needs to rely on the phases of the DL Reference Signals, which should be made available after the time domain OFDM symbol is Fourier Transformed into frequency domain (subcarrier).


HSPA


Referring to UMTS/HSPA protocols, the Received Signal Code Power measured on the Primary Common Pilot Channel CPICH can be refereed as the received signal power (or amplitude) at the received antenna port.


The referred signal-to-noise ratio of the received signal for each radio can be derived from CPICH RSCP and Carrier RSSI and given in expression below:

S/N=CPICH RSCP/Carrier RSSI


RSSI is the received wide band power, including thermal noise and noise generated in the receiver, within the bandwidth defined by the receiver pulse shaping filter.


Referring now to deriving the phase of the referred received RF signal, there is no standardized report from the UE to cover the phase of the referred received RF signal. In W-CDMA (UMTS/HSPA), the rake receiver is used in the UE. According to some embodiments of the present invention, the phase information should be extracted from parallel fingers received by different antennas as explained below.



FIG. 3 is an example of MIMO HSPA or CDMA system according to the prior art. Base station 304 transmits via antennas 310-1 to 310-N a plurality of channel transmissions each with a respective pilot CPICH1 and its data DATA1 to CPICHN and data DATAN. Receiver baseband module 340 is fed by radio circuits 330-1 to 330-N each fed by its corresponding antennas 320-1 to 320-N. In baseband module 340, all signals are then fed to rake receiver blocks 390-1 to 390-N. Channel estimation needs to be performed for all received signals and for all pilot codes transmitted from the different transmit antennas. Each received signal is passed through rake receiver blocks 390-1 to 390-N which compute both amplitude and phase of the received CPICH1-1 to CPICHN-N. Only the strongest power per radio among CPICH1-1 to CPICHN-N is selected and output as RSCP1 to RSCPN by the selector 350. Phases of channels are not reported although they can be made available. Processing of data signals in the baseband module 340 is not shown in the figure.



FIG. 4 is a block diagram illustrating an exemplary system of hybrid MIMO RDN architecture for HSPA or CDMA according to some embodiments of the present invention. Base station transmits via N antennas a plurality of channel transmissions each with a respective pilot CPICH1 and its data DATA1 to pilot CPICHN and data DATAN. A receiver baseband module 440 is fed by radio circuits 430-1 to 430-N each fed by its corresponding beamformer 422-1 to 422-N which in turn is fed by a plurality of antennas 420-1-1:420-1-K1 to 420-N-1:420-N-KN. In baseband module 440, each received signal is passed through rake receiver blocks 490-1 to 490-N which compute both amplitude and phase of the received CPICH1-1 to CPICHN-N. Channel estimation needs to be performed for all received signals and for all pilot codes transmitted from the different transmit antennas. Only the strongest power per radio among CPICH1-1 to CPICHN-N is selected and output as RSCP1 to RSCPN by the selector 450. In one embodiment of present invention, amplitude and phase of the received CPICH1-1 to CPICHN-N outputs from rake receiver blocks are also fed into the RDN controller 460 which will use the channel information to generate control signals 470-1 to 470-N for tuning the beamformers.


CDMA2000/HRPD


In one embodiment, for CDMA2000/HRPD protocol, the existing report of CDMA primary pilot strength or Ecp/No (signal-to-noise ratio) for the received signal can be used by the RDN controller 460 for tuning the beamformers.


In regards with the phase of the referred received RF signal, there is no standardized report from UE to cover the phase of the referred received RF signal. However, similar to the case of UMTS/HSPA, all the channel information for each antenna can be fed to the RDN controller 460 for tuning the beamformers.


As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or an apparatus. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.”


The aforementioned flowchart and block diagrams illustrate the architecture, functionality, and operation of possible implementations of systems and methods according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


In the above description, an embodiment is an example or implementation of the inventions. The various appearances of “one embodiment,” “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.


Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.


Reference in the specification to “some embodiments”, “an embodiment”, “one embodiment” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions.


It is to be understood that the phraseology and terminology employed herein is not to be construed as limiting and are for descriptive purpose only.


The principles and uses of the teachings of the present invention may be better understood with reference to the accompanying description, figures and examples.


It is to be understood that the details set forth herein do not construe a limitation to an application of the invention.


Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.


It is to be understood that the terms “including”, “comprising”, “consisting” and grammatical variants thereof do not preclude the addition of one or more components, features, steps, or integers or groups thereof and that the terms are to be construed as specifying components, features, steps or integers.


If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.


It is to be understood that where the claims or specification refer to “a” or “an” element, such reference is not be construed that there is only one of that element.


It is to be understood that where the specification states that a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, that particular component, feature, structure, or characteristic is not required to be included.


Where applicable, although state diagrams, flow diagrams or both may be used to describe embodiments, the invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.


Methods of the present invention may be implemented by performing or completing manually, automatically, or a combination thereof, selected steps or tasks.


The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.


The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.


Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.


The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein.


While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims
  • 1. A system comprising: a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches, each one of the N channels passing through a spatial separator and a fast Fourier transform (FFT) module;a radio distribution network (RDN) connected to the MIMO receiving system, the RDN comprising at least one beamformer, wherein each one of the beamformers is fed by two or more antennas, so that a total number of antennas in the system is M, wherein M is greater than N, wherein at least one of the beamformers include at least one combiner configured to combine signals coming from the antennas coupled to a respective beamformer into a combined signal; anda control module configured to tune the at least one beamformer based on metrics derived by the baseband module,wherein the metrics include a phase for at least some of the N channels, wherein the phases of pilot reference signals from each of N base station transmit antennas are derived from outputs of the spatial separators and fast Fourier transform (FFT) modules, wherein the baseband module is further configured to derive the metrics including a reference signal received power (RSRP) and/or a reference signal received quality (RSRQ) of each of the N channels and route said RSRP and/or RSRQ of each of the N MIMO inputs to the control module.
  • 2. The system according to claim 1, wherein the MIMO receiving system is configured for operation in accordance with the long term evolution (LTE) air protocol.
  • 3. A method comprising: receiving a multiple-input-multiple-output (MIMO) radio frequency (RF) transmission via M antennas;beamforming the received RF MIMO transmission via a radio distribution network (RDN), of beamformers, wherein at least one of the beamformers include at least one combiner configured to combine signals coming from the antennas coupled to a respective beamformer into a N combined signals, wherein M is greater than N;conveying the N combined signals to a multiple-input-multiple-output (MIMO) receiving system comprising a MIMO baseband module having N branches and a spatial separator and a fast Fourier transform (FFT) module for at least one of the channels;deriving baseband metrics including a phase for at least one of the N channels, wherein the phases of pilot reference signals from each of N base station transmit antennas are derived from outputs of the spatial separator and the FFT modules; andtuning the at least one beamformer based on metrics derived by the baseband module, wherein the baseband module is further configured to derive the metrics including a reference signal received power RSRP and/or a reference signal received quality (RSRQ) of each of the at least N channels and route said RSRP and/or RSRQ of each of the N MIMO inputs to the control module.
  • 4. The method according to claim 3, wherein the MIMO receiving system is configured for operation in accordance with the long term evolution (LTE) air protocol.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/762,179 filed on Feb. 7, 2013, which claims priority from US provisional patent application No. 61/652,743 filed on May 29, 2012 and 61/658,015 filed on Jun. 11, 2012, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (258)
Number Name Date Kind
4044359 Applebaum et al. Aug 1977 A
4079318 Kinoshita Mar 1978 A
4359738 Lewis Nov 1982 A
4540985 Clancy et al. Sep 1985 A
4628320 Downie Dec 1986 A
5162805 Cantrell Nov 1992 A
5363104 Richmond Nov 1994 A
5444762 Frey et al. Aug 1995 A
5732075 Tangemann et al. Mar 1998 A
5915215 Williams et al. Jun 1999 A
5936577 Shoki et al. Aug 1999 A
5940033 Locher et al. Aug 1999 A
6018317 Dogan et al. Jan 2000 A
6046655 Cipolla Apr 2000 A
6101399 Raleigh et al. Aug 2000 A
6163695 Takemura Dec 2000 A
6167286 Ward et al. Dec 2000 A
6215812 Young et al. Apr 2001 B1
6226507 Ramesh et al. May 2001 B1
6230123 Mekuria et al. May 2001 B1
6259683 Sekine et al. Jul 2001 B1
6297772 Lewis Oct 2001 B1
6321077 Saitoh et al. Nov 2001 B1
6335953 Sanderford, Jr. et al. Jan 2002 B1
6370378 Yahagi Apr 2002 B1
6377783 Lo et al. Apr 2002 B1
6393282 Iimori May 2002 B1
6584115 Suzuki Jun 2003 B1
6697622 Ishikawa et al. Feb 2004 B1
6697633 Dogan et al. Feb 2004 B1
6834073 Miller et al. Dec 2004 B1
6842460 Olkkonen et al. Jan 2005 B1
6927646 Niemi Aug 2005 B2
6975582 Karabinis et al. Dec 2005 B1
6987958 Lo et al. Jan 2006 B1
7068628 Li et al. Jun 2006 B2
7177663 Axness et al. Feb 2007 B2
7190964 Damnjanovic et al. Mar 2007 B2
7257425 Wang et al. Aug 2007 B2
7299072 Ninomiya Nov 2007 B2
7391757 Haddad et al. Jun 2008 B2
7392015 Farlow et al. Jun 2008 B1
7474676 Tao et al. Jan 2009 B2
7499109 Kim et al. Mar 2009 B2
7512083 Li Mar 2009 B2
7606528 Mesecher Oct 2009 B2
7634015 Waxman Dec 2009 B2
7646744 Li Jan 2010 B2
7719993 Li et al. May 2010 B2
7742000 Mohamadi Jun 2010 B2
7769107 Sandhu et al. Aug 2010 B2
7898478 Niu et al. Mar 2011 B2
7933255 Li Apr 2011 B2
7970366 Arita et al. Jun 2011 B2
8078109 Mulcay Dec 2011 B1
8115679 Falk Feb 2012 B2
8155613 Kent et al. Apr 2012 B2
8280443 Tao et al. Oct 2012 B2
8294625 Kittinger et al. Oct 2012 B2
8306012 Lindoff et al. Nov 2012 B2
8315671 Kuwahara et al. Nov 2012 B2
8369436 Stirling-Gallacher Feb 2013 B2
8509190 Rofougaran Aug 2013 B2
8520657 Rofougaran Aug 2013 B2
8526886 Wu et al. Sep 2013 B2
8588844 Shpak Nov 2013 B2
8599955 Kludt et al. Dec 2013 B1
8599979 Farag et al. Dec 2013 B2
8611288 Zhang et al. Dec 2013 B1
8644413 Harel et al. Feb 2014 B2
8649458 Kludt et al. Feb 2014 B2
8666319 Kloper et al. Mar 2014 B2
8744511 Jones et al. Jun 2014 B2
8767862 Abreu et al. Jul 2014 B2
8780743 Sombrutzki et al. Jul 2014 B2
20010029326 Diab et al. Oct 2001 A1
20010038665 Baltersee et al. Nov 2001 A1
20020024975 Hendler Feb 2002 A1
20020051430 Kasami et al. May 2002 A1
20020065107 Harel et al. May 2002 A1
20020085643 Kitchener et al. Jul 2002 A1
20020107013 Fitzgerald Aug 2002 A1
20020115474 Yoshino et al. Aug 2002 A1
20020181426 Sherman Dec 2002 A1
20020181437 Ohkubo et al. Dec 2002 A1
20030111149 Chitrapu et al. Jun 2003 A1
20030114162 Chheda et al. Jun 2003 A1
20030153322 Burke et al. Aug 2003 A1
20030153360 Burke et al. Aug 2003 A1
20030186653 Mohebbi et al. Oct 2003 A1
20030203717 Chuprun et al. Oct 2003 A1
20030203743 Sugar et al. Oct 2003 A1
20040056795 Ericson et al. Mar 2004 A1
20040063455 Eran et al. Apr 2004 A1
20040081144 Martin et al. Apr 2004 A1
20040121810 Goransson et al. Jun 2004 A1
20040125899 Li et al. Jul 2004 A1
20040125900 Liu et al. Jul 2004 A1
20040142696 Saunders et al. Jul 2004 A1
20040147266 Hwang et al. Jul 2004 A1
20040156399 Eran Aug 2004 A1
20040166902 Castellano et al. Aug 2004 A1
20040198292 Smith et al. Oct 2004 A1
20040228388 Salmenkaita Nov 2004 A1
20040235527 Reudink et al. Nov 2004 A1
20040264504 Jin Dec 2004 A1
20050010623 Ku Jan 2005 A1
20050068230 Munoz et al. Mar 2005 A1
20050068918 Mantravadi et al. Mar 2005 A1
20050075140 Famolari Apr 2005 A1
20050129155 Hoshino Jun 2005 A1
20050147023 Stephens et al. Jul 2005 A1
20050163097 Do et al. Jul 2005 A1
20050245224 Kurioka Nov 2005 A1
20050250544 Grant et al. Nov 2005 A1
20050265436 Suh et al. Dec 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060041676 Sherman Feb 2006 A1
20060092889 Lyons et al. May 2006 A1
20060094372 Ahn et al. May 2006 A1
20060098605 Li May 2006 A1
20060135097 Wang et al. Jun 2006 A1
20060183503 Goldberg Aug 2006 A1
20060203850 Johnson et al. Sep 2006 A1
20060227854 McCloud et al. Oct 2006 A1
20060264184 Li et al. Nov 2006 A1
20060270343 Cha et al. Nov 2006 A1
20060271969 Takizawa et al. Nov 2006 A1
20060285507 Kinder et al. Dec 2006 A1
20070041398 Benveniste Feb 2007 A1
20070058581 Benveniste Mar 2007 A1
20070076675 Chen Apr 2007 A1
20070093261 Hou et al. Apr 2007 A1
20070097918 Cai et al. May 2007 A1
20070115914 Ohkubo et al. May 2007 A1
20070152903 Lin et al. Jul 2007 A1
20070223380 Gilbert et al. Sep 2007 A1
20070249386 Bennett Oct 2007 A1
20080043867 Blanz et al. Feb 2008 A1
20080051037 Molnar et al. Feb 2008 A1
20080081671 Wang et al. Apr 2008 A1
20080144737 Naguib Jun 2008 A1
20080165732 Kim et al. Jul 2008 A1
20080238808 Arita et al. Oct 2008 A1
20080240314 Gaal et al. Oct 2008 A1
20080267142 Mushkin et al. Oct 2008 A1
20080280571 Rofougaran et al. Nov 2008 A1
20080285637 Liu et al. Nov 2008 A1
20090003299 Cave et al. Jan 2009 A1
20090028225 Runyon et al. Jan 2009 A1
20090046638 Rappaport et al. Feb 2009 A1
20090058724 Xia et al. Mar 2009 A1
20090121935 Xia et al. May 2009 A1
20090137206 Sherman et al. May 2009 A1
20090154419 Yoshida et al. Jun 2009 A1
20090190541 Abedi Jul 2009 A1
20090227255 Thakare Sep 2009 A1
20090239486 Sugar et al. Sep 2009 A1
20090268616 Hosomi Oct 2009 A1
20090285331 Sugar et al. Nov 2009 A1
20090322610 Hants et al. Dec 2009 A1
20090322613 Bala et al. Dec 2009 A1
20100002656 Ji et al. Jan 2010 A1
20100037111 Ziaja et al. Feb 2010 A1
20100040369 Zhao et al. Feb 2010 A1
20100067473 Cave et al. Mar 2010 A1
20100111039 Kim et al. May 2010 A1
20100117890 Vook et al. May 2010 A1
20100135420 Xu et al. Jun 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100172429 Nagahama et al. Jul 2010 A1
20100195560 Nozaki et al. Aug 2010 A1
20100222011 Behzad Sep 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100278063 Kim et al. Nov 2010 A1
20100283692 Achour et al. Nov 2010 A1
20100285752 Lakshmanan et al. Nov 2010 A1
20100291931 Suemitsu et al. Nov 2010 A1
20100303170 Zhu et al. Dec 2010 A1
20100316043 Doi et al. Dec 2010 A1
20110019639 Karaoguz et al. Jan 2011 A1
20110032849 Yeung et al. Feb 2011 A1
20110032972 Wang et al. Feb 2011 A1
20110085532 Scherzer et al. Apr 2011 A1
20110105036 Rao et al. May 2011 A1
20110116489 Grandhi May 2011 A1
20110134816 Liu et al. Jun 2011 A1
20110150050 Trigui et al. Jun 2011 A1
20110150066 Fujimoto Jun 2011 A1
20110151826 Miller et al. Jun 2011 A1
20110163913 Cohen et al. Jul 2011 A1
20110205883 Mihota Aug 2011 A1
20110205998 Hart et al. Aug 2011 A1
20110228742 Honkasalo et al. Sep 2011 A1
20110249576 Chrisikos et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110281541 Borremans Nov 2011 A1
20110299437 Mikhemar et al. Dec 2011 A1
20110310827 Srinivasa et al. Dec 2011 A1
20110310853 Yin et al. Dec 2011 A1
20120014377 Joergensen et al. Jan 2012 A1
20120015603 Proctor et al. Jan 2012 A1
20120020396 Hohne et al. Jan 2012 A1
20120028671 Niu et al. Feb 2012 A1
20120033761 Guo et al. Feb 2012 A1
20120034952 Lo et al. Feb 2012 A1
20120045003 Li et al. Feb 2012 A1
20120051287 Merlin et al. Mar 2012 A1
20120064838 Miao et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120076229 Brobston et al. Mar 2012 A1
20120088512 Yamada et al. Apr 2012 A1
20120115523 Shpak May 2012 A1
20120170672 Sondur Jul 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jain et al. Aug 2012 A1
20120207256 Farag et al. Aug 2012 A1
20120212372 Petersson et al. Aug 2012 A1
20120218962 Kishiyama et al. Aug 2012 A1
20120220331 Luo et al. Aug 2012 A1
20120230380 Keusgen et al. Sep 2012 A1
20120251031 Suarez et al. Oct 2012 A1
20120270531 Wright et al. Oct 2012 A1
20120270544 Shah Oct 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20120321015 Hansen et al. Dec 2012 A1
20130017794 Kloper et al. Jan 2013 A1
20130023225 Weber Jan 2013 A1
20130051283 Lee et al. Feb 2013 A1
20130070741 Li et al. Mar 2013 A1
20130079048 Cai et al. Mar 2013 A1
20130094437 Bhattacharya Apr 2013 A1
20130094621 Luo et al. Apr 2013 A1
20130095780 Prazan et al. Apr 2013 A1
20130101073 Zai et al. Apr 2013 A1
20130156120 Josiam et al. Jun 2013 A1
20130170388 Ito et al. Jul 2013 A1
20130208587 Bala et al. Aug 2013 A1
20130208619 Kudo et al. Aug 2013 A1
20130223400 Seo et al. Aug 2013 A1
20130229996 Wang et al. Sep 2013 A1
20130229999 Da Silva et al. Sep 2013 A1
20130235720 Wang et al. Sep 2013 A1
20130242853 Seo et al. Sep 2013 A1
20130242899 Lysejko et al. Sep 2013 A1
20130242976 Katayama et al. Sep 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130301551 Ghosh et al. Nov 2013 A1
20130331136 Yang et al. Dec 2013 A1
20130343369 Yamaura Dec 2013 A1
20140010089 Cai et al. Jan 2014 A1
20140071873 Wang et al. Mar 2014 A1
20140086077 Safavi Mar 2014 A1
20140086081 Mack et al. Mar 2014 A1
20140098681 Stager et al. Apr 2014 A1
20140185535 Park et al. Jul 2014 A1
20140192820 Azizi et al. Jul 2014 A1
20140307653 Liu et al. Oct 2014 A1
Foreign Referenced Citations (7)
Number Date Country
1 867 177 May 2010 EP
2 234 355 Sep 2010 EP
2009-278444 Nov 2009 JP
WO 03047033 Jun 2003 WO
WO 03073645 Sep 2003 WO
WO 2010085854 Aug 2010 WO
WO 2011060058 May 2011 WO
Non-Patent Literature Citations (83)
Entry
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014.
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015.
Related Publications (1)
Number Date Country
20130322574 A1 Dec 2013 US
Provisional Applications (2)
Number Date Country
61652743 May 2012 US
61658015 Jun 2012 US
Continuations (1)
Number Date Country
Parent 13762179 Feb 2013 US
Child 13889150 US